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Abstract
Today’s software systems communicate over the Internet
using standard protocols that have been heavily scruti-
nized, providing some assurance of resistance to mali-
cious attacks and general robustness. However, the soft-
ware that implements those protocols may still contain
mistakes, and an incorrect implementation could lead to
vulnerabilities even in the most well-understood proto-
col. The goal of this work is to close this gap by in-
troducing a new technique for checking that a C im-
plementation of a protocol matches its description in an
RFC or similar standards document. We present a static
(compile-time) source code analysis tool called Pistachio
that checks C code against a rule-based specification of
its behavior. Rules describe what should happen during
each round of communication, and can be used to enforce
constraints on ordering of operations and on data values.
Our analysis is not guaranteed sound due to some heuris-
tic approximations it makes, but has a low false negative
rate in practice when compared to known bug reports.
We have applied Pistachio to implementations of SSH
and RCP, and our system was able to find many bugs,
including security vulnerabilities, that we confirmed by
hand and checked against each project’s bug databases.

1 Introduction

Networked software systems communicate using pro-
tocols designed to provide security against attacks and
robustness against network glitches. There has been
a significant body of research, both formal and infor-
mal, in scrutinizing abstract protocols and proving that
they meet certain reliability and safety requirements
[24, 18, 6, 14, 25]. These abstract protocols, however,
are ultimately implemented in software, and an incorrect
implementation could lead to vulnerabilities even in the

most heavily-studied and well-understood protocol.
In this paper we present a tool called Pistachio that

helps close this gap. Pistachio is a static (compile-time)
analysis tool that can check that each communication
step taken by a protocol implementation matches an ab-
stract specification. Because it starts from a detailed pro-
tocol specification, Pistachio is able to check communi-
cation properties that generic tools such as buffer over-
flow detectors do not look for. Our static analysis algo-
rithm is also very fast, enabling Pistachio to be deployed
regularly during the development cycle, potentially on
every compile.

The input to our system is the C source code im-
plementing the protocol and a rule-based specification
of its behavior, where each rule describes what should
happen in a “round” of communication. For example,
the IETF current draft of the SSH connection protocol
specifies that “When either party wishes to terminate
the channel, it sends SSH MSG CHANNEL CLOSE.
Upon receiving this message, a party must send back
a SSH MSG CHANNEL CLOSE. . ..” This statement
translates into the following rule (slightly simplified):

recv( , in, )
in[0] = SSH MSG CHANNEL CLOSE

⇒
send( , out, )
out[0] = SSH MSG CHANNEL CLOSE

This rule means that after seeing a call to recv()
whose second argument points to memory containing
SSH MSG CHANNEL CLOSE, we should reply with the
same type of message. The full version of such a rule
would also require that the reply contain the same chan-
nel identifier as the initial message.

In addition to this specification language, another key
contribution of Pistachio is a novel static analysis al-
gorithm for checking protocol implementations against
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their rule-based specification. Pistachio performs an ab-
stract interpretation [10] to simulate the execution of
program source code, keeping track of the state of pro-
gram variables and of ghost variables representing ab-
stract protocol state, such as the last value received in a
communication. Using a fully automatic theorem prover,
Pistachio checks that whenever it encounters a statement
that triggers a rule (e.g., a call to recv), on all paths the
conclusion of the rule is eventually satisfied (e.g., send
is called with the right arguments). Although this seems
potentially expensive, our algorithms run efficiently in
practice because the code corresponding to a round of
communication is relatively compact. Our static analysis
is not guaranteed to find all rule violations, both because
it operates on C, an unsafe language, and because the
algorithm uses some heuristics to improve performance.
In practice, however, our system missed less than 5% of
known bugs when measured against a bug database.

We applied Pistachio to two benchmarks: the LSH im-
plementation of SSH2 and the RCP implementation from
Cygwin. Analysis took less than a minute for each of
the test runs, and Pistachio detected a multitude of bugs
in the implementations, including many security vulner-
abilities. For example, Pistachio found a known prob-
lem in LSH that causes it to leak privileged information
[22]. Pistachio also found a number of buffer overflows
due to rule violations, although Pistachio does not de-
tect arbitrary buffer overflows. We confirmed the bugs
we found against bug databases for the projects, and we
also found two new unconfirmed security bugs in LSH:
a buffer overflow and an incorrect authentication failure
message when using public key authentication.

In summary, the main contributions of this work are:

• We present a rule-based specification language for
describing network protocol implementations. Us-
ing pattern matching to identify routines in the
source code and ghost variables to track state, we
can naturally represent the kinds of English specifi-
cations made in documents like RFCs. (Section 2)

• We describe a static analysis algorithm for checking
that an implementation meets a protocol specifica-
tion. Our approach uses abstract interpretation to
simulate the execution of the program and an auto-
matic theorem prover to determine whether the rules
are satisfied. (Section 3)

• We have applied our implementation, Pistachio, to
LSH and RCP. Pistachio discovered a wide variety
of known bugs, including security vulnerabilities,
as well as two new unconfirmed bugs. Overall Pis-
tachio missed about 5% of known bugs and had a

0. int main(void) {
1. int sock, val = 1, recval;
2. send(sock, &val, sizeof(int));
3. while(1) {
4. recv(sock, &recval, sizeof(int));
5. if (recval == val)
6. val += 2;
7. send(sock, &val, sizeof(int));
8. }
9. }

Figure 1: Simple alternating bit protocol implementation

38% false positive rate. (Section 4)

Based on our results, we believe that Pistachio can be
a valuable tool in ensuring the safety and security of net-
work protocol implementations.

2 Rule-Based Protocol Specification

The first step in using Pistachio is developing a rule-
based protocol specification, usually from a standards
document. As an example, we develop a specification for
a straightforward extension of the alternating bit protocol
[4]. Here is a straw-man description of the protocol:

The protocol begins with the current party
sending the value n = 1. In each round, if n
is received then the current party sends n + 1;
otherwise the current party resends n.

Figure 1 gives a sample implementation of this protocol.
Here recv() and send() are used to receive and send
data, respectively. Notice that this implementation is ac-
tually flawed—on statement 6, val is incremented by 2
instead of by 1.

To check this protocol, we must first identify the com-
munication primitives in the source code. In this case we
see that the calls to send() in statements 2 and 7 and
the call to recv() in statement 4 perform the communi-
cation. More specifically, we observe that we will need to
track the value of the second argument in the calls, since
that contains a pointer to the value that is communicated.

We use patterns to match these function calls or other
expressions in the source code. Patterns contain pattern
variables that specify which part of the call is of interest
to the rule. For this protocol, we use pattern send( ,
out, ) to bind pattern variable out to the second ar-
gument of send(), and we use pattern recv( , in,
) to bind in to the second argument of recv(). For

other implementations we may need to use patterns that
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Rule Description

(1) ∅ ⇒
send( , out, )
out[0..3] = 1
n := 1

The protocol begins by sending the value 1

(2)
recv( , in, )
in[0..3] = n

⇒
send( , out, )
out[0..3] = in[0..3] + 1
n := out[0..3]

If n is received then send n + 1

(3)
recv( , in, )
in[0..3] 6= n

⇒ send( , out, )
out[0..3] = n Otherwise resend n

Figure 2: Rule-based protocol specification

match different functions. Notice that in both of these
patterns, we are already abstracting away some imple-
mentation details. For example, we do not check that
the last parameter matches the size of val, or that the
communication socket is correct, i.e., these patterns will
match calls even on other sockets.

Patterns can be used to match any function calls. For
example, we have found that protocol implementers of-
ten create higher-level functions that wrap send and re-
ceive operations, rather than calling low-level primitives
directly. Using patterns to match these functions can
make for more compact rules that are faster to check,
though this is only safe if those routines are trusted.

2.1 Rule Encoding
Once we have identified the communication operations
in the source code, we need to write rules that encode the
steps of the protocol. Rules are of the form

(PH , H) ⇒ (PC , C, G)

where H is a hypothesis and C is a conclusion, PH and
PC are patterns, and G is a set of assignments to ghost
variables representing protocol state. In words, such a
rule means: If we find a statement s in the program that
matches pattern PH , assume that H holds, and make sure
that on all possible execution paths from s there is some
statement matching PC , and moreover at that point the
conditions in C must hold. If a rule is satisfied in this
manner, then the side effects G to ghost variables hold
after the statements matching PC .

For example, Figure 2 contains the rules for our alter-
nating bit protocol. Rule (1) is triggered by the start of
the program, denoted by hypothesis ∅. This rule says that
on all paths from the start of the program, send() must
be called, and its second argument must point to a 4-byte
block containing the value 1. We can see that this rule is
satisfied in statement 2 in Figure 1. As a side effect, the
successful conclusion of rule (1) sets the ghost variable
n to 1. Thus the value of n corresponds to the data stored
in val. Notice that there is a call to send() in state-
ment 7 that could match the conclusion pattern—but it

does not, because we interpret patterns in rules to always
mean the first occurrence of a pattern on a path.

Rule (2) is triggered by a call to recv(). It says that
if recv() is called, then assuming that the value n is re-
ceived in the first four bytes of in, the function send()
must eventually be called with in + 1 as an argument,
and as a side effect the value of n is incremented. Sim-
ilarly to before, this rule matches the first occurrence of
send() following recv(). In our example code this
rule is not satisfied. Suppose rule (1) has triggered once,
so the value of n is 1, and we trigger rule (2) in statement
4. Then if we assume n is received in statement 4, then
statement 7 will send n + 2. Hence Pistachio signals a
rule violation on this line.

Finally, rule (3) is triggered on the same call to
recv() in statement 4. It says that if we assume the
value of n is not received in in, then eventually send()
is called with n as the argument. This rule will be sat-
isfied by the implementation, because when we take the
false branch in statement 5 we will resend val, which
always contains n after rules (1) or (3) fire.

2.2 Developing Rule-Based Specifications
As part of our experimental evaluation (Section 4), we
developed rule-based specifications for the SSH2 proto-
col and the RCP protocol. In both cases we started with
a specification document such as an RFC or IETF stan-
dard. We then developed rules from the textual descrip-
tions in the document, using the following steps:

1. Identifying patterns. The specification writer can
either choose the low-level communication prim-
itives as the primary patterns, as in Figure 2, or
write rules in terms of higher-level routines. We
have attempted both approaches when developing
our specifications, but decided in favor of the first
method for more future portability.

2. Defining the rules. The main task in constructing
a rule-based specification is, of course, determin-
ing the basic rules. The specification writer first
needs to read the standards document carefully to
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discover what data is communicated and how it is
represented. Then to discover the actual rules they
should study the sections of the specification doc-
ument that describe the protocol’s behavior. We
found that phrases containing must are good can-
didates for such rules. (For a discussion of terms
such as must, may, and should in RFC documents,
see RFC 1111.)

For instance, as we read the SSH2 standard we
learned that the message format for SSH user au-
thentication starts with the message type, followed
by the user name, service name, and method name.
Furthermore, we found that the use of “none” as
the authentication method is strongly discouraged
by the specification except for debugging purposes.
This suggested a potential security property: To pre-
vent anonymous users from obtaining remote shells,
we should ensure that If we receive a user authenti-
cation request containing the none method, we must
return SSH MSG USERAUTH FAILURE. Once we
determine this rule, it is easy to encode it in Pista-
chio’s notation, given our knowledge of SSH mes-
sage formats.

3. Describing state. Finally, as we are constructing
the rules, we may discover that some protocol steps
are state-based. For instance, in the SSH2 proto-
col, any banner message has to be sent before the
server sends SSH MSG USERAUTH SUCCESS. To
keep track of whether we have sent the success mes-
sage, we introduce a new ghost variable called suc-
cessSent that is initially 0 (here we assume for sim-
plicity that we only have one client). We modify our
rules to set successSent to 1 or 0 in the appropriate
cases. Then the condition on banner messages can
be stated as Given that successSent is 1 and for any
message received, the output message type is differ-
ent from SSH MSG USERAUTH BANNER. Our ex-
perience is that coming up with the ghost variables
is the least-obvious part of writing a specification
and requires some insight. In the LSH and RCP
protocols, the state of the protocol usually depends
on the previous message that was sent, and so our
rules use ghost variables to track the last message.

Section 4.1 discusses the actual rule-based specifica-
tions we developed for our experiments.

3 Static Analysis of Protocol Source Code

Given a set of rules as described in Section 2 and the
source code of a C program, Pistachio performs a static

analysis to check that the program obeys the specified
rules. Pistachio uses abstract interpretation [10] to sim-
ulate the behavior of source code. The basic idea is to
associate a set of facts with each point during execution.
In our system, the facts we need to keep track of are the
predicates in the rules and anything that might be related
to them. Each statement in the program can be thought
of as a transfer function [1], which is a “fact transformer”
that takes the set of facts that hold before the statement
and determines the facts that hold immediately after:

• After an assignment statement var = expr, we first
remove any previous facts about var and then add
the fact var = expr. For example, consider the code
in Figure 1 again. If before statement 6 {val = n}
is the set of facts that hold, after the assignment in
statement 6 the set {val = n + 2} holds. Pointers
and indirect assignments are handled similarly, as
discussed below.

• If we see a conditional if (p) s1 else s2, we add the
fact that p holds on the true branch, and that ¬p
holds on the false branch. For example, in statement
6 in Figure 1 we can always assume recval = val,
since to reach this statement the condition in state-
ment 5 must have been true.

• If we see a function call f(x1, ..., xn), we propagate
facts from the call site through the body of f and
back to the caller. I.e., we treat the program as if
all functions are inlined. As discussed below, we
bound the number of times we visit recursive func-
tions to prevent infinite looping, although recursive
functions are rare in practice for network protocol
implementations.

We perform our analysis on a standard control-flow
graph (CFG) constructed from the program source code.
In the CFG, each statement forms a node, and there is an
edge from s1 to s2 if statement s1 occurs immediately
before statement s2. For example, Figure 3(a) gives the
CFG for the program in Figure 1.

Figure 4 presents our abstract interpretation algorithm
more formally. The goal of this algorithm is to update
Out, a mapping such that Out(s) is the set of facts that
definitely hold just after statement s. The input to Fact-
Derivation is an initial mapping Out, a set of starting
statements S, and a set of ending statements T . The
algorithm simulates the execution of the program from
statements in S to statements in T while updating Out.
Our algorithm uses an automatic theorem prover to de-
termine which way conditional branches are taken. In
this pseudocode, we write pred(s) and succ(s) for the
predecessor and successor nodes of s in the CFG.
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1. val = 1

3. send(_, &val, _)

5. recv(_, &recval, _)

6. recval == val

7. val += 2

8. send(_, &val, _)

Rule (1)

Hyp: facts = ∅
Concl: stmt 2 matches, facts = {val = 1}
Need to show: {val = 1} ∧ {&val = out} ⇒ out[0..3] = 1
Action: n := 1

Rule (3)

Hyp: stmt 4 matches,
facts = {n = 1, val = 1, in = &recval, in[0..3] 6= n} = F

Branch: Since assumptions ⇒ (recval 6= val), false branch taken
Concl: stmt 7 matches, same facts F as above
Need to show: F ∧ {&val = out} ⇒ out[0..3] = n
Action: none

Rule (2)

Hyp: stmt 4 matches,
facts = {n = 1, val = 1, in = &recval, in[0..3] = n}

Branch: Since assumptions ⇒ (recval = val), true branch taken
Concl: stmt 7 matches, facts are

F = {n = 1, val = 3, in = &recval, in[0..3] = n}
Need to show: F ∧ {&val = out} ⇒ (out[0..3] = in[0..3] + 1)
Fails to hold; issue warning

(a) Control-Flow Graph (b) Algorithm Trace

Figure 3: Static Checking of Example Program

Our simulation algorithm uses a worklist Q of state-
ments, initialized on line 1 of Figure 4. We repeatedly
pick statements from the worklist until it is empty. When
we reach a statement in T on line 6, we stop propaga-
tion along that path. Because the set of possible facts is
large (most likely infinite), simulation might not termi-
nate if the code has a loop. Thus on line 10 we heuris-
tically stop iterating once we have visited a statement
max pass times, where max pass is a predetermined con-
stant bound. Based on our experiments, we set max pass
to 75. We settled on this value empirically by observing
that if we vary the number of iterations, then the over-
all false positive and false negative rates from Pistachio
rarely changed after 75 iterations in our experiments.

In line 5 of the algorithm, we compute the set In of
facts from the predecessors of s in the CFG. If the pre-
decessor was a conditional, then we also add in the ap-
propriate guard based on whether s is on the true or false
branch. Then we apply a transfer function that depends
on what kind of statement s is: Lines 13–15 handle sim-
ple assignments, which kill and add facts as described
earlier, and then add successor statements to the worklist.
Lines 16–24 handle conditionals. Here we use an auto-
matic theorem prover to prune impossible code paths. If
the guard p holds in the current state, then we only add
s1 to the worklist, and if ¬p holds then we only add s2

to the worklist. If we cannot prove either, i.e., we do not
know which path we will take, then we add both s1 and
s2 to the worklist. Finally, lines 25–32 handle function
calls. We compute a renaming map between the actual
and formal parameters of f , and then recursively sim-
ulate f from its entry node to its exit nodes. We start

simulation in state map(Out), which contains the facts in
Out renamed by map. Then the state after the call returns
is the intersection of the states at all possible exits from
the function, with the inverse mapping map−1 applied.

C includes a number of language features not covered
in Figure 4. Pistachio uses CIL [26] as a front-end, which
internally simplifies many C constructs by introducing
temporary variables and translating loops into canonical
form. We unroll loops up to max pass times in an ef-
fort to improve precision. However, as discussed in Sec-
tion 3.2, we attempt to find a fixpoint during unrolling
process and stop if we can do so, i.e., if we can find a
loop invariant. C also includes pointers and a number of
unsafe features, such as type casts and unions. Pistachio
tracks facts about pointers during its simulation, and all
C data is modeled as arrays of bytes with bounds infor-
mation. When there is an indirect assignment through
a pointer, Pistachio only derives a fact if the theorem
prover can show that the write is within bounds, and oth-
erwise kills all existing facts about the array. Note that
even though a buffer overflow may modify other mem-
ory, we do not kill other facts, which is unsound but helps
reduce false positives. Since all C data is represented as
byte arrays, type casts are implicitly handled as well, as
long we can determine at analysis time the allocation size
for each type, which Pistachio could always do in our ex-
periments. In addition, in order to reduce false positives
Pistachio assumes that variables are initialized with their
default values independently of their scope. In the next
sections, we illustrate the use of FactDerivation during
the process of checking the alternating bit protocol from
Figure 2.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 197



FactDerivation(Out, S, T )
1: Q← S
2: while Q not empty do
3: s← dequeue(Q)
4: visit(s)← visit(s) + 1

5: In← ∩s′∈pred(s)

{
Out(s′) ∪ {C} s′ is “if(C) then s else s2”

Out(s′) ∪ {¬C} s′ is “if(C) then s1 else s”
Out(s′) otherwise

6: if s ∈ T then
7: Out(s)← In
8: continue
9: end if

10: if visit(s) > max pass then
11: continue
12: end if
13: if s is assignment “var=expr” then
14: Out(s)← (In− {facts involving var}) ∪ {var=expr}
15: Q← Q ∪ succ(s)
16: else if s is “if(p) then s1 else s2” then
17: Out(s)← In
18: if Theorem-prover(Out(s)⇒ p) = yes then
19: Q← Q ∪ {s1}
20: else if Theorem-prover(Out(s)⇒ ¬p) = yes then
21: Q← Q ∪ {s2}
22: else
23: Q← Q ∪ {s1, s2}
24: end if
25: else if s is “f(x1, . . . , xn)” then
26: map← mapping between actual and formal parameters
27: start′ ← entry statement of f
28: T ′ ← exit statements of f
29: FactDerivation(map(Out), {start′}, T ′)

30: Out(s)← ∩s′∈T ′map−1(Out(s′))
31: Q← Q ∪ succ(S)
32: end if
33: end while

Figure 4: Fact derivation in Pistachio

3.1 Checking a Single Rule

Given the FactDerivation algorithm, we can now
present our algorithm for checking that the code obeys
a single rule R of the form (PH , H) ⇒ (PC , C, G). As-
sume that we are given a set of statements S that match
PH . Then to check R, we need to simulate the program
forward from the statements in S using FactDerivation.
We check that we can reach statements matching PC

along all paths and that the conclusion C holds at those
statements. Figure 5 gives our formal algorithm Check-
SingleRule for carrying out this process.

The input to CheckSingleRule is a rule R, an ini-
tial set of facts Out, and a set of starting statements S.
For all statements in S, on line 3 we add to their facts
the assumptions H and any facts derived from pattern-
matching S against PH ; we denote this latter set of facts
by PH(s). If there is some path from S along which we
cannot find a match to PC , we report an error on line 5
and consider the rule unsatisfied. Otherwise on line 6
we search forward along all program paths until we first
find the conclusion pattern PC . Then on line 7 we per-
form abstract interpretation using FactDerivation to up-

CheckSingleRule(R, Out, S)
1: Let R be of the form (PH , H)⇒ (PC , C, G)
2: for s ∈ S do
3: Out(s)← Out(s) ∪H ∪ PH (s)
4: end for
5: If there is a path from S on which no statement matches PC , return error
6: Let T be the set of statements that are the first matches to PC on all paths

from statements in S
7: FactDerivation(Out, S, T )
8: if ∀t ∈ T , Theorem-prover((Out(t) ∧ PC(t))⇒ C) = yes then
9: /* R is satisfied */

10: for s′ ∈ T do
11: Remove from Out(s′) facts involving ghost variables modified in G
12: Out(s′)← Out(s′) ∪G
13: end for
14: Remove from Out all the facts involving pattern variables
15: Return rule satisfied
16: else
17: /* R is not satisfied */
18: Return error
19: end if

Figure 5: Algorithm for checking a single rule

date Out. On line 8, we use the theorem prover to check
whether the conclusion C holds at the statements that
match PC . If they do then the rule is satisfied, and lines
11–12 update Out(s′) with facts for ghost variables. We
also remove any facts about pattern variables (in and out
in our examples) from Out (line 14).

We illustrate using CheckSingleRule to check rule (1)
from Figure 2 on the code in Figure 1. The first block
in Figure 3(b) lists the steps taken by the algorithm. We
will discuss the remainder of this figure in Section 3.2.

In rule (1), the hypothesis pattern PH is the start of
the program, and the set of assumptions H is empty.
The conclusion C of this rule is out[0..3] = 1, where
out matches the second argument passed to a call to
send(). Thus to satisfy this rule, we need to show
that out[0..3] = 1 at statement 2 in Figure 1. We begin
by adding H and PH(0), which in this case are empty,
to Out(0), the set of facts at the beginning of the pro-
gram, which is also empty. We trace the program from
this point forward using FactDerivation. In particular,
Out(1) = Out(2) = {val = 1}. At statement 2 we
match the call to send() against PC , and thus we also
have fact &val = out. Then we ask the theorem prover
to show Out(2) ∧ {&val = out} ⇒ C. In this case the
proof succeeds, and so the rule is satisfied, and we set
ghost variable n to 1.

3.2 Checking a Set of Rules

Finally, we develop our algorithm for checking a set of
rules. Consider again the rules in Figure 2. Notice that
rules (2) and (3) both depend on n, which is set in the
conclusion of rules (1) and (2). Thus we need to check
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CheckRuleSet(W , Out, S)
1: while W not empty do
2: R← dequeue(W )
3: visit(R)← visit(R) + 1
4: if visit(R) > max pass then
5: continue
6: end if
7: Let R be of the form (PH , H)⇒ (PC , C, G)
8: Let T be the set of statements that are the first matches to PH on all paths

from statements in S
9: Let Out′ = Out

10: FactDerivation(Out′, S, T )
11: CheckSingleRule(R, Out′, T )
12: Let U be the set of statements computed in step 6 in Figure 5
13: if R is satisfied then
14: CheckRuleSet({R′ | R′ depends on R}, Out′, U)
15: end if
16: end while

Figure 6: Algorithm for checking a set of rules

whether rules (2) or (3) are triggered on any program
path after we update n, and if they are, then we need
to check whether they are satisfied. Since rule (2) de-
pends on itself, we in fact need to iterate. Formally, we
say that rule Ri depends on rule Rj if Rj sets a ghost
variable that Ri uses in its hypothesis. We can think of
dependencies as defining a graph between rules, and we
use a modified depth-first search algorithm to check rules
in the appropriate order based on dependencies.

Figure 6 gives our algorithm for checking a set of
rules. The input is a set of rules W that need to be
checked, a mapping Out of facts at each program point,
and a set of statements S from which to begin checking
the rules in W . To begin checking the program, we call
CheckRuleSet(R0, Out0, S0), where R0 is the rule with
hypothesis ∅ (we can always create such a rule if it does
not exist), S0 is the initial statement in the program, and
Out0 maps every statement to the set of all possible facts.

Then the body of the algorithm removes a rule R from
the worklist W and checks it. Because rule dependencies
may be cyclic, we may visit a rule multiple times, and as
in Figure 5 we terminate iteration once we have visited a
rule max pass times (line 5). On line 8 we trace forward
from S to find all statements T that match PH . Then
we copy the current set of facts Out into a new set Out′,
simulate the program from S to T (line 10), and then on
line 11 check the rule R with facts Out′. Notice that the
call to FactDerivation on line 10 and the call to CheckS-
ingleRule on line 11 modify the copy Out′ while leaving
the original input Out unchanged. This means that in
the next iteration of the loop, when we pick another rule
from the worklist and check it starting from S, we will
again check it using the initial facts in Out, which is the
intended behavior: A call to CheckRuleSet should check
all rules in W starting in the same state. Finally, on line

14, if the rule R was satisfied, we compute the set of all
rules that depend on R, and then we recursively check
those rules, starting in our new state from statements that
matched the conclusion pattern.

We illustrate the algorithm by tracing through the re-
mainder of Figure 3(b), which describes the execution
of CheckRuleSet on our example program. Observe that
rule (1) can be checked with no assumptions, hence we
use it to begin the checking process. We begin with
the initial statement in the program and call CheckSin-
gleRule. As described in Section 3.1, we satisfy rule (1)
at statement 2, and we set ghost variable n to 1. Thus
after checking rule (1), we can verify rules that depend
on n’s value. For our example, either rule (2) or rule (3)
might fire next, and so W will contain both of them.

Checking rule (3). Suppose we next choose rule (3).
We continue from statement 2, since that is where we set
ghost variable n, and we perform abstract interpretation
forward until we find a statement that matches the hy-
pothesis pattern of rule (3), which is statement 4. Now
we add the hypothesis assumption in[0..3] 6= n to our set
of facts and continue forward. When we reach statement
5, the theorem prover shows that the false branch will be
taken, so we only continue along that one branch—which
is important, because if we followed the other branch we
would not be able to prove the conclusion. Taking the
false branch, we fall through to statement 7, and the the-
orem prover concludes that rule (3) holds.

Checking rule (2). Once we are done checking rule
(3), we need to go back and start checking rule (2) where
we left off after rule (1), namely just after we set n := 1
after statement 2. The set of facts contains n = 1 and
val = 1, both set during the checking of rule (1). We
continue forward from statement 2, match the hypothesis
of rule (2) at statement 4, and then this time at the con-
ditional we conclude that the true branch is taken, hence
val becomes 3 at statement 7. Now the conclusion of
the rule cannot be proven, so we issue a warning that the
protocol was violated at this statement.

Finding a fixpoint. Suppose for illustration purposes
that rule (2) had checked successfully, i.e., in statement 6,
val was only incremented by one. Then at statement 7
we would have shown the conclusion and set ghost vari-
able n := out[0..3]. Then since we changed the value of
n, we need to re-check rules (2) and (3) starting from this
point, since they depend on the value of n. Of course, if
we follow the loop around again we would need to check
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rules (2) and (3) yet again, leading to an infinite loop, cut
off after max pass times.

In order to model this case more efficiently, Pista-
chio’s implementation of CheckRuleSet includes a tech-
nique for finding a fixpoint and safely stopping abstract
interpretation early. Due to lack of space, we omit pseu-
docode for this technique and illustrate it by example.
During the first check of rule (2), we would have that
Out0(2) = {n = val, val = 1}, where the superscript of
Out indicates how many iterations we have performed.
After rule (2) succeeds at statement 7, we set n to val,
and hence Out1(7) = {n = val, val = 2}. Since rule (2)
depends on itself, we need to check it once again. Af-
ter simulating the loop in statements 3–8 another time,
we would check rule (2) with facts Out2(7) = {n =
val, val = 3}. Rather than continuing until we reach
max pass, we instead try to intersect the facts we have
discovered to form a potential loop invariant. We look at
the set of facts that hold just before rule (2) is triggered
and just after rule (2) is verified:

Out0(2) = {n = val, val = 1} Initial entry to loop
Out1(7) = {n = val, val = 2} Back-edge from the

first iteration
Out2(7) = {n = val, val = 3} Back-edge from the

second iteration

Generally speaking, at step k we are interested in the
intersection Out0(2) ∩

⋂
i∈[1,k] Outi(7). In our case, the

only fact in this intersection is n = val. We then set
Outk+1 = {n = val} (thus ignoring the particular value
of val for step k) and attempt to verify rule (2) once more.
Rule (2) indeed verifies, which means we have reached a
fixpoint, and we can stop iterating well before reaching
max pass. We found this technique for finding fixpoints
effective in our experiments (Section 4).

4 Implementation and Experiments

Our tool Pistachio is implemented in approximately 6000
lines of OCaml. We use CIL [26] to parse C programs
and Darwin [5] as the automated theorem prover. Darwin
is a sound, fully-automated theorem prover for first order
clausal logic. We chose Darwin because it performs well
and can handle the limited set of Horn-type theorems we
ask it to prove. Since Darwin is not complete, it can
return either “yes,” “no,” or “maybe” for each theorem.
Pistachio conservatively assumes that a warning should
be generated if a rule conclusion cannot be provably im-
plied by the facts derived starting from the hypothesis.

In order to analyze realistic programs, Pistachio needs
to model system libraries. When Pistachio encounters
a library call, it generates a skeleton rule-based specifi-
cation for the function that can be filled in by the user.
Rules for library functions are assumed correct, rather
than checked. For our experiments we added such speci-
fications for several I/O and memory allocation routines.
There are some library functions we cannot fully model
in our framework, e.g., geterrno(), which potentially de-
pends on any other library call. In this case, Pistachio as-
sumes that conditionals based on the result of geterrno()
may take either branch, which can reduce precision.

4.1 Core Rule Sets

We evaluated Pistachio by analyzing the LSH [21] im-
plementation of SSH2 and the RCP implementation from
Cygwin’s inetutils package. We chose these systems be-
cause of their extensive bug databases and the number of
different versions available.

We created rule-based specifications by following the
process described in Section 2.2. Our (partial) specifi-
cation for SSH2 totaled 96 rules, and the one for RCP
totaled 58 rules. Because the rules describe particular
protocol details and are interdependent, it is difficult to
correlate individual rules with general correctness or se-
curity properties. In Figure 7, we give a rough break-
down of the rules in our SSH2 specification, and we list
example rules with descriptions. These rules are taken
directly from our experiments—the only changes are that
we have reformatted them in more readable notation,
rather than in the concrete grammar used in our imple-
mentation, and we have used send and recv rather than
the actual function names.

The categories we chose are based on functional be-
havior. The first category, message structure and data
transfer, includes rules that relate to the format, struc-
ture, and restrictions on messages in SSH2. The exam-
ple rule requires that any prompt sent to keyboard in-
teractive clients not be the empty string. The second
category, compatibility rules, includes rules about back-
wards compatibility with SSH1. The example rule places
a requirement on sending an identification string in com-
patibility mode. The third category, functionality rules,
includes rules about what abilities should or should not
be supported. The example rule requires that the imple-
mentation not allow the “none” authentication method.
The last category, protocol logic rules, contains the ma-
jority of the rules. These rules require that the proper
response is sent for each received message. The first ex-
ample rule requires that the server provide an adequate
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Category Example rule(s) Description

Message structure and
data transfer

recv(in sock, in, )
in.msgid = SSH MSG USERAUTH REQUEST
in.authtype = “keyboard-interactive”

⇒
send(out sock, out, )
in sock = out sock
out.msgid = SSH MSG USERAUTH INFO REQUEST
len(out.prompt) > 0

In keyboard interactive authentication mode, the
prompt field(s) [the server sends to the interactive
client] MUST NOT be empty.

Compatibility

recv(sock, in, )
in[len(in) − 2] = CR
in[len(in) − 1] = LF
connected[sock] = 0

⇒
send(sock, out, )
out[len(out) − 2] = CR
out[len(out) − 1] = LF
connected[sock] := 1

In compatibility mode, after receiving the client
identification string, the server MUST NOT send
any additional messages before its identification
string. [Note: The message with the identity string
is distinguished by ending in a CR/LF combination]

Functionality

recv( , in, )
in[0] = SSH MSG USERAUTH REQUEST
isOpen[in[1..4]] = 1
in[21..25] = “none”

⇒
send( , out, )
out[0] = SSH MSG USERAUTH FAILURE

It is STRONGLY RECOMMENEDED that the
“none” authentication method not be supported.

Protocol logic

recv(in sock, in, )
in[0] = SSH MSG GLOBAL REQUEST
in[1..14] = “tcpip-forward”
in[15] = 1
in[(len(in) − 4)..(len(in) − 1)] = 0

⇒
send(out sock, out, )
in sock = out sock
out[0] = SSH MSG REQUEST SUCCESS

The server MUST respond to a TCP/IP forward-
ing request in which the wantreply flag [byte 15]
is set to 1 and the port [last 4 bytes] is set to 0
with a SSH MSG REQUEST SUCCESS containing
the forwarding port.

recv(in sock, in, )
in[0] = SSH MSG GLOBAL REQUEST
in[15] = 1

⇒
send(out sock, out, )
in sock = out sock

The server MUST respond to all global requests
with the wantreply flag [byte 15] set to 1.

Figure 7: Categorization and example rules for the SSH2 protocols

response to TCP/IP forwarding requests with a value of
0 for port. The second rule requires that the server replies
to all global requests that have the wantreply flag set.

Based on our experience developing rules for SSH
and RCP, we believe that the process does not require
any specialized knowledge other than familiarity with the
rule-based language grammar and the specification doc-
ument. It took the authors less than 7 hours to develop
each of our SSH2 and RCP specifications. The rules are
generally slightly more complex than is shown in Fig-
ure 7, containing on average 11 facts in the hypothesis
and 5 facts in the conclusion for LSH, and 9 facts for the
hypothesis and 4 for the conclusion for RCP. Originally,
we started with a rule set derived directly from speci-
fication documents, which was able to catch many but
not all bugs, and then we added some additional rules
(a little over 10% more per specification) to look for
some specific known bugs (Section 4.4). These addi-
tional rules produced about 20% of the warnings from
Pistachio. Generally, the rules written from the specifi-
cation document tend to catch missing functionality and
message format related problems, but are less likely to

catch errors relating to compatibility problems or unsafe
use of library functions. The process of extending the
initial set of rules proved fairly easy, since specific in-
formation about the targeted bugs was available from the
respective bug databases.

4.2 Results for Core Rule Sets
We started with initial specifications for the SSH2 pro-
tocols (87 rules) and the RCP protocol (51 rules), with
“core rules” based only on specification documents. In
Section 4.4 we discuss extending these rules to target
particular bugs. Using these specifications, we ran our
tool against several different versions of LSH, ranging
from 0.1.3 to 2.0.1, and several different versions of RCP,
ranging from 0.5.4 to 1.3.2. We used the same specifica-
tion for all versions of the code, and we ran Pistachio
with max pass set to 75.

Figure 8 presents the results of our analysis. We list
the lines of code (omitting comments and blank lines)
analyzed by Pistachio. We only include code involved in
the rules, e.g., we omit the bodies of functions our rules
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Version 0.1.3 0.2.1 0.2.9 0.9.1 1.0.1 1.1.1 1.2.1 1.3.1 1.4.1 1.5.1 1.5.5 2.0.1
Analyzed code size (lines) 8745 8954 9145 9267 9221 10431 10493 10221 12585 12599 12754 13689

Running time (s) 23.96 25.24 24.99 25.89 25.21 26.85 28.91 30.1 29.74 31.45 36.3 38.91
Bugs in database 91 83 69 65 81 80 82 82 51 40 31 13

Warnings from Pistachio 118 123 110 97 91 93 92 82 78 74 33 25
False positives 40 57 43 43 22 27 24 16 38 38 7 12
False negatives 5 5 3 4 3 3 2 2 1 1 0 1

(a) LSH implementations

Version 0.5.4 0.6.4 0.8.4 1.1.4 1.2.3 1.3.2
Analyzed code size (lines) 4501 4723 4813 4865 4891 5026

Running time (s) 16.13 18.34 19.13 18.56 21.65 25.43
Bugs in database 51 46 47 51 28 23

Warnings from Pistachio 73 89 58 70 48 39
False positives 30 30 17 25 27 19
False negatives 2 2 1 2 0 1

(b) RCP implementations

Figure 8: Analysis Results with Core Rule Sets

treat as opaque, such as cryptographic functions.
The third row contains the running time of our sys-

tem. (The running times include the time for checking
the core rules plus the additional rules discussed in the
next section.) In all cases the running times were un-
der one minute. The next four rows measure Pistachio’s
effectiveness. We list the number of bugs found in the
project’s bug database for that version and the number
of warnings issued by Pistachio. We counted only bugs
in the database that were reported for components cov-
ered by our specifications. For instance, we only include
bugs in LSH’s authentication and transport protocol code
and not in its connection protocol code. We also did not
include reports that appeared to be feature requests or
other issues in our bug counts. The last two rows report
the number of false positives (warnings that do not cor-
respond to bugs in the code) and false negatives (bugs in
the database we did not find).

We found that most of the warnings reported by Pis-
tachio corresponded to bugs that were in the database.
We also found two apparently new bugs in LSH version
2.0.1. The first involves a buffer overflow in buffers re-
served for passing environment variables in the imple-
mentation of the SSH Transport protocol. The second in-
volves an incorrectly formed authentication failure mes-
sage when using PKI. We have not yet confirmed these
bugs; we sent an email to the LSH mailing list with a
report, but it appears that the project has not been main-
tained recently, and we did not receive a response.

To determine whether a warning is a bug, we trace the
fact derivation process in reverse, using logs produced by
Pistachio that give Out for each analyzed statement. We
start from a rule failure at a conclusion, and then exam-

// Code is extracted from a function handling connection initialization
. . . . . .
1. fmsgrecv(clisock,inmsg,SSH2 MSG SIZE);
2. if(!parse message(MSGTYPE PROTOVER,inmsg,len(inmsg),&protomsg))
3. return;
. . . . . .
4. if(protomsg.proto ver < 1) {
5. payload.msgid = SSH DISCONNECT;
6. payload.reason = SSH DISCONNECT PROTOCOL ERROR;
. . . . . .
7. sz = pack message(MSGTYPE DISCONNECT,payload,

outmsg,SSH2 MSG SIZE);
8. } else {
9. sprintf (outstr,“%.1f%c%s%c%c”,2,SP,SRV COMMENTS,CR,LF);
10. sz = pack message(MSGTYPE PROTOVER,outstr,

outmsg,SSH2 MSG SIZE);
. . . . . .
11. }
12. fmsgsend(clisock,outmsg,sz);

Figure 9: Sample compatibility bug

ine the preceding statements to see whether they directly
contradict those facts. If so, then we have found what
we think is a bug, and we look in the bug database to
judge whether we are correct. If the preceding statements
do not directly contradict the facts, we continue tracing
backward, using Out to help understand the results, until
we either find a contradiction or reach the hypothesis, in
which case we have found a false positive. If the con-
clusion pattern is not found on all program paths, we use
the same process to determine why those paths were not
pruned from the search during fact derivation.

As a concrete example of this process, consider the
second rule in Figure 7. This rule is derived from sec-
tion 5 of the SSH2 Transport Protocol specification,
and Pistachio reported that this rule was violated for
LSH implementation 0.2.9, since it could not prove that
out[len(out) − 2] = CR and out[len(out) − 1] = LF at
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Figure 10: Error breakdown by type in LSH version 1.2.1

a conclusion. Figure 9 shows the code (slightly simpli-
fied for readability) where the bug was reported. State-
ment 12 matches the conclusion pattern (here fmsgsend
is a wrapper around send), and so that is where we be-
gin. Statement 12 has two predecessors in the CFG, one
for each branch of the conditional statement 4. Looking
through the log, we determined that the required facts to
show the conclusion were in Out(10) but not in Out(7).
We examined statement 7, and observed that if it is ex-
ecuted (i.e., if the conditional statement 4 takes the true
branch), then line 10 will send the a disconnect message,
which is incorrect. Thus we backtracked to statement 4
and determined that protomsg.proto ver<1 could not be
proved either true or false based on In(4), which was cor-
rectly derived from the hypothesis (asserted in Out(1)).
Thus we determined that we found a bug, in which the
implementation could send an SSH DISCONNECT mes-
sage for clients with versions below 1.0, although the
protocol specifies that the server must send the identifica-
tion first, independently of the other party’s version. We
then confirmed this bug against the LSH bug database.

While it is non-trivial to determine whether the reports
issued by Pistachio correspond to bugs, we found it was
generally straightforward to follow the process described
above. Usually the number of facts we were trying to
trace was small (at most 2-3), and the number of pre-
ceding statements was also small (rarely larger than 2).
In the vast majority of the cases, it took on the order of
minutes to trace through a Pistachio warning, though in
some cases it took up to an hour (often due to insuffi-
ciently specified library functions that produced many
paths). In general, the effort required to understand a Pis-
tachio warning is directly proportional to the complexity
of the code making up a communication round.

Figure 10 gives a more detailed breakdown of our re-
sults on LSH version 1.2.1. We divide the warnings and
bugs into five main categories. The categories mostly but

1. fmsgrecv(clisock,inmsg,SSH2 MSG SIZE);
2. if(!parse message(MSGTYPE USERAUTHREQ,inmsg,len(inmsg),&authreq))
3. return;
. . . . . .
4. if(authreq.method==USERAUTH PKI) {
. . . . . .
5. } else if(authreq.method==USERAUTH PASSWD) {
. . . . . .
6. } else {
. . . . . .
7. }
8. sz = pack message(MSGTYPE REQSUCCESS,payload,

outmsg,SSH2 MSG SIZE);
9. fmsgsend(clisock,outmsg,sz);

Figure 11: Sample functionality bug

do not completely correspond to those in Figure 7.
Functionality errors correspond to missing function-

ality for which the implementation does not degrade
gracefully, or conversely, to additional functionality that
should not be present. The vast majority of these bugs
were found as violations of rules in the functionality cate-
gory from Figure 7. For example, the third rule in Figure
7 detected a functionality bug in LSH version 0.1.3, for
the code in Figure 11. In this case, a message is received
at statement 2, and Pistachio assumes the rule hypothe-
ses, which indicate that the message is a user authoriza-
tion request. Then a success message is always sent in
statement —but the rule specifies that the “none” authen-
tication method must result in a failure response. Trac-
ing back through the code, we discovered that the else
statement on line 6 allows the “none” method to succeed.
This statement should have checked for the “hostbased”
authentication method, and indeed this corresponds to a
bug in the LSH bug database.

Message format errors correspond to problems with
certain message formats, and are found by violations of
the message format and data transfer rules. For exam-
ple, the first rule in Figure 7 detected a violation in LSH
version 0.2.9 (code not shown due to lack of space). In
this version of LSH, the server stores the string values of
the possible prompts in an array terminated by the empty
string. However, the implementation uses the array size
and not the empty string terminator to determine the end
of the array, which causes the implementation to poten-
tially include the empty string terminator as one of the
prompts, violating the rule.

Compatibility related errors correspond to problems
in the implementation that cause it to work incorrectly
with clients or servers that implement earlier versions of
the SSH protocol. These bugs correspond to violations
of compatibility rules, and the earlier discussion of the
code in Figure 9 illustrated one example.

Buffer overflows are detected by Pistachio indirectly
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0. char laddr[17]; int lport;
. . . . . .
1. fmsgrecv(clisock,inmsg,SSH2 MSG SIZE);
2. if(!parse message(MSGTYPE GLOBALREQ,inmsg,len(inmsg),&globreq))
3. return;
. . . . . .
4. if(globreq.msgtype=MSGSUBTYPE TCPIPFORWARD) {
5. strcpy(laddr,getstrfield(globreq.payload,0));
6. lport = getuint32field(globreq.payload,1);
. . . . . .
7. if(!create forwarding(clisock, laddr,lport))
8. return debug error();
9. if((globreq.wantreply==1) && (lport == 0)) {
10. payload.msgid = SSH REQUEST SUCCESS;
11. payload.reason=lport;
12. sz = pack message(MSGTYPE REQSUCCESS,payload,

outmsg,SSH2 MSG SIZE);
13. fmsgsend(clisock,outmsg,sz);
14. }
15.}

Figure 12: Sample buffer overflow

during rule checking. Recall that when Pistachio sees a
write to an array that it cannot prove is in-bounds, then
it kills facts about the array. Thus sometimes when we
investigated why a conclusion was not provable, we dis-
covered it was due to an out-of-bounds write correspond-
ing to a buffer overflow. For example, consider the code
in Figure 12, which is taken from LSH version 0.9.1
(slightly simplified). While checking this code, we found
a violation of the fourth rule in Figure 7, as follows.
At statement 1, Pistachio assumes the hypothesis of this
rule, including that the wantreply flag (corresponding to
in[15]) is set, and that the message is for TCP forward-
ing. Under these assumptions, Pistachio reasons that the
true branch of statement 4 is taken. But then line 5 per-
forms a strcpy into laddr, which is a fixed-sized locally-
allocated array. The function getstrfield() (not shown)
extracts a string out of the received message, but that
string may be more than 17 bytes. Thus at the call to
strcpy, there may be a write outside the bounds of laddr,
and so we kill facts about laddr. Then at statement 7, we
call create forwarding(), which expects laddr to be null-
terminated—and since we do not know whether there is
a null byte within laddr, Pistachio determines that cre-
ate forwarding() might return false, causing us to return
from this code without executing the call to fmsgsend in
statement 13.

In this case, if Pistachio had been able to reason at
statement 5 that laddr was null-terminated, then it would
not have issued a warning. Although the return state-
ment 8 might seem be reachable in that case, looking in-
side of create forwarding(), we find that can only occur
if LSH runs out of ports, and our model for library func-
tions assumes that this never happens. (Even if an ill-
formed address is passed to create forwarding(), it still
creates the forwarding for 0.0.0.0.) On the hand, if cre-

1. fmsgrecv(clisock,inmsg,SSH2 MSG CHANNEL REQUEST);
2. if(!parse message(MSGTYPE CHREQ,inmsg,len(inmsg),&chreq))
3. return;
. . . . . .
4. if(chreq.msgtype==MSGSUBTYPE SHELL) {
. . . . . .

/* fmod was previously set to “rw” */
5. if(!(clish = popen(make clishell(clisock),fmod)))
6. return debug error();
. . . . . .

Figure 13: Sample library call bug

ate forwarding() had relied on the length of laddr, rather
than it being null-terminated, then Pistachio would not
have reported a warning here—even though there still
would be a buffer overflow in that case. Thus the abil-
ity to detect buffer overflows in Pistachio is somewhat
fragile, and it is a side effect of the analysis that they can
be detected at all. Buffer overflows that do not result in
rule violations, or that occur in code we do not analyze,
will go unnoticed.

Library call errors correspond to unsafe use of library
functions. These bugs are generally found the same ways
buffer overflows are, as a side effect of rule checking.
For example, Figure 13 contains code from LSH 0.9.1
that violated the last rule in Figure 7. In this case, we
matched the hypothesis of the rule at statement 1, and
then matched the request type at statement 2, and thus
one possible path leads to the call to popen in state-
ment 5. In this case, our model of popen requires that
the second argument must be either “r” or “w,” or the
call to popen yields an undefined result. Since before
statement 5 fmod was set to “rw,” Pistachio assumes that
popen may return any value, including null, and thus
statement 6 may be executed and return without send-
ing a reply message, thus violating the rule conclusion.
Note that our model of popen always succeeds if valid
arguments are passed, and thus if fmod were “r” or “w”
a rule violation would not have been reported.

In addition to warnings that correspond to bugs, Pis-
tachio also issues a number of false positives. Figure 14
breaks down the causes of false positives found in LSH,
averaged over all versions. The main cause of false pos-
itives is insufficient specification of library calls. This
is primarily due to the fact that library functions some-
times rely on external factors such as system state (e.g.,
whether getenv() returns NULL or not depends on which
environment variables are defined) that cannot be fully
modeled using our rule-based semantics. For such func-
tions, only partial specifications can be devised. The re-
maining false positives are due to limitations of the theo-
rem prover and to loop breaking, where we halt iteration
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Figure 14: Causes for false positives in LSH

of our algorithm after max pass times.
Besides false positives, Pistachio also has false neg-

atives, as measured against the LSH and RCP bug
databases. From our experience, these are generally
caused by either assumptions made when modeling li-
brary calls, or by the fact that the rule sets are not com-
plete. As an example of the first case, we generally
make the simplifying assumption that on open() calls,
there are sufficient file handles available. This caused a
false negative for LSH version 0.1.3, where a misplaced
open() call within a loop lead to the exhaustion of
available handles for certain SSH global requests.

4.3 Security Implications

As can be seen from the previous discussion, many of the
bugs found by Pistachio have obvious security implica-
tions. Even bugs that initially appear benign may intro-
duce security vulnerabilities, depending on what consti-
tutes a vulnerability in a particular circumstance. How-
ever, in order to measure our results we looked through
the bug databases to identify which of the bugs are ei-
ther clearly security-related by their nature or were doc-
umented as security-related. On average, we classified
approximately 30% of the warnings (excluding false pos-
itives) as security-related for LSH and approximately
23% for RCP. Of these, buffer overflows account for ap-
proximately 53% of the security-related bugs. We con-
sider all buffer overflows security-related. Access con-
trol warnings account for 20% of the total. These refer
to the execution of functions for which the user does not
have sufficient privileges. Finally, compatibility prob-
lems account for 18% of the total. These do not directly
violate security, but do impede the use of a secure proto-
col. The remaining security-related bugs did not fall into
any broader categories.

Our classification of bugs as security-related has some

uncertainty, because the bug databases might incorrectly
categorize some non-exploitable bugs as security holes.
Conversely, some bugs that are not documented as be-
ing security-related might be exploitable by a sufficiently
clever attacker. In general, any bug in a network protocol
implementation is undesirable.

4.4 Results for Extended Rule Sets

In a second set of experiments, we were interested in
estimating how easily the rule-based specification could
be extended to catch specific bugs we found in the bug
databases. Our goal was to study how Pistachio could be
used during the development process. In particular, as a
programmer finds bugs in their code, good software en-
gineering practice is to write regression tests to catch the
bug again if it appears in the future. In the same way, us-
ing Pistachio the programmer can write extra “regression
rules” to re-run in the future.

We looked for bugs we missed using the core set of
rules and added slightly over 10% more rules (9 new
rules for LSH and 7 for RCP) to the initial specifications
to cover most of the bugs. We found the rules we needed
to add were typically for features that were strongly rec-
ommended but not required by the specification, because
it turned out that violations of these recommendations
were considered errors. One example is the recommen-
dation that a proper disconnect message be sent by the
SSH server when authentication fails.

Figure 15 shows the effect of the additional rules on
the number of the errors detected. In each table we show
the specific implementation version, the number of bugs
in the database, the total number of warnings from Pis-
tachio and the number of warnings generated from the
10% additional rules. The last two rows in each table in
Figure 15 contain the number of false positives caused
by the additional rules and the number of false negatives
that remain after enriching the specification. We can see
that the additional rules account for under 20% of the to-
tal number of warnings generated by Pistachio. From the
set of new warnings produced by Pistachio after intro-
ducing the additional rules, approximately 18% had se-
curity implications according to our classification from
Section 4.3, mostly related to access control issues and
buffer overflows. Roughly half of the remaining false
negatives are due to terminating iteration after max pass
times, and the other half are due to aspects of the protocol
our new rules still did not cover.

For the extended rules, we also measured how often
we are able to compute a symbolic fixpoint for loops dur-
ing our analysis. Recall that if we stop iteration of our
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Version 0.1.3 0.2.1 0.2.9 0.9.1 1.0.1 1.1.1 1.2.1 1.3.1 1.4.1 1.5.1 1.5.5 2.0.1
Bugs in database 91 83 69 65 81 80 82 82 51 40 31 13

Warnings from Pistachio 133 143 124 112 106 109 111 100 93 83 40 28
From 10% rules 15 20 14 15 15 16 19 18 15 8 7 3

False pos. from 10% 8 8 6 8 7 5 7 4 6 5 3 2
False neg. after 10% 1 0 1 0 2 0 0 0 1 0 1 0

(a) LSH implementations

Version 0.5.4 0.6.4 0.8.4 1.1.4 1.2.3 1.3.2
Bugs in database 51 46 47 51 28 23

Warnings from Pistachio 84 78 67 77 56 45
From 10% rules 11 9 10 7 8 6

False pos. from 10% 6 5 5 4 2 4
False neg. after 10% 1 1 1 0 1 0

(b) RCP implementations

Figure 15: Analysis Results for Extended Rule Sets

algorithm after max pass times then we could introduce
unsoundness, which accounts for approximately 27% of
the false positives, as shown in Figure 14. We found that
when max pass is set to 75, we find a fixpoint before
reaching max pass in 250 out of 271 cases for LSH, and
in 153 out of 164 cases for RCP. This suggests that our
symbolic fixpoint computation is effective in practice.

5 Related Work

Understanding the safety and robustness of network pro-
tocols is recognized as an important research area, and
the last decade has witnessed an emergence of many
techniques for verifying protocols.

We are aware of only a few systems that, like Pis-
tachio, directly check source code rather than abstract
models of protocols. CMC [24] and VeriSoft [15] both
model check C source code by running the code dynam-
ically on hardware, and both have been used to check
communication protocols. These systems execute the
code in a simulated environment in which the model
checker controls the execution and interleaving of pro-
cesses, each of which represents a communication node.
As the code runs, the model checker looks for invalid
states that violate user-specified assertions, which are
similar to the rules in Pistachio. CMC has been success-
fully used to check an implementation of the AODV rout-
ing protocol [24] and the Linux TCP/IP protocol [23].

There are two main drawbacks to these approaches.
First, they potentially suffer from the standard state space
explosion problem of model checking, because the num-
ber of program executions and interleavings is extremely
large. This is typical when model checking is used for
data dependent properties, and both CMC and VeriSoft

use various techniques to limit their search. Second,
these tools find errors only if they actually occur during
execution, which depends on the number of simulated
processes and on what search algorithm is used. Pista-
chio makes different tradeoffs. Because we start from a
set of rules describing the protocol, we need only per-
form abstract interpretation on a single instance of the
protocol rather than simulating multiple communication
nodes, which improves performance. The set of rules can
be refined over time to find known bugs and make sure
that they do not appear again. We search for errors by
program source path rather than directly in the dynamic
execution space, which means that in the best case we
are able to use symbolic information in the dataflow facts
to compute fixpoints for loops, though in the worst case
we unsafely cut off our search after max pass iterations.
Pistachio is also very fast, making it easy to use dur-
ing the development process. On the other hand, Pista-
chio’s rules cannot enforce the general kinds of temporal
properties that model checking can. We believe that ulti-
mately the CMC and VeriSoft approach and the Pistachio
approach are complementary, and both provide increased
assurance of the safety of a protocol implementation.

Other researchers have proposed static analysis sys-
tems that have been applied to protocol source code.
MAGIC [7] extracts a finite model from a C program us-
ing various abstraction techniques and then verifies the
model against the specification of the program. MAGIC
has been successfully used to check an implementation
of the SSL protocol. The SPIN [18] model checker has
been used to trace errors in data communication proto-
cols, concurrent algorithms, and operating systems. It
uses a high level language to specify system descriptions
but also provides direct support for the use of embed-
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ded C code as part of model specifications. However,
due to the state space explosion problem, neither SPIN
nor MAGIC perform well when verifying data-driven
properties of protocols, whereas Pistachio’s rules are de-
signed to include data modeling. Feamster and Balakr-
ishnan [14] define a high-level model of the BGP rout-
ing protocol by abstracting its configuration. They use
this model to build rcc, a static analysis tool that detects
faults in the router configuration. Naumovich et al. [25]
propose the FLAVERS tools, which uses dataflow analy-
sis techniques to verify Ada pseudocode for communica-
tion protocols. Alur and Wang [2] formulate the problem
of verifying a protocol implementation with respect to
its standardized documentation as refinement checking.
Implementation and specification models are manually
extracted from the code and the RFC document and are
compared against each other using reachability analysis.
The method has been successfully applied to two popular
network protocols, PPP and DHCP.

Many systems have been developed for verifying
properties of abstract protocol specifications. In these
systems the specification is written in a specialized lan-
guage that usually hides some implementation details.
These methods can perform powerful reasoning about
protocols, and indeed one of the assumptions behind Pis-
tachio is that the protocols we are checking code against
are already well-understood, perhaps using such tech-
niques. The main difficulty of checking abstract proto-
cols is translating RFCs and other standards documents
into the formalisms and in picking the right level of ab-
straction. Murϕ is a system for checking protocols in
which abstract rules can be extracted from actual C code
[20]. The main differences between our approach and
the Murϕ system lies in how the rules are interpreted: in
Murϕ the rules are an abstraction of the system and are
derived automatically, whereas in Pistachio rules spec-
ify the actual properties to be checked in the code. Up-
paal [6] models systems (including network protocols) as
timed automata, in which transitions between states are
guarded by temporal conditions. This type of automata is
very useful in checking security protocols that use time
challenges and has been used extensively in the literature
to that extent [28, 12]. In [12], Uppaal is used to model
check the TLS handshake protocol. CTL model checking
can also be used to check network protocols. In [9], an
extension of the CTL semantics is used to model AODV.

Recently there has been significant research effort
on developing static analysis tools for finding bugs in
software. We list a few examples: SLAM [3] and
BLAST [17] are model checking systems that have been
used to find errors in device drivers. MOPS [8] uses

model checking to check for security property violations,
such as TOCTTOU bugs and improper usage of setuid.
Metal [13] uses data flow analysis and has been used to
find many errors in operating system code. ESP [11] uses
data flow analysis and symbolic execution, and has been
used to check sequences of I/O operations in gcc. All of
these systems have been effective in practice, but do not
reason about network protocol implementations, and it is
unclear whether they can effectively check the kinds of
data-dependent rules used by Pistachio.

Dynamic analysis can also be used to trace program
executions, although we have not seen this technique
used to check correctness of implementations. Gopalakr-
ishna et al. [16] define an Inlined Automaton Model
(IAM) that is flow- and context-sensitive and can be de-
rived from source code using static analysis. The model
is then used for online monitoring for intrusion detection.

Another approach to finding bugs in network protocols
is online testing. Protocol fuzzers [27] are popular tools
that look for vulnerabilities by feeding unexpected and
possibly invalid data to a protocol stack. Because fuzzers
can find hard-to-anticipate bugs, they can detect vulner-
abilities that a Pistachio user might not think to write a
rule for. On the other hand, the inherent randomness of
fuzzers makes them hard to predict, and sometimes find-
ing even a single bug with fuzzing may take a long time.
Pistachio quickly checks for many different bugs based
on a specification, and its determinism makes it easier to
integrate in the software development process.

Our specification rules are similar to precondi-
tion/postcondition semantics usually found in software
specification systems or design-by-contract systems like
JML [19]. Similar constructs in other verification sys-
tems also include BLAST’s event specifications [17].

6 Conclusion

We have defined a rule-based method for the specifica-
tion of network protocols which closely mimics proto-
col descriptions in RFC or similar documents. We have
then shown how static analysis techniques can be em-
ployed in checking protocol implementations against the
rule-based specification and provided details about our
experimental prototype, Pistachio. Our experimental re-
sults show that Pistachio is very fast and is able to detect
a number of security-related errors in implementations
of the SSH2 and RCP protocols, while maintaining low
rates of false positives and negatives.
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