
Passive Data Link Layer 802.11 Wireless Device Driver Fingerprinting

Jason Franklin1 Damon McCoy2 Parisa Tabriz3 Vicentiu Neagoe4

Jamie Van Randwyk5 Douglas Sicker6

Abstract
Motivated by the proliferation of wireless-enabled de-
vices and the suspect nature of device driver code, we
develop a passive fingerprinting technique that identifies
the wireless device driver running on an IEEE 802.11
compliant device. This technique is valuable to an at-
tacker wishing to conduct reconnaissance against a po-
tential target so that he may launch a driver-specific ex-
ploit.

In particular, we develop a unique fingerprinting tech-
nique that accurately and efficiently identifies the wire-
less driver without modification to or cooperation from
a wireless device. We perform an evaluation of this fin-
gerprinting technique that shows it both quickly and ac-
curately fingerprints wireless device drivers in real world
wireless network conditions. Finally, we discuss ways to
prevent fingerprinting that will aid in improving the secu-
rity of wireless communication for devices that employ
802.11 networking.

1 Introduction
Device drivers are a primary source of security holes in
modern operating systems [1]. Drivers experience er-
ror rates of three to seven times higher than other ker-
nel code, making them the poorest quality code in most
kernels [2]. There are a large number of different device
drivers available, each being a potentially large body of
code that is frequently modified to support new hard-
ware features. These factors and the fact that drivers
are often developed by programmers who lack intimate
knowledge of the operating system kernel contribute to
the disproportionately high number of bugs found in de-
vice drivers [3].

In general, device drivers execute in kernel space;
hence, exploiting a vulnerable driver leads to compro-
mise of the entire operating system. This threat is some-
what tempered by the fact that interacting with a driver
typically requires physical access to a system. As a re-
sult, most security holes in device drivers are difficult to

exploit remotely. For instance, it is hard to remotely in-
teract with, much less exploit, a video or keyboard driver.
Classes of drivers exist with which it is possible to inter-
act without physical access to a system. Drivers for net-
work devices such as wireless cards, Ethernet cards, and
modems are examples. In particular, wireless network
device drivers are easy to interact with and potentially
exploit if the attacker is within transmission range of the
wireless device. Today, the single most common and
widespread wireless devices are those conforming to the
IEEE 802.11 standards [4]. The vast number of 802.11
devices, the ease with which one may interact with their
drivers, and the suspect nature of driver code in general
has led us to evaluate the ability of an attacker to launch
a driver-specific exploit by first fingerprinting the device
driver.

Fingerprinting is a process by which a device or the
software it is running is identified by its externally ob-
servable characteristics. In this paper, we design, imple-
ment, and evaluate a technique for fingerprinting IEEE
802.11a/b/g wireless network drivers. Our approach is
based on statistical analysis of the rate at which common
802.11 data link layer frames are transmitted by a wire-
less device. Since most wireless exploits are dependent
on the specific driver being used, wireless device driver
fingerprinting can aid an attacker in launching a driver-
specific exploit against a victim whose device is running
a vulnerable driver.

Our technique is completely passive, meaning that a
fingerprinter (attacker) needs only to be able to mon-
itor wireless traffic from the fingerprintee (target, vic-
tim). This makes it possible for anyone within transmis-
sion range of a wireless device to fingerprint the device’s
wireless driver. Passive fingerprinting techniques have
the advantage over active approaches in that they do not
transmit data, making prevention of such techniques dif-
ficult. If an attacker can passively determine which driver
a device is using, he can successfully gain information
about his victim without fear of detection.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 167

Our fingerprinting technique relies on the fact that
most stations actively scan for access points to connect
to by periodically sending out probe request frames. The
algorithm used to scan for access points is not explic-
itly defined in the 802.11 standard. Therefore, it is up
to the developers of device drivers to implement their
own method for probing. This lack of an explicit spec-
ification for a probing algorithm in the 802.11 stan-
dard has led to the development of many wireless de-
vice drivers that perform this function entirely differ-
ently than other wireless device drivers. Our fingerprint-
ing technique takes advantage of these implementation-
dependent differences to accurately fingerprint a driver.
Specifically, our method is based on statistical analysis
of the inter-frame timing of transmitted probe requests.
A timing-based approach has a number of advantages
over a content-based approach. Primary among these
is the fact that coarse-grained timing information is pre-
served despite the encryption of frame content as speci-
fied by security standards such as Wired Equivalent Pri-
vacy (WEP) or 802.11i [5].

Fingerprinting an 802.11 network interface card (NIC)
is not a new concept. Many tools exist, such as Ethe-
real [6], that use the wireless device’s Media Access
Control (MAC) address to identify the card manufac-
turer and model number. A MAC address is an ostensi-
bly unique character string that identifies a specific phys-
ical network interface. The IEEE Standards Associa-
tion assigns each NIC manufacturer a special three-byte
code, referred to as an Organizationally Unique Identifier
(OUI), which identifies a particular manufacturer. While
not part of the standard, most manufacturers use the next
byte to specify the model of the NIC. There are a few no-
table advantages to using our method instead of relying
on the information contained in the captured MAC ad-
dress. First, the MAC address only identifies the model
and manufacturer of the NIC. Our technique fingerprints
the device driver (which resides at the operating system
level), where the bulk of exploits rest. Second, some
NICs can operate using multiple drivers, implying that
the MAC address would not be enough information to
identify what driver the NIC was using. Finally, whereas
the MAC address is easily alterable in most operating
systems, the features used by our passive technique are
not a configurable option in any of the drivers tested.

Our testing demonstrates an accuracy for our method
in identifying the driver that ranges from 77-96%, de-
pending on the network setting. Our technique requires
only a few minutes worth of network data to achieve this
high level of accuracy. We also confirm that the tech-
nique can withstand realistic network conditions.
Contributions The main contributions of this paper
is the design, implementation, and evaluation of a pas-
sive wireless device driver fingerprinting technique. Our

technique is capable of passively identifying the wireless
driver used by 802.11 wireless devices without special-
ized equipment and in realistic network conditions. In
addition, we demonstrate that our technique is accurate,
practical, fast, and requires little data to execute.

The remainder of the paper is organized as follows.
Background material is presented in Section 2. Section 3
presents the design for our wireless device fingerprinting
technique. Section 4 describes the implementation of our
fingerprinting technique and Section 5 presents our ex-
perimental results and evaluation of our technique under
realistic network conditions. Section 6 presents the limi-
tations of our technique and Section 7 discusses possible
ways to prevent driver fingerprinting. Finally, Section 8
examines related work and we conclude in Section 9.

2 Background: IEEE 802.11 Networks
Wireless technologies are encroaching upon the tradi-
tional realm of “fixed” or “wired” networks. The most
widely adopted wireless networking technology thus far
has been the 802.11 networking protocol, which consists
of six modulation techniques, the most of common of
which are the 802.11a, 802.11b, and 802.11g standard
amendments. The price erosion and popularity of 802.11
capable hardware (especially 802.11b/g) has made wire-
less networks both affordable and easy to deploy in a
number of settings, such as offices, homes, and wire-
less hot spots. Because of this, 802.11 is currently the
most popular and common non-telephony communica-
tion protocol available for wireless communication [7].

The 802.11 standard defines a set of protocol require-
ments for a wireless MAC, or medium access control,
which specifies the behavior of data link layer commu-
nication between stations in a wireless network. A sta-
tion is simply a device with wireless capabilities, such
as a laptop or PDA with a wireless networking inter-
face. Throughout this paper, we often refer to stations
as clients. Most 802.11 networks operate in infrastruc-
ture mode (as opposed to ad-hoc mode) and use an ac-
cess point (AP) to manage all wireless communications;
it is this type of network that is the setting for our finger-
printing technique. An example of a simple infrastruc-
ture network with three clients and one access point is
depicted in Figure 1.

A key component of the 802.11 standard is the MAC
specification that outlines the function of various com-
munication frames. The MAC coordinates access to the
wireless medium between stations and controls transmis-
sion of user data into the air via control and manage-
ment frames. Higher-level protocol data, such as data
produced by an application, is carried in data frames.

All 802.11 MAC frames include both a type and sub-
type field, which are used to distinguish between the
three frame types (control, management, and data) and

Security ’06: 15th USENIX Security Symposium USENIX Association168

Client

Client

Client

Wireless
Medium

AP

Figure 1: An infrastructure mode IEEE 802.11 network.

various subtypes. We consider only management frames
in our passive fingerprinting technique, and specifically
focus on probe request frames. Because of this, we only
describe the most pertinent MAC frames communicated
when a client joins a wireless network, and refer the
reader to the IEEE 802.11 standard specification [4] for
a more detailed description of MAC framing.

Each mobile client must identify and associate with an
access point before it can receive network services. In a
process called active scanning, clients use probe request
frames to scan an area for a wireless access point, pro-
viding the data rates that the client can support inside
fields of the probe request. If an access point is compati-
ble with the client’s data rates, it sends a probe response
frame to acknowledge the request. Once a client identi-
fies a network and authenticates to the access point via an
authentication request and authentication response, the
client can attempt to join the network by issuing an as-
sociation request. If the association is successful, the ac-
cess point will respond to the client with an association
response that includes a unique association ID for future
communications. At this point, all communication be-
tween a client and another machine, whether it resides
within the wireless network or is located outside of it, is
routed through and controlled by the access point.

3 Fingerprinting Approach
Our fingerprinting technique is solely concerned with the
active scan function in wireless clients. When actively
scanning, clients send probe request frames to elicit re-
sponses from access points within transmission range.
The IEEE 802.11 standard describes the active scan func-
tion of a client as follows. For each channel, the client
broadcasts a probe request and starts a timer. If the timer
reaches MinChannelTime and the channel is idle, the
client scans the next channel. Otherwise, the client waits
until the timer reaches MaxChannelTime, processes the
received probe response frames and then scans the next
channel. Further detailed specification of the active scan-
ning function is not provided in the IEEE 802.11 stan-

dard. As a result, implementing active scanning within
wireless drivers has become a poorly guided task. This
has led to the development of many drivers that perform
probing using slightly different techniques. By charac-
terizing these implementation-dependent probing algo-
rithms, we are able to passively identify the wireless
driver employed by a device.

A number of factors affect the probing behavior of
a client and make accurate fingerprinting without client
cooperation a challenging task. From the perspective
of an external fingerprinter, the probing behavior of a
client is dependent on unobservable internal factors such
as timers, and on uncontrollable external factors such as
background traffic. A robust fingerprinting method can-
not rely on client cooperation or assume a static envi-
ronment, hence our technique uses machine learning to
develop a model of a driver’s behavior. This model is
then used for future identification.

Having explained the intuition behind our technique,
we turn our attention to two examples of representative
probing behavior. Figure 2(a) and Figure 2(b) are plots
of the time delta between arriving probe request frames
as transmitted by two different wireless drivers. Both fig-
ures clearly depict a distinctly unique cyclic pattern. We
further describe the pertinent features of Figure 2(b) as a
way to characterize the differences between the probing
patterns. Figure 2(b) is composed of a repeating pulse
with an approximate amplitude of 50 seconds. These
large pulses are occasionally preceded and/or followed
by much smaller pulses ranging from 1-5 seconds. These
pulses indicates that probing was occurring in bursts of
probe request frames sent out, on average, every 50 sec-
onds.

Upon closer inspection, one notices that the cyclic pat-
tern exhibited by the driver probing is characterized by
small variations. Our observations reveal there are two
main reasons for this. The first reason is due to loss
caused by signal interference. A fingerprinter could sig-
nificantly reduce this type of loss by using a higher gain
antenna found on commercial grade wireless cards. The
second source of variation comes from wireless drivers
continuously cycling through all eleven channels in the
2.4 GHz ISM band in search of other access points. The
channel cycling can be considered an additional source
of loss since probe request frames transmitted on unmon-
itored channels cannot be observed. Multiple wireless
cards could be used to monitor all eleven channels si-
multaneously; however, we make the more realistic as-
sumption that a fingerprinter has a single wireless card
that can only monitor a small portion (e.g. one channel
at any point in time) of the eleven channels. This loss
indicates that some probe requests are missed, and sta-
tistical approaches are needed to compensate for the lost
frames. Given the data described above, we character-

Security ’06: 15th USENIX Security SymposiumUSENIX Association 169

0

10

20

30

40

50

60

0 20 40 60 80 100

Ti
m

e
de

lta
fro

m
pr

ev
io

us
fra

m
e

(s
ec

on
ds

)

Observed Frame Number

(a) D-Link driver for the D-Link DWL-G520 (802.11b/g)
PCI wireless NIC

0

10

20

30

40

50

60

0 20 40 60 80 100

Ti
m

e
de

lta
fro

m
pr

ev
io

us
fra

m
e

(s
ec

on
ds

)

Observed Frame Number

(b) Cisco driver for the Aironet AIR-CB21AG-A-K9
(802.11a/b/g) PCI wireless NIC

Figure 2: Plot of time delta from the previous arrival of
probe request frames transmitted by two drivers.

ize the explicit probing behavior of a client by the send-
ing rate of probe request frames. In the next section, we
show how to leverage this characterization to accurately
identify wireless drivers.

4 Device Driver Fingerprinting

The fingerprinting technique proceeds in two stages:
trace capture and fingerprint generation. During trace
capture, a fingerprinter within wireless transmission
range of a fingerprintee captures 802.11 traffic, hereafter
referred to as the trace. During fingerprint generation, the
captured trace is analyzed using a supervised Bayesian
approach to generate a robust device driver fingerprint.

4.1 Trace Capture
To begin the trace capture phase, we first consider how a
fingerprinter might obtain a trace of probe request frames
from a wireless device using widely available hardware
and software. We assume a one-to-one mapping of MAC
addresses to wireless devices, and believe this to be a
reasonable assumption. Because each wireless NIC is
assigned a unique MAC address by its manufacturer, the
only cause for duplicate MACs on a network would be
the result of a user reassigning his MAC address indepen-
dently. However, as there are theoretically 248 acceptable
MAC addresses, the probability of a user choosing an ex-
isting MAC on the network is negligible7. In Section 7,
we address the effects that violating this assumption has
on our fingerprinting technique.

The fingerprinter can use any device that is capa-
ble of eavesdropping on the wireless frames transmitted
by the fingerprintee. Therefore, the fingerprinter must
be within receiving range of the fingerprintee’s wireless
transmissions. We assume the fingerprinter is using a sin-
gle, high-gain, COTS (commercial off-the-shelf) wire-
less card. Next, the fingerprinter must configure their
wireless card to operate in monitor mode; this mode al-
lows the wireless card to capture frames promiscuously
(e.g. whether they are specifically addressed to that
wireless card or not). The fingerprinter must prevent
their card from associating with an access point or send-
ing its own probe request frames so collection is com-
pletely passive. This allows the fingerprinter to capture
all frames sent on the current channel, including probe
request frames, without interfering with the network’s
normal operation. We assume that the fingerprinter’s ma-
chine is running an OS and driver combination that sup-
ports a wireless card in monitor mode. This can be easily
done in Linux, FreeBSD, and Mac OS X. Finally, the fin-
gerprinter can use a network protocol analyzer, such as
Ethereal [6], to record the eavesdropped frames and filter
out all irrelevant data. After following the above steps,
the fingerprinter should have sufficient data to construct
graphs similar to Figures 2(a) and 2(b).

4.2 Fingerprint Generation
After a trace has been captured, the data must be ana-
lyzed to characterize the probe request behavior. Previ-
ous work has shown that a simple supervised Bayesian
approach is extremely accurate for many classification
problems [8]. We chose to employ a binning approach to
characterize the time deltas between probe requests be-
cause of the inherently noisy data due to frame loss.

Binning works by translating an interval of continu-
ous data points into discrete bins. A bin is an internal
value used in place of the true value of an attribute. The
binning method smooths probabilities for the continu-
ous attribute values by placing them into groups. Al-

Security ’06: 15th USENIX Security Symposium USENIX Association170

Bin Percentage Mean
0 0.676 0.16
1.2 0.228 1.72
50 0.096 49.80

Table 1: Sample signature for the Cisco Aironet 802.11
a/b/g PCI driver

though binning causes some loss of information for con-
tinuous data, it allows for smooth probability estimates.
Some noise is averaged out because each bin probabil-
ity is an estimate for that interval, not individual con-
tinuous values. We chose to use equal-width binning
where each bin represents an interval of the same size.
While more sophisticated schemes may be available, this
simple approach generated distinct fingerprints of probe
inter-arrival times and provided a successful means for
driver identification.

After performing a number of data analysis tests, we
isolated two attributes from the probing rate that were
essential to fingerprinting the wireless driver. The first
attribute was the bin frequency of delta arrival time val-
ues between probe request frames. The second attribute
was the average, for each bin, of all actual (non-rounded)
delta arrival time values of the probe request frames
placed in that bin. The first attribute characterizes the
size of each bin and the second attribute characterizes
the actual mean of each bin. Our next step was to create
a signature (Bayesian model) for each individual wire-
less driver that embodies these attributes. Building mod-
els from tagged data sets is a common technique used in
supervised Bayesian classifiers [9].

We now describe the process used to transform raw
trace data into a device signature. To calculate the bin
probabilities, we rounded the actual delta arrival time
value to the closest discrete bin value. For example, if
the bins were of a fixed width of size 1 second, any probe
request frames with a delta arrival value in (0, 0.50] sec-
onds would be placed in the 0 second bin, any probe re-
quest frames with a delta arrival value in (0.51, 1.50] sec-
onds would be placed in the 1 second bin, and so forth.
Based on empirical optimization experiments presented
in our results section, we use an optimal bin width size
of 0.8 seconds. The percentage of the total probe request
frames placed in each bin is recorded along with the aver-
age, for each bin, of all actual (non-rounded) delta arrival
time values of the probe request frames placed in that bin.
These values comprise the signature for a wireless driver
which we add to a master signature database containing
all the tagged signatures that are created. An example
of a signature created from the probe request frames in
Figure 2(b) is shown in Table 1. New signatures can be
inserted, modified, or deleted from the database without

affecting other signatures. This allows collaborative sig-
nature sharing, similar to how Snort [10] intrusion de-
tection signatures are currently shared.

Once the master signature database is created, a
method is required to compute how “close” an untagged
signature from a probe request trace is to each of the sig-
natures in the master signature database.

4.3 Calculating Closeness
Let us now assume that a fingerprinter has obtained a
trace and created a signature T of the probe request
frames sent from the fingerprintee. Let pn be the per-
centage of probe request frames in the nth bin of T and
let mn be the mean of all probe request frames in the nth
bin. Let S be the set of all signatures in the master sig-
nature database and let s be a single signature within the
set S. Let vn be the percentage of probe request frames
in the nth bin of s and let wn be the mean of all probe re-
quest frames in the nth bin of s. The following equation
was used to calculate the distance between the observed,
untagged fingerprintee signature, T , and all known mas-
ter signatures, assigning to C the distance value of the
closest signature in the master database to T :

C = min(∀s ∈ S

n∑

0

(|pn − vn| + vn|mn − wn|)) (1)

Our technique iterates through all bins in T , sum-
ming the difference of the percentages and mean differ-
ences scaled by the percentage. The mean differences are
scaled by the s bin percentage to prevent this value from
dominating the bin percentage differences. We show in
our results that the features included in a signature and
our final method of calculating signature difference are
effective in successfully fingerprinting wireless device
drivers.

5 Evaluation
We tested our fingerprinting technique with a total of 17
different wireless interface drivers in their default con-
figurations. We characterized wireless device drivers for
the Linux 2.6 kernel, Windows XP Service Pack 1 and
Service Pack 2, and Mac OS X 10.3.5. The machine
we used to fingerprint other hosts’ wireless drivers was
a 2.4 GHz Pentium 4 desktop with a Cisco Aironet a/b/g
PCI wireless card, running the Linux 2.6 kernel and the
MadWifi wireless NIC driver [11]. Various Pentium III
class desktop machines and one Apple PowerBook lap-
top were used as fingerprintee machines.

We address five primary characteristics that we ex-
pect any fingerprinting technique to be evaluated against.
First, we investigate the resolution of our method.
Specifically, we evaluate our identification granularity
between drivers for different NICs, different drivers that

Security ’06: 15th USENIX Security SymposiumUSENIX Association 171

support identical NICs, and different versions of the
same driver. Second, we evaluate the consistency of our
technique. We measure how successful our fingerprint-
ing technique is in a variety of scenarios and over multi-
ple network sessions, after operating system reboot, and
when using the same driver to control different NICs.
Third, we test the robustness of our technique. We con-
duct our experimentation in realistic network settings
that experience loss rates similar to other wireless infras-
tructure networks. Fourth, we analyze the efficiency of
our technique with respect to both data and time. Finally,
we evaluate the resistance of our technique to varying
configuration settings of a driver and evaluate the poten-
tial ways one might evade our fingerprinting technique.

To address these issues, we conducted a number of
experiments using different wireless drivers and cards
across a number of different operating system environ-
ments. In all cases, our technique successfully finger-
printed the wireless driver in at least one configuration.
While the amount of time needed to collect the data var-
ied across drivers and configurations, we required only
a small amount of captured wireless traffic to fingerprint
drivers accurately.

From our initial observations, we identified two prop-
erties of a device and driver that altered their signatures.
The first property concerned whether the wireless device
was unassociated or associated to an access point. Our
initial experiments revealed that, by default, all wireless
drivers transmit probe request frames when disassoci-
ated from an access point. Additionally, many continue
to send probe requests even after association to an ac-
cess point, though often not as frequently. The second
property (only applicable to Windows drivers) concerns
how the driver is managed. For many drivers, the Win-
dows operating system can manage the configuration of
the network settings for the wireless device instead of
having a standalone (vendor provided) program perform
those functions. The standalone program is provided by
the manufacturer of the wireless device and often sup-
ports more configuration options for the specific driver,
though also requires more user interaction to manage the
device. We noticed slight differences in the behavior of
probing depending on which option a user chose to man-
age their device. Due to these differences, we treated
each of these property scenarios uniquely and created
signatures to identify a driver under any of the appro-
priate cases.

5.1 Building the Master Signatures
We collected trace data and constructed individual sig-
natures with the same structure as the example signa-
ture in Table 1. This was repeated for all 17 wireless
drivers in every configuration known to affect the sig-
nature and supported by the wireless driver. Drivers

Client

Fingerprintees

Client15’

R

Wireless
medium

(a) Test set 1 and master signature experimen-
tal setup.

Client

Fingerprintees

Client

R

25’

Wireless
medium

W
al

l

(b) Test set 2 experimental setup.

Client

Fingerprintees

Client

R

Wireless
medium

����������
��� ���������� �������� ��������Background traffic

10’

m
is

c.
 o

bs
tr

uc
tio

ns

(c) Test set 3 experimental setup.

Figure 3: Our test scenarios. R is the fingerprinter.

from Apple, Cisco, D-Link, Intel, Linksys, MadWifi (for
Atheros chipset-based cards running under Linux), Net-
gear, Proxim, and SMC were included in our testing.
A majority of the drivers included in our tests were for
Windows; therefore most of the drivers initially had four
individual signatures. We will refer to the four differ-
ent configurations as follows: (1) unassociated and con-

Security ’06: 15th USENIX Security Symposium USENIX Association172

trolled by Windows, (2) unassociated and controlled by
a standalone program, (3) associated and controlled by
Windows, (4) associated and controlled by a standalone
program. Three drivers did not support networking con-
trol by Windows (options 1 and 3), and four of the drivers
tested did not transmit probe request frames when asso-
ciated. This meant that initially, 57 signatures were com-
piled in the master signature database. We collected four
signatures at a time and each signature trace contained a
minimum of 12 hours worth of data points. A 30 minute
portion of each trace was set aside and not used in signa-
ture training. This data was used as test set 1, which we
further describe in the next section. As can be seen from
Figure 3(a), the observing machine’s antenna was placed
approximately 15 feet from the fingerprintee machines,
and no physical obstructions were present between the
machines. Also, no 802.11 wireless traffic was detected
besides the traffic generated by the fingerprintees.

After analyzing these signatures, we noted that chang-
ing configurations for some drivers had little impact on
the probe request frame transmission rate and conse-
quently, the generated signatures were indistinguishable
from one another. We considered these signatures to
be duplicates and removed all but one from the mas-
ter signature database. This process could be automated
by eliminating signatures that are insufficiently different
from others with respect to some similarity threshold.
There was only a single case where two of the drivers
from the same manufacturer (Linksys) had indistinguish-
able signatures. For this case, we again left only a single
signature in the master signature database. After pruning
the database of all duplicate signatures, there remained
31 unique signatures. Each signature was tagged with
the corresponding driver(’s) name and configuration(s).
The entire master signature database is included as Ap-
pendix A.

5.2 Collecting Test Data
We used the unused 30 minute trace from each of the
57 raw signature traces collected during master signature
generation as test set 1. This scenario verifies that our
signature generation adequately captures the probing be-
havior of the driver and that signatures can identify their
associated drivers with a limited amount of traffic. To
demonstrate that our technique is repeatable and still ac-
curate in conditions other than where the signature data
was originally collected, we repeated the 57 half hour ex-
periments in two different physical locations. Using mul-
tiple environments helps to validate the consistency and
robustness of our technique and suggests that it works
well outside of lab settings. The arrangement for test set
2, as shown in Figure 3(b), was as follows: we placed
the fingerprinter’s antenna 25 feet from the fingerprint-
ees with one uninsulated drywall placed in between the

Test Set Successful Total Accuracy
1 55 57 96%
2 48 57 84%
3 44 57 77%

Table 2: Accuracy of fingerprinting technique by sce-
nario.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

69-6079-7089-8099-90100

N
um

be
r o

f D
riv

er
s

Accuracy of Driver Percentage

Figure 4: Number of individual drivers achieving an in-
terval of accuracy over all test sets.

machines. As in Figure 3(a), no 802.11 wireless traffic
was detected besides that generated by the fingerprint-
ees. For test set 3, depicted in Figure 3(c), the observer’s
antenna was placed ten feet from the fingerprintees with
two desks and other miscellaneous objects physically lo-
cated between the machines. At this location, four to
twelve other wireless devices were communicating dur-
ing our data collection. Test set 2 might represent a wire-
less network in a semi-isolated setting, such as a hotel
room with wireless access. Test set 3, on the other hand,
represents a more congested wireless network, such as a
network located in a coffee shop or airport.

5.3 Fingerprinting Accuracy
The accuracy of our technique in correctly identifying
the wireless driver operating a NIC for the three test sce-
narios is shown in Table 2. These results use the full half
hour of data points. Later in this section, we will ex-
plore the effects of using less data points on the accuracy
of our technique. The results also differed based on lo-
cation. As expected, our technique is the most accurate
for test set 1 (originally taken from the large signature
traces) at 96%. The second most accurate test set was
test set 2 (with only a single wall and no other 802.11
traffic) at 84%, and the last location had a 77% identifica-
tion accuracy. These results indicate that different envi-
ronments affect the accuracy of our technique. However,
our technique remains reliable in all the the environments
in which we tested.

Figure 4 demonstrates that our technique is perfectly

Security ’06: 15th USENIX Security SymposiumUSENIX Association 173

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Fi
ng

er
pr

in
tin

g
A

cc
ur

ac
y

(P
er

ce
nt

ag
e)

Bin Width (Seconds)

Figure 5: Empirical bin width tuning. Shows that 0.8
second wide bins generate the highest accuracy (96%)
for test set 1.

accurate at fingerprinting nine of the wireless drivers
and over 60% successful at identifying the other eight
drivers. The accuracy of our method at identifying a par-
ticular driver is largely dependent on how dissimilar the
driver’s signature(s) are from other signatures in the mas-
ter signature database. If the correct signature is similar
to another in the database, noise such as background traf-
fic may lead to our technique incorrectly fingerprinting a
wireless driver. These results show that the majority of
wireless drivers do have a distinct signature. It is impor-
tant to note that even with drivers that have less unique
fingerprints, we still correctly identify the driver for a
majority of the test cases.

It is also relevant to note that in cases where the tech-
nique cannot uniquely identify a driver, it was able to
narrow the possibilities down to those drivers that have
similar signatures. Though not supported in the current
implementation of our technique, it is conceivable to list
the signatures in the master signature database that are
close to the unidentified observed signature.

5.4 Empirical Bin Width Tuning
The bin width for signatures was empirically optimized
during our experimentation on test set 1 by varying the
size in testing and selecting an optimal width based
on fingerprinting accuracy. This optimization began by
starting with a bin width of 0.1 seconds and incremen-
tally increasing the bin width by 0.1 seconds up to a bin
width of 5.0 seconds. Figure 5 reveals that a bin width of
0.8 seconds produced the highest accuracy (96%) in test
set 1, and thus, was the bin width used for the rest of our
experiments.

5.5 Time Required to Fingerprint Driver
To address our technique’s efficiency, we investigated the
data and time thresholds required to accurately finger-
print a driver. Ideally, a fingerprinter would be able to

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30Fi
ng

er
pr

in
tin

g
A

cc
ur

ac
y

(P
er

ce
nt

ag
e)

Amount of Trace Data (Minutes)

Test Set 1
Test Set 2
Test Set 3

Figure 6: Effects of trace duration on fingerprinting ac-
curacy.

identify a wireless driver in real time after only a small
traffic trace. We measured the fingerprinting accuracy
of our method in each test scenario with one minute of
collected data and increased the amount of data in one
minute increments until the full thirty minute trace from
each setting was used. Figure 6 illustrates the accuracy of
our technique in each of the three test cases correspond-
ing to the amount of trace data used for fingerprinting.

Since the rate of probe request frames is different for
most wireless drivers, it is difficult to estimate how many
probe request frames will be recorded during one minute
of observation, though for statistical interest, the average
number of probes detected during one minute of obser-
vation was 10.79 across all of our testing scenarios. The
accuracy of our technique is at least 60% in each of the
three test cases after only one minute of traffic. These
results show that our method successfully converges rel-
atively fast on the correct wireless driver and needs only
a small amount of communication traffic to do so.

6 Limitations
In the course of our evaluation, we discovered a few lim-
itations of our fingerprinting technique. We discuss these
in detail below.

6.1 Driver Versions
One of the original questions we posed concerned the
resolution of our technique. We have shown that our
technique is capable of distinguishing between different
drivers the vast majority of the time. We are also inter-
ested in whether our method can distinguish between two
different versions of the same wireless driver. A num-
ber of wireless card manufactures have released new ver-
sions of their wireless drivers to support new features.
We tested our fingerprinting technique on six wireless
drivers, with multiple driver versions available to deter-
mine if it was possible to distinguish between different

Security ’06: 15th USENIX Security Symposium USENIX Association174

versions of the same wireless driver. Our technique was
unsuccessful in distinguishing between different versions
of the same driver. This is a limitation of our fingerprint-
ing technique since a new version of a driver might patch
previous security vulnerabilities in the driver. However,
even without the ability to distinguish between versions,
our fingerprints greatly reduce the number of potential
wireless drivers that a target system is running.

6.2 Hardware Abstraction Layer
Another unexpected limitation was found when testing
the MadWifi driver for Linux. This driver works with
most wireless cards containing the Atheros chipset be-
cause of the inclusion of a Hardware Abstraction Layer
(HAL). This creates a more homogeneous driver en-
vironment since a majority of wireless cards currently
available use the Atheros chipset. The side effect is that
the lack of driver diversity reduces the appeal of finger-
printing wireless drivers. However, one drawback of a
single (or relatively small number of) hardware abstrac-
tion layer(s) is that it magnifies any security vulnerability
identified.

7 Preventing Fingerprinting
Several methods can be used to prevent our technique
from successfully fingerprinting drivers. These methods
include configurable probing, standardization, automatic
generation of noise, driver code modification, MAC ad-
dress masquerading, and driver vulnerability patching.

7.1 Configurable Probing
One solution to prevent our fingerprinting technique is
for device drivers to provide the option to explicitly dis-
able or enable probe request frames. It makes sense for
this to be a configurable option not only to prevent fin-
gerprinting but also to conserve power and bandwidth.
Probe request frames are used to find networks match-
ing the available data rates on the client device [7]. The
SSID of the desired network can be specified or can be
set to the broadcast SSID when probing for any avail-
able networks. By default, access points transmit bea-
con frames, which announce the access point’s pres-
ence and some configuration information8. Thus, pas-
sively listening for beacons (i.e., turning off probe re-
quest frames) could be an effective method of discover-
ing access points. Another solution would be to config-
ure wireless device drivers, by default, to passively listen
for beacons and only send probe requests for available
networks when manually triggered by the user.

7.2 Standardization
An effective, but potentially difficult to implement solu-
tion for preventing driver fingerprinting is to specify the
rate at which probe request frames are transmitted in a

future IEEE standard for the 802.11 MAC. Another step
towards standardization could result if a corporate body
or open source consortium was formed to develop a stan-
dard agreed upon by all driver manufactures. If all driver
manufactures adhered to such a standard, the described
fingerprinting method would be rendered useless. Un-
fortunately, there are many obstacles preventing such a
standard, the major factor being that some device manu-
facturers will not want to design devices that expend the
power or bandwidth necessary to transmit probe requests
at a standard rate. Due to this reason alone, it is doubt-
ful that there will be any standardization agreed upon and
followed by every driver manufacture concerning the rate
of probe request frame transmission.

7.3 Automated Noise
Another strategy to prevent wireless driver fingerprint-
ing is to generate noise in the form of cover probe re-
quest frames. Cover traffic disguises a driver by mask-
ing the driver’s true rate of probe request transmission.
Due to the fact that our technique uses statistical meth-
ods to filter out noise, the cover traffic would need to be
sufficiently random and transmit enough cover to con-
fuse our technique. A limitation of this approach is that
the cover probe request frames waste bandwidth the de-
vice would otherwise use for wireless traffic, and for
devices with limited power supplies, transmitting cover
traffic would reduce battery life significantly. Also, given
enough observation data, the fingerprinter might be able
to filter away the noise and successfully fingerprint the
driver. Generating noise is a difficult problem as many
data mining algorithms have been shown to be effec-
tive in filtering out such noise and recovering the original
data [12, 13, 14].

7.4 Driver Code Modification
For open source drivers such as the Madwifi drivers, the
driver code could be modified to change the transmission
rate of probe request frames. This alteration would fool
our fingerprinting technique. However, this is only pos-
sible for open source drivers and would require a skilled
programmer to alter the driver code. This would not be
possible for many windows drivers, since most do not
provide source code.

7.5 MAC Address Masquerading
Earlier, we made the assumption of a one-to-one map-
ping of MAC addresses to wireless devices. One method
to prevent driver fingerprinting is to change the device’s
MAC address to match the MAC address of another de-
vice within transmission range. This would fool our fin-
gerprinting technique into believing probe requests from
two different wireless drivers are originating from the
same wireless driver. There are a number of problems

Security ’06: 15th USENIX Security SymposiumUSENIX Association 175

with this solution. First, the wireless device must make
certain that the fingerprinter is within transmission range
of both wireless devices. If the fingerprinter only ob-
serves probe request frames from one of the two de-
vices, it will not be deceived. Also, since our method
uses statistical methods to filter noise, the wireless device
needs to make certain that the other device is transmitting
enough probe request frames to mask its signature.

7.6 Driver Patching
While driver patching is not a full solution, we feel the
creation of well thought out driver patching schemes
would improve the overall security of device drivers as
new driver exploits are found. Current research is be-
ing conducted to improve the process of patching secu-
rity vulnerabilities [15, 16]. The device driver commu-
nity should leverage this research to create more robust
patching methods, and improve the overall level of driver
security.

8 Related Work
Various techniques for system and device level finger-
printing have been used for both legitimate uses, such
as forensics and intrusion detection, as well as mali-
cious uses, such as attack reconnaissance and user pro-
filing. The most common techniques take advantage of
explicit content differences between system and applica-
tion responses. Nmap [17], p0f [18], and Xprobe [19]
are all open source, widely distributed tools that can re-
motely fingerprint an operating system by identifying
unique responses from the TCP/IP networking stack. As
the TCP/IP stack is tightly coupled to the operating sys-
tem kernel, these tools match the content of machine re-
sponses to a database of OS specific response signatures.
Nmap and Xprobe actively query the target system to in-
voke these potentially identifying responses. In addition
to this active probing, p0f can passively fingerprint an
operating system by monitoring network traffic from a
target machine to some third party and matching char-
acteristics of that traffic to a signature database. Data
link layer content matching can also be used to identify
wireless LAN discovery applications [20], which can be
useful for wireless intrusion detection.

While datagram content identification methods are ar-
guably the most simple, they are also limited to situa-
tions where datagram characteristics are uniquely iden-
tifiable across systems, as well as accessible to an out-
side party. Except for a few unique instances, 802.11
MAC-layer frame formatting and content is generally in-
distinguishable across wireless devices; because of this,
more sophisticated methods are often required. In [21],
the authors present a technique to identify network de-
vices based on their unique analog signal characteristics.
This fingerprinting technique is based on the premise that

subtle differences in manufacturing and hardware com-
ponents create unique signaling characteristics in digital
devices. While the results of analog signal fingerprinting
are significant, this method requires expensive hardware
such as an analog to digital converter, IEEE 488 inter-
face card, and digital sampling oscilloscope. Also, it is
not clear from their analysis of wired Ethernet devices
whether this method would be feasible in a typical wire-
less network setting where noise from both the environ-
ment and other devices is a more pressing consideration.

A device’s clock skew is also a target for fingerprint-
ing. A technique presented in [22] uses slight drifts in a
device’s TCP option clock to identify a network device
over the Internet via its unique clock skew. Whereas our
technique fingerprints which driver a wireless device is
running, time skew fingerprinting is used to identify dis-
tinct devices on the Internet. Concerning security, unique
device fingerprinting is often not as useful as driver and
other types of software fingerprinting. As opposed to
content based fingerprinting, both analog signal and time
skew fingerprinting exploit characteristics of the under-
lying system hardware, making these techniques much
more difficult to spoof.

Identification via statistical timing analysis in the con-
text of communication patterns and data content has been
especially studied in the area of privacy enhancing tech-
nologies. While network security mechanisms such as
encryption are often utilized to protect user privacy, traf-
fic analysis of encrypted traffic has proven successful
in linking communication initiators and recipients par-
ticipating in anonymous networking systems [23, 24].
Traffic analysis has also been applied to Web page fin-
gerprinting. In [25], the authors demonstrate a tech-
nique that characterizes the inter-arrival time and data-
gram sizes of web requests for certain popular web sites.
Using these web page characterizations, one can identify
which sites users on wireless LANs are visiting despite
these users browsing the Internet via encrypted HTTP
traffic streams.

The techniques described above serve as only a sur-
vey of existing fingerprinting techniques for systems,
devices, and even static content. The approaches vary
from exploiting content anomalies in the TCP/IP stack
to characterizing time-based system behavior at both the
physical and software layers of a system. While the
approaches vary, these contributions bring to light the
true feasibility of fingerprinting via avenues otherwise
assumed to be uniformly implemented across systems.

9 Conclusion
We designed, implemented, and evaluated a technique
for passive wireless device driver fingerprinting that
exploits the fact that most IEEE 802.11a/b/g wireless
drivers have implemented different active scanning algo-

Security ’06: 15th USENIX Security Symposium USENIX Association176

rithms. We evaluated our technique and demonstrated
that it is capable of accurately identifying the wire-
less driver used by 802.11 wireless devices without spe-
cialized equipment and in realistic network conditions.
Through an extensive evaluation including 17 wireless
drivers, we demonstrated that our method is effective in
fingerprinting a wide variety of wireless drivers currently
on the market. Finally, we discussed ways to prevent fin-
gerprinting that we hope will aid in improving the secu-
rity of wireless communication for devices that employ
802.11 networking.

10 Acknowledgments
Some of this work was performed while the authors were
at Sandia National Laboratories - California. Sandia is
a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Ad-
ministration under Contract DE-AC04-94AL85000. The
authors greatly appreciate the staff of Sandia National
Laboratories for their assistance. The authors would like
to thank John Bethencourt, Nikita Borisov, Frank Hem-
ingway, Adam Lee, Kristen Pelon, Amanda Stephano,
and the anonymous reviewers for their useful sugges-
tions. This work was partially supported by NSF Grant
ITR-0428887 (Spectrum Management Toward Spectrum
Plenty) and the University of Colorado. Jason Franklin
performed this research while on appointment as a U.S.
Department of Homeland Security (DHS) Fellow. The
views expressed in this paper do not necessarily reflect
the policies and views of DHS, DOE, or affiliated orga-
nizations.

References
[1] Ken Ashcraft and Dawson R. Engler. Using Programmer-Written

Compiler Extensions to Catch Security Holes. In Proceedings of
IEEE Symposium on Security and Privacy, May 2002.

[2] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and
Dawson R. Engler. An Empirical Study of Operating System Er-
rors. In Proceedings of Symposium on Operating Systems Princi-
ples (SOSP 2001), October 2001.

[3] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan
Boneh. Terra: A Virtual Machine-Based Platform for Trusted
Computing. In Proceedings of Symposium on Operating Systems
Principles (SOSP 2003), October 2003.

[4] IEEE-SA Standards Board. IEEE Std IEEE 802.11-1999 In-
formation Technology - Wireless LAN Medium Access Control
(MAC) And Physical Layer (PHY) Specifications. IEEE Com-
puter Society, 1999.

[5] IEEE-SA Standards Board. Amendment 6: Medium Access Con-
trol (MAC) Security Enhancements. IEEE Computer Society,
April 2004.

[6] Ethereal: A network protocol analyzer. Web site, 2006. 〈http:
//www.ethereal.com〉.

[7] Matthew S. Gast. 802.11 Wireless Networks: The Definitive
Guide. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2nd
edition, 2005.

[8] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian
Network Classifiers. Machine Learning, 29(2-3):131–163, 1997.

[9] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of
Statistical Learning. Springer, 2001.

[10] Snort Intrusion Detection and Prevention system. Web site, 2006.
〈http://www.snort.org/〉.

[11] Madwifi: Atheros chip set drivers. Web site, 2006. 〈http:
//sourceforge.net/projects/madwifi/〉.

[12] D. Agrawal and C. C. Aggarwal. On the Design and Quantifica-
tion of Privacy Preserving Data Mining Algorithms. In Proceed-
ings of Symposium on Principles of Database Systems, 2001.

[13] R. Agrawal and R. Srikant. Privacy-preserving data mining. In
Proceedings of ACM SIGMOD, May 2000.

[14] B. Hoh and M. Gruteser. Location Privacy Through Path Con-
fusion. In Proceedings of IEEE/CreateNet International Confer-
ence on Security and Privacy for Emerging Areas in Communi-
cation Networks (SecureComm 2005), 2005.

[15] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz.
OPUS: Online Patches and Updates for Security. In Proceedings
of 14th USENIX Security Symposium, Aug 2005.

[16] John Dunagan, Roussi Roussev, Brad Daniels, Aaron Johnson,
Chad Verbowski, and Yi-Min Wang. Towards a Self-Managing
Software Patching Process Using Black-Box Persistent-State
Manifests. In First International Conference on Autonomic Com-
puting (ICAC’04), 2004.

[17] Nmap: a free network mapping and security scanning tool. Web
site, 2006. 〈http://www.insecure.org/nmap/〉.

[18] Project details for p0f. Web site, 2004. 〈http://freshmeat.
net/projects/p0f/〉.

[19] Arkin and Yarochkin. Xprobe project page. Web site,
August 2002. 〈http://sourceforge.net/projects/
xprobe〉.

[20] Joshua Wright. Layer 2 Analysis of WLAN Discovery Ap-
plications for Intrusion Detection. Web site, 2002. 〈http:
//www.polarcove.com/whitepapers/layer2.pdf〉.

[21] Ryan Gerdes, Thomas Daniels, Mani Mina, and Steve Rus-
sell. Device Identification via Analog Signal Fingerprinting:
A Matched Filter Approach. In Proceedings of the Network
and Distributed System Security Symposium Conference (NDSS
2006), 2006.

[22] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote Phys-
ical Device Fingerprinting. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy (SP 2005), Washington, DC,
USA, 2005.

[23] Jean-François Raymond. Traffic Analysis: Protocols, Attacks,
Design Issues, and Open Problems. In Proceedings of Privacy
Enhancing Technologies Workshop (PET 2000), May 2000.

[24] Mathewson and Dingledine. Practical Traffic Analysis: Extend-
ing and Resisting Statistical Disclosure. In Proceedings of Pri-
vacy Enhancing Technologies Workshop (PET 2004), May 2004.

[25] George Dean Bissias, Marc Liberatore, and Brian Neil Levine.
Privacy Vulnerabilities in Encrypted HTTP Streams. In Proceed-
ings of Privacy Enhancing Technologies Workshop (PET 2005),
May 2005.

[26] Mike Kershaw. Kismet. Web site, 2006. 〈http://www.
kismetwireless.net/〉.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 177

Appendix A
This appendix includes the entire master signature database from our
evaluation section. It is organized with the name of the wireless driver,
if the driver was associated (assoc) or unassociated (unassoc), and if
Windows (win) was configuring the wireless device, or a standalone
program (native). The values after the driver name and configuration
are a set of tuples ordered as follows: (Bin Value, Percentage, Bin Mean
Value).

cisco-abg-assoc-native (0.8,0.101,0.677)(1.6,0.108,1.450)
(2.4,0.168,2.377)(3.2,0.021,2.928)(4,0.024,3.798)
(4.8,0.028,4.691)(5.6,0.048,5.536)(6.4,0.034,6.303)
(7.2,0.080,7.132)(8,0.032,7.830)(8.8,0.017,8.473)
(9.6,0.044,9.607)(53.6,0.288,53.399)

cisco-abg-unassoc-native (0,0.514,0.048)(0.8,0.285,0.749)
(1.6,0.037,1.656)(2.4,0.028,2.373)(3.2,0.067,3.264)
(4.8,0.041,4.981)(5.6,0.025,5.521)

cisco-abg-unassoc-win (0,0.466,0.072)(0.8,0.126,0.720)
(1.6,0.115,1.479)(2.4,0.056,2.345)(3.2,0.040,3.089)
(4,0.025,3.843)(4.8,0.020,4.592)(5.6,0.019,5.415)
(6.4,0.012,6.129)(8.8,0.013,8.554)(49.6,0.063,49.639)
(50.4,0.026,50.146)

dwl-ag530-assoc-native (0,0.420,0.032)(0.8,0.108,0.590)
(1.6,0.043,1.358)(2.4,0.011,2.067)(4.8,0.113,4.470)
(5.6,0.060,5.477)(6.4,0.039,6.192)(7.2,0.030,7.206)
(8,0.011,7.630)(12,0.010,11.829)(51.2,0.144,50.995)

dwl-ag530-unassoc-native (0,0.544,0.034)(0.8,0.052,0.597)
(1.6,0.198,1.670)(6.4,0.053,6.659)(7.2,0.129,7.248)
(8,0.012,7.806)

dwl-ag650-assoc-win (0,0.392,0.008)(0.8,0.231,0.549)
(1.6,0.049,1.481)(2.4,0.030,2.416)(3.2,0.045,3.250)
(4,0.067,4.092)(4.8,0.021,4.687)(58.4,0.164,58.198)

dwl-ag650-unassoc-win (0,0.606,0.084)(0.8,0.233,0.621)
(1.6,0.090,1.689)(2.4,0.068,2.322)

dwl-g520-unassoc-native (0,0.533,0.054)(0.8,0.246,0.674)
(1.6,0.072,1.541)(2.4,0.035,2.539)(3.2,0.079,2.989)
(4,0.026,3.706)

dwl-g520-unassoc-win (0,0.527,0.055)(0.8,0.236,0.666)
(1.6,0.134,1.523)(2.4,0.039,2.401)(3.2,0.044,3.109)
(4,0.015,3.791)

engenuis-unassoc-win (0,0.193,0.059)(0.8,0.104,1.188)
(1.6,0.609,1.271)(2.4,0.082,2.529)(4,0.011,3.814)

intel2100-assoc-win (0,0.766,0.019)(63.2,0.234,62.949)

intel2100-unassoc-win (0,0.927,0.055)(30.4,0.073,30.132)

intel-2200-assoc-native (0,0.591,0.107)(0.8,0.071,0.955)
(1.6,0.079,1.495)(2.4,0.107,2.182)(120,0.050,120.254)
(120.8,0.091,120.698)

intel-2200-unassoc-native (0,0.659,0.078)(0.8,0.015,0.882)
(32.8,0.031,33.063)(34.4,0.139,34.765) (35.2,0.142,34.853)

intel-2915-assoc-native (0,0.659,0.080)(0.8,0.032,0.938)
(1.6,0.037,1.426)(118.4,0.171,118.155) (119.2,0.076,119.193)

intel-2915-unassoc-native (0,0.668,0.083)(32.8,0.331,32.868)

linksys-pci-unassoc-win (0,0.348,0.165)(0.8,0.273,0.923)
(1.6,0.032,1.262)(61.6,0.262,61.787)
(62.4,0.027,62.270)(63.2,0.054,62.953)

madwifi-unassoc (72.8,0.881,72.988)(133.6,0.119,133.978)

netgear-assoc-win (0,0.423,0.001)(0.8,0.203,0.611)
(1.6,0.038,1.552)(2.4,0.058,2.240)(3.2,0.037,3.206)
(4,0.016,4.006)(4.8,0.060,4.731)(5.6,0.010,5.505)
(57.6,0.149,57.498)

netgear-unassoc-win (0,0.560,0.061)(0.8,0.135,0.652)
(1.6,0.077,1.532)(2.4,0.018,2.340)(3.2,0.023,3.125)
(4,0.106,4.035)(4.8,0.071,4.566)

osx-airportb-unassoc (0,0.639,0.022)(10.4,0.361,10.295)

proxim-assoc-native (0,0.035,0.396)(0.8,0.377,0.585)
(1.6,0.133,1.376)(2.4,0.016,2.078)(4.8,0.168,4.523)
(5.6,0.035,5.535)(55.2,0.087,55.400)(56,0.024,56.017)
(56.8,0.084,56.836)(57.6,0.022,57.435)

proxim-assoc-win (0,0.039,0.385)(0.8,0.329,0.585)
(1.6,0.118,1.385)(2.4,0.020,2.055)(4.8,0.089,4.681)
(5.6,0.089,5.500)(6.4,0.032,6.242)(7.2,0.013,7.167)
(55.2,0.122,55.402)(56,0.036,56.037)
(56.8,0.068,56.773)(57.6,0.012,57.466)

proxim-unassoc-win (0,0.540,0.052)(0.8,0.229,0.660)
(1.6,0.090,1.555)(2.4,0.012,2.328)(4.8,0.055,5.011)
(6.4,0.040,6.479)

smc-2532w-assoc-native (0,0.619,0.140)(0.8,0.028,0.477)
(1.6,0.013,1.812)(60.8,0.013,60.907)(62.4,0.183,62.595)
(63.2,0.118,62.899)

smc-2532w-unassoc-win (0,0.065,0.140)(0.8,0.047,0.727)
(1.6,0.880,1.681)

smc-2632w-unassoc-native (0,0.511,0.083)(10.4,0.470,10.555)

smc-wpci-assoc-native (0,0.461,0.001)(0.8,0.117,0.588)
(1.6,0.139,1.678)(2.4,0.020,2.185)(4,0.021,3.915)
(4.8,0.093,5.028)(56,0.127,55.708)

smc-wpci-unassoc-native (0,0.563,0.038)(0.8,0.144,0.689)
(1.6,0.014,1.790)(4,0.093,3.857)(4.8,0.079,4.952)
(5.6,0.057,5.935)(6.4,0.026,6.178)

wpc54g-assoc-win (0,0.633,0.038)(0.8,0.114,0.437)
(62.4,0.148,62.550)(63.2,0.105,62.981)

wpc54g-unassoc-native (0,0.623,0.054)(0.8,0.151,0.633)
(62.4,0.172,62.299)(63.2,0.055,62.960)

Notes
1Carnegie Mellon University,jfrankli@cs.cmu.edu
2University of Colorado, Boulder,

damon.mccoy@colorado.edu
3University of Illinois, Urbana-Champaign, tabriz@uiuc.edu
4University of California, Davis,vneagoe@ucdavis.edu
5Sandia National Laboratories,jvanran@sandia.gov
6University of Colorado, Boul-

der,douglas.sicker@colorado.edu
7It is important to note that some attackers will sniff the MAC ad-

dresses of other users on a wireless network to use as their own, giving
them the ability to steal a connection or hide their malicious actions.
Although we acknowledge that this scenario would bring about dupli-
cate MAC addresses on a network, we believe it is far from the common
case in most network settings.

8This is in contrast to disabling the SSID broadcast function. Dis-
abling SSID broadcast simply forces an AP to send a string of spaces or
a null string in the SSID field of the beacon frame. Kismet [26] reports
this SSID as <no ssid>.

Security ’06: 15th USENIX Security Symposium USENIX Association178

