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Abstract

Serverless file systems, exemplified by CFS, Farsite
and OceanStore, have received significant attention from
both the industry and the research community. These
file systems store files on a large collection of untrusted
nodes that form an overlay network. They use crypto-
graphic techniques to maintain file confidentiality and
integrity from malicious nodes. Unfortunately, crypto-
graphic techniques cannot protect a file holder from a
Denial-of-Service (DoS) or a host compromise attack.
Hence, most of these distributed file systems are vulner-
able to targeted file attacks, wherein an adversary at-
tempts to attack a small (chosen) set of files by attack-
ing the nodes that host them. This paper presents Lo-
cationGuard − a location hiding technique for securing
overlay file storage systems from targeted file attacks.
LocationGuard has three essential components: (i) lo-
cation key, consisting of a random bit string (e.g., 128
bits) that serves as the key to the location of a file, (ii)
routing guard, a secure algorithm that protects accesses
to a file in the overlay network given its location key
such that neither its key nor its location is revealed to
an adversary, and (iii) a set of four location inference
guards. Our experimental results quantify the overhead
of employing LocationGuard and demonstrate its effec-
tiveness against DoS attacks, host compromise attacks
and various location inference attacks.

1 Introduction

A new breed of serverless file storage services, like CFS
[7], Farsite [1], OceanStore [15] and SiRiUS [10], have
recently emerged. In contrast to traditional file systems,
they harness the resources available at desktop worksta-
tions that are distributed over a wide-area network. The
collective resources available at these desktop worksta-
tions amount to several peta-flops of computing power

and several hundred peta-bytes of storage space [1].

These emerging trends have motivated serverless file
storage as one of the most popular application over de-
centralized overlay networks. An overlay network is a
virtual network formed by nodes (desktop workstations)
on top of an existing TCP/IP-network. Overlay networks
typically support a lookup protocol. A lookup operation
identifies the location of a file given its filename. Lo-
cation of a file denotes the IP-address of the node that
currently hosts the file.

There are four important issues that need to be ad-
dressed to enable wide deployment of serverless file sys-
tems for mission critical applications.

Efficiency of the lookup protocol. There are two kinds
of lookup protocol that have been commonly deployed:
the Gnutella-like broadcast based lookup protocols [9]
and the distributed hash table (DHT) based lookup pro-
tocols [25] [19] [20]. File systems like CFS, Farsite and
OceanStore use DHT-based lookup protocols because of
their ability to locate any file in a small and bounded
number of hops.

Malicious and unreliable nodes. Serverless file stor-
age services are faced with the challenge of having to
harness the collective resources of loosely coupled, in-
secure, and unreliable machines to provide a secure, and
reliable file-storage service. To complicate matters fur-
ther, some of the nodes in the overlay network could
be malicious. CFS employs cryptographic techniques
to maintain file data confidentiality and integrity. Far-
site permits file write and update operations by using a
Byzantine fault-tolerant group of meta-data servers (di-
rectory service). Both CFS and Farsite use replication as
a technique to provide higher fault-tolerance and avail-
ability.

Targeted File Attacks. A major drawback with server-
less file systems like CFS, Farsite and Ocean-Store is
that they are vulnerable to targeted attacks on files. In
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a targeted attack, an adversary is interested in compro-
mising a small set of target files through a DoS attack
or a host compromise attack. A denial-of-service attack
would render the target file unavailable; a host compro-
mise attack could corrupt all the replicas of a file thereby
effectively wiping out the target file from the file sys-
tem. The fundamental problem with these systems is
that: (i) the number of replicas (R) maintained by the
system is usually much smaller than the number of ma-
licious nodes (B), and (ii) the replicas of a file are stored
at publicly known locations. Hence, malicious nodes can
easily launch DoS or host compromise attacks on the set
of R replica holders of a target file (R � B).

Efficient Access Control. A read-only file system like
CFS can exercise access control by simply encrypting
the contents of each file, and distributing the keys only to
the legal users of that file. Farsite, a read-write file sys-
tem, exercises access control using access control lists
(ACL) that are maintained using a Byzantine-fault-tolerant
protocol. However, access control is not truly distributed
in Farsite because all users are authenticated by a small
collection of directory-group servers. Further, PKI (public-
key Infrastructure) based authentication and Byzantine
fault tolerance based authorization are known to be more
expensive than a simple and fast capability-based access
control mechanism [6].

In this paper we present LocationGuard as an effec-
tive technique for countering targeted file attacks. The
fundamental idea behind LocationGuard is to hide the
very location of a file and its replicas such that, a legal
user who possesses a file’s location key can easily and
securely locate the file on the overlay network; but with-
out knowing the file’s location key, an adversary would
not be able to even locate the file, let alone access it or
attempt to attack it. Further, an adversary would not be
even able to learn if a particular file exists in the file sys-
tem or not. LocationGuard comprises of three essential
components. The first component of LocationGuard is a
location key, which is a 128-bit string used as a key to
the location of a file in the overlay network. A file’s lo-
cation key is used to generate legal capabilities (tokens)
that can be used to access its replicas. The second com-
ponent is the routing guard, a secure algorithm to locate
a file in the overlay network given its location key such
that neither the key nor the location is revealed to an
adversary. The third component is an extensible collec-
tion of location inference guards, which protect the sys-
tem from traffic analysis based inference attacks, such as
lookup frequency inference attacks, end-user IP-address

inference attacks, file replica inference attacks, and file
size inference attacks. LocationGuard presents a careful
combination of location key, routing guard, and location
inference guards, aiming at making it very hard for an
adversary to infer the location of a target file by either
actively or passively observing the overlay network.

In addition traditional cryptographic guarantees like
file confidentiality and integrity, LocationGuardmitigates
denial-of-service (DoS) and host compromise attacks,
while adding very little performance overhead and very
minimal storage overhead to the file system. Our initial
experiments quantify the overhead of employing Loca-
tionGuard and demonstrate its effectiveness against DoS
attacks, host compromise attacks and various location
inference attacks.

The rest of the paper is organized as follows. Sec-
tion 2 provides terminology and background on over-
lay network and serverless file systems like CFS and
Farsite. Section 3 describes our threat model in detail.
We present an abstract functional description of Loca-
tionGuard in Section 4. Section 4, 5 describes the de-
sign of our location keys and Section 6 presents a de-
tailed description of the routing guard. We outline a brief
discussion on overall system management in Section 8
and present a thorough experimental evaluation of Loca-
tionGuard in Section 9. Finally, we present some related
work in Section 10, and conclude the paper in Section
11.

2 Background and Terminology

In this section, we give a brief overview on the vital
properties of DHT-based overlay networks and their lookup
protocols (e.g., Chord [25], CAN [19], Pastry [20], Tapestry
[3]). All these lookup protocols are fundamentally based
on distributed hash tables, but differ in algorithmic and
implementation details. All of them store the mapping
between a particular search key and its associated data

(file) in a distributed manner across the network, rather
than storing them at a single location like a conventional
hash table. Given a search key, these techniques locate
its associated data (file) in a small and bounded num-
ber of hops within the overlay network. This is realized
using three main steps. First, nodes and search keys are
hashed to a common identifier space such that each node
is given a unique identifier and is made responsible for
a certain set of search keys. Second, the mapping of
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search keys to nodes uses policies like numerical close-
ness or contiguous regions between two node identifiers
to determine the (non-overlapping) region (segment) that
each node will be responsible for. Third, a small and
bounded lookup cost is guaranteed by maintaining a tiny
routing table and a neighbor list at each node.

In the context of a file system, the search key can
be a filename and the identifier can be the IP address
of a node. All the available node’s IP addresses are
hashed using a hash function and each of them store a
small routing table (for example, Chord’s routing table
has only m entries for an m-bit hash function and typi-
cally m = 128) to locate other nodes. Now, to locate a
particular file, its filename is hashed using the same hash
function and the node responsible for that file is obtained
using the concrete mapping policy. This operation of lo-
cating the appropriate node is called a lookup.

Serverless file system like CFS, Farsite and Ocean-
Store are layered on top of DHT-based protocols. These
file systems typically provide the following properties:
(1) A file lookup is guaranteed to succeed if and only if
the file is present in the system, (2) File lookup termi-
nates in a small and bounded number of hops, (3) The
files are uniformly distributed among all active nodes,
and (4) The system handles dynamic node joins and leaves.

In the rest of this paper, we assume that Chord [25] is
used as the overlay network’s lookup protocol. However,
the results presented in this paper are applicable for most
DHT-based lookup protocols.

3 Threat Model

Adversary refers to a logical entity that controls and co-
ordinates all actions by malicious nodes in the system.
A node is said to be malicious if the node either inten-
tionally or unintentionally fails to follow the system’s
protocols correctly. For example, a malicious node may
corrupt the files assigned to them and incorrectly (mali-
ciously) implement file read/write operations. This defi-
nition of adversary permits collusions among malicious
nodes.

We assume that the underlying IP-network layer may
be insecure. However, we assume that the underlying
IP-network infrastructure such as domain name service
(DNS), and the network routers cannot be subverted by
the adversary.

An adversary is capable of performing two types of
attacks on the file system, namely, the denial-of-service
attack, and the host compromise attack. When a node
is under denial-of-service attack, the files stored at that
node are unavailable. When a node is compromised, the
files stored at that node could be either unavailable or
corrupted. We model the malicious nodes as having a
large but bounded amount of physical resources at their
disposal. More specifically, we assume that a malicious
node may be able to perform a denial-of-service attack
only on a finite and bounded number of good nodes, de-
noted by α. We limit the rate at which malicious nodes
may compromise good nodes and use λ to denote the
mean rate per malicious node at which a good node can
be compromised. For instance, when there are B ma-
licious nodes in the system, the net rate at which good
nodes are compromised is λ ∗B (node compromises per
unit time). Note that it does not really help for one ad-
versary to pose as multiple nodes (say using a virtual-
ization technology) since the effective compromise rate
depends only on the aggregate strength of the adversary.
Every compromised node behaves maliciously. For in-
stance, a compromised node may attempt to compromise
other good nodes. Every good node that is compromised
would independently recover at rate µ. Note that the
recovery of a compromised node is analogous to clean-
ing up a virus or a worm from an infected node. When
the recovery process ends, the node stops behaving ma-
liciously. Unless and otherwise specified we assume that
the rates λ and µ follow an exponential distribution.

3.1 Targeted File Attacks

Targeted file attack refers to an attack wherein an adver-
sary attempts to attack a small (chosen) set of files in
the system. An attack on a file is successful if the tar-
get file is either rendered unavailable or corrupted. Let
fn denote the name of a file f and fd denote the data
in file f . Given R replicas of a file f , file f is unavail-
able (or corrupted) if at least a threshold cr number of
its replicas are unavailable (or corrupted). For example,
for read/write files maintained by a Byzantine quorum
[1], cr = dR/3e. For encrypted and authenticated files,
cr = R, since the file can be successfully recovered as
long as at least one of its replicas is available (and un-
corrupt) [7]. Most P2P trust management systems such
as [27] uses a simple majority vote on the replicas to
compute the actual trust values of peers, thus we have
cr = dR/2e.
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Distributed file systems like CFS and Farsite are highly
vulnerable to target file attacks since the target file can be
rendered unavailable (or corrupted) by attacking a very
small set of nodes in the system. The key problem arises
from the fact that these systems store the replicas of a
file f at publicly known locations [13] for easy lookup.
For instance, CFS stores a file f at locations derivable
from the public-key of its owner. An adversary can at-
tack any set of cr replica holders of file f , to render
file f unavailable (or corrupted). Farsite utilizes a small
collection of publicly known nodes for implementing a
Byzantine fault-tolerant directory service. On compro-
mising the directory service, an adversary could obtain
the locations of all the replicas of a target file.

Files on an overlay network have two primary at-
tributes: (i) content and (ii) location. File content could
be protected from an adversary using cryptographic tech-
niques. However, if the location of a file on the over-
lay network is publicly known, then the file holder is
susceptible to DoS and host compromise attacks. Loca-
tionGuard provides mechanisms to hide files in an over-
lay network such that only a legal user who possesses a
file’s location key can easily locate it. Further, an adver-
sary would not even be able to learn whether a particu-
lar file exists in the file system or not. Thus, any previ-
ously known attacks on file contents would not be appli-
cable unless the adversary succeeds in locating the file.
It is important to note that LocationGuard is oblivious to
whether or not file contents are encrypted. Hence, Lo-
cationGuard can be used to protect files whose contents
cannot be encrypted, say, to permit regular expression
based keyword search on file contents.

4 LocationGuard

4.1 Overview

We first present a high level overview of LocationGuard.
Figure 1 shows an architectural overview of a file system
powered by LocationGuard. LocationGuard operates on
top of an overlay network ofN nodes. Figure 2 provides
a sketch of the conceptual design of LocationGuard. Lo-
cationGuard scheme guards the location of each file and
its access with two objectives: (1) to hide the actual lo-
cation of a file and its replicas such that only legal users
who hold the file’s location key can easily locate the
file on the overlay network, and (2) to guard lookups
on the overlay network from being eavesdropped by an

adversary. LocationGuard consists of three core compo-
nents. The first component is location key, which con-
trols the transformation of a filename into its location on
the overlay network, analogous to a traditional crypto-
graphic key that controls the transformation of plaintext
into ciphertext. The second component is the routing
guard, which makes the location of a file unintelligible.
The routing guard is, to some extent, analogous to a tra-
ditional cryptographic algorithm which makes a file’s
contents unintelligible. The third component of Loca-
tionGuard includes an extensible package of location in-
ference guards that protect the file system from indirect
attacks. Indirect attacks are those attacks that exploit a
file’s metadata information such as file access frequency,
end-user IP-address, equivalence of file replica contents
and file size to infer the location of a target file on the
overlay network. In this paper we focus only on the first
two components, namely, the location key and the rout-
ing guard. For a detailed discussion on location infer-
ence guards refer to our tech-report [23].

In the following subsections, we first present the main
concepts behind location keys and location hiding (Sec-
tion 4.2) and describe a reference model for serverless
file systems that operate on LocationGuard (Section 4.3).
Then we present the concrete design of LocationGuard’s
core components: the location key (Section 5), and the
routing guard (Section 6).

4.2 Concepts and Definitions

In this section we define the concept of location keys and
its location hiding properties. We discuss the concrete
design of location key implementation and how location
keys and location guards protect a file system from tar-
geted file attacks in the subsequent sections.

Consider an overlay network of sizeN with a Chord-
like lookup protocol Γ. Let f1, f2, · · · , fR denote theR
replicas of a file f . Location of a replica f i refers to the
IP-address of the node (replica holder) that stores replica
f i. A file lookup algorithm is defined as a function that
accepts f i and outputs its location on the overlay net-
work. Formally we have Γ : f i → loc maps a replica f i

to its location loc on the overlay network P .

Definition 1 Location Key: A location key lk of a file
f is a relatively small amount (m-bit binary string, typi-
cally m = 128) of information that is used by a Lookup
algorithm Ψ : (f, lk) → loc to customize the transfor-
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Figure 1: LocationGuard: System Architecture

Figure 2: LocationGuard: Conceptual Design

mation of a file into its location such that the following
three properties are satisfied:

1. Given the location key of a file f , it is easy to lo-
cate the R replicas of file f .

2. Without knowing the location key of a file f , it is
hard for an adversary to locate any of its replicas.

3. The location key lk of a file f should not be ex-
posed to an adversary when it is used to access the
file f .

Informally, location keys are keys with location hiding
property. Each file in the system is associated with a
location key that is kept secret by the users of that file.
A location key for a file f determines the locations of
its replicas in the overlay network. Note that the lookup
algorithmΨ is publicly known; only a file’s location key
is kept secret.

Property 1 ensures that valid users of a file f can
easily access it provided they know its location key lk.
Property 2 guarantees that illegal users who do not have
the correct location key will not be able to locate the file
on the overlay network, making it harder for an adver-
sary to launch a targeted file attack. Property 3 warrants
that no information about the location key lk of a file f

is revealed to an adversary when executing the lookup
algorithm Ψ.

Having defined the concept of location key, we present
a reference model for a file system that operates on Lo-
cationGuard. We use this reference model to present a
concrete design of LocationGuard’s three core compo-
nents: the location key, the routing guard and the loca-
tion inference guards.

4.3 Reference Model

A serverless file system may implement read/write oper-
ations by exercising access control in a number of ways.
For example, Farsite [1] uses an access control list main-
tained among a small number of directory servers through
a Byzantine fault tolerant protocol. CFS [7], a read-only
file system, implements access control by encrypting the
files and distributing the file encryption keys only to the
legal users of a file. In this section we show how a Lo-
cationGuard based file system exercises access control.

In contrast to other serverless file systems, a Loca-
tionGuard based file system does not directly authen-
ticate any user attempting to access a file. Instead, it
uses location keys to implement a capability-based ac-
cess control mechanism, that is, any user who presents
the correct file capability (token) is permitted access to
that file. In addition to file token based access control,
LocationGuard derives the encryption key for a file from
its location key. This makes it very hard for an adversary
to read file data from compromised nodes. Furthermore,
it utilizes routing guard and location inference guards to
secure the locations of files being accessed on the over-
lay network. Our access control policy is simple: if you
can name a file, then you can access it. However, we do
not use a file name directly; instead, we use a pseudo-
filename (128-bit binary string) generated from a file’s
name and its location key (see Section 5 for detail). The
responsibility of access control is divided among the file
owner, the legal file users, and the file replica holders
and is managed in a decentralized manner.

File Owner. Given a file f , its owner u is responsible for
securely distributing f ’s location key lk (only) to those
users who are authorized to access the file f .
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Legal User. A user u who has obtained the valid loca-
tion key of file f is called a legal user of f . Legal users
are authorized to access any replica of file f . Given a
file f ’s location key lk, a legal user u can generate the
replica location token rlti for its ith replica. Note that
we use rlti as both the pseudo-filename and the capa-
bility of f i. The user u now uses the lookup algorithm
Ψ to obtain the IP-address of node r = Ψ(rlti) (pseudo-
filename rlti). User u gains access to replica f i by pre-
senting the token rlti to node r (capability rlti).

Non-malicious Replica Holder. Assume that a node r

is responsible for storing replica f i. Internally, node r

stores this file content under a file name rlti. Note that
node r does not need to know the actual file name (f )
of a locally stored file rlti. Also, by design, given the
internal file name rlti, node r cannot guess its actual
file name (see Section 5). When a node r receives a
read/write request on a file rlti it checks if a file named
rlti is present locally. If so, it directly performs the re-
quested operation on the local file rlti. Access control
follows from the fact that it is very hard for an adversary
to guess correct file tokens.

Malicious Replica Holder. Let us consider the case
where the node r that stores a replica f i is malicious.
Note that node r’s response to a file read/write request
can be undefined. Note that we have assumed that the
replicas stored at malicious nodes are always under at-
tack (recall that up to cr − 1 out of R file replicas could
be unavailable or corrupted). Hence, the fact that a mali-
cious replica holder incorrectly implements file read/write
operation or that the adversary is aware of the tokens
of those file replicas stored at malicious nodes does not
harm the system. Also, by design, an adversary who
knows one token rlti for replica f i would not be able to
guess the file name f or its location key lk or the tokens
for others replicas of file f (see Section 5).

Adversary. An adversary cannot access any replica of
file f stored at a good node simply because it cannot
guess the token rlti without knowing its location key.
However, when a good node is compromised an adver-
sary would be able to directly obtain the tokens for all
files stored at that node. In general, an adversary could
compile a list of tokens as it compromises good nodes,
and corrupt the file replicas corresponding to these to-
kens at any later point in time. Eventually, the adversary
would succeed in corrupting cr or more replicas of a file
f without knowing its location key. LocationGuard ad-
dresses such attacks using location rekeying technique

discussed in Section 7.3.

In the subsequent sections, we show how to generate
a replica location token rlti (1 ≤ i ≤ R) from a file
f and its location key (Section 5), and how the lookup
algorithm Ψ performs a lookup on a pseudo-filename
rlti without revealing the capability rlti to malicious
nodes in the overlay network (Section 6). It is impor-
tant to note that the ability of guarding the lookup from
attacks like eavesdropping is critical to the ultimate goal
of file location hiding scheme, since a lookup operation
using a lookup protocol (such as Chord) on identifier
rlti typically proceeds in plain-text through a sequence
of nodes on the overlay network. Hence, an adversary
may collect file tokens by simply sniffing lookup queries
over the overlay network. The adversary could use these
stolen file tokens to perform write operations on the cor-
responding file replicas, and thus corrupt them, without
the knowledge of their location keys.

5 Location Keys

The first and most simplistic component of LocationGuard
is the concept of location keys. The design of location
key needs to address the following two questions: (1)
How to choose a location key? (2) How to use a location
key to generate a replica location token − the capability
to access a file replica?

The first step in designing location keys is to deter-
mining the type of string used as the identifier of a lo-
cation key. Let user u be the owner of a file f . User u
should choose a long random bit string (128-bits) lk as
the location key for file f . The location key lk should
be hard to guess. For example, the key lk should not be
semantically attached to or derived from the file name
(f ) or the owner name (u).

The second step is to find a pseudo-random function
to derive the replica location tokens rlti (1 ≤ i ≤ R)
from the filename f and its location key lk. The pseudo-
filename rlti is used as a file replica identifier to locate
the ith replica of file f on the overlay network. Let
Elk(x) denote a keyed pseudo-random function with in-
put x and a secret key lk and ‖ denotes string concatena-
tion. We derive the location token rlti =Elk(fn ‖ i) (re-
call that fn denotes the name of file f ). Given a replica’s
identifier rlti, one can use the lookup protocol Ψ to lo-
cate it on the overlay network. The function E should
satisfy the following conditions:
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1a) Given (fn ‖ i) and lk it is easy to computeElk(fn ‖
i).

2a) Given (fn ‖ i) it is hard to guess Elk(fn ‖ i)
without knowing lk.

2b) Given Elk(fn ‖ i) it is hard to guess the file name
fn.

2c) Given Elk(fn ‖ i) and the file name fn it is hard
to guess lk.

Condition 1a) ensures that it is very easy for a valid user
to locate a file f as long as it is aware of the file’s loca-
tion key lk. Condition 2a), states that it should be very
hard for an adversary to guess the location of a target
file f without knowing its location key. Condition 2b)
ensures that even if an adversary obtains the identifier
rlti of replica f i, he/she cannot deduce the file name f .
Finally, Condition 2c) requires that even if an adversary
obtains the identifiers of one or more replicas of file f ,
he/she would not be able to derive the location key lk

from them. Hence, the adversary still has no clue about
the remaining replicas of the file f (by Condition 2a).
Conditions 2b) and 2c) play an important role in ensur-
ing good location hiding property. This is because for
any given file f , some of the replicas of file f could be
stored at malicious nodes. Thus an adversary could be
aware of some of the replica identifiers. Finally, observe
that Condition 1a) and Conditions {2a), 2b), 2c)} map
to Property 1 and Property 2 in Definition 1 (in Section
4.2) respectively.

There are a number of cryptographic tools that sat-
isfies our requirements specified in Conditions 1a), 2a),
2b) and 2c). Some possible candidates for the function
E are (i) a keyed-hash function like HMAC-MD5 [14],
(ii) a symmetric key encryption algorithm like DES [8]
or AES [16], and (iii) a PKI based encryption algorithm
like RSA [21]. We chose to use a keyed-hash function
like HMAC-MD5 because it can be computed very ef-
ficiently. HMAC-MD5 computation is about 40 times
faster than AES encryption and about 1000 times faster
than RSA encryption using the standard OpenSSL li-
brary [17]. In the remaining part of this paper, we use
khash to denote a keyed-hash function that is used to
derive a file’s replica location tokens from its name and
its secret location key.

6 Routing guard

The second and fundamental component of LocationGuard
is the routing guard. The design of routing guard aims at
securing the lookup of file f such that it will be very hard
for an adversary to obtain the replica location tokens by
eavesdropping on the overlay network. Concretely, let
rlti (1 ≤ i ≤ R) denote a replica location token derived
from the file name f , the replica number i, and f ‘s loca-
tion key identifier lk. We need to secure the lookup algo-
rithm Ψ(rlti) such that the lookup on pseudo-filename
rlti does not reveal the capability rlti to other nodes on
the overlay network. Note that a file’s capability rlti

does not reveal the file’s name; but it allows an adver-
sary to write on the file and thus corrupt it (see reference
file system in Section 4.3).

There are two possible approaches to implement a
secure lookup algorithm: (1) centralized approach and
(2) decentralized approach. In the centralized approach,
one could use a trusted location server [12] to return the
location of any file on the overlay network. However,
such a location server would become a viable target for
DoS and host compromise attacks.

In this section, we present a decentralized secure lookup
protocol that is built on top of the Chord protocol. Note
that a naive Chord-like lookup protocol Γ(rlti) cannot
be directly used because it reveals the token rlti to other
nodes on the overlay network.

6.1 Overview

The fundamental idea behind the routing guard is as fol-
lows. Given a file f ’s location key lk and replica num-
ber i, we want to find a safe region in the identifier space
where we can obtain a huge collection of obfuscated to-
kens, denoted by {OTKi}, such that, with high proba-
bility, Γ(otki) = Γ(rlti), ∀otki ∈OTKi. We call otki ∈
OTKi an obfuscated identifier of the token rlti. Each
time a user u wishes to lookup a token rlti, it performs
a lookup on some randomly chosen token otki from the
obfuscated identifier set OTKi. Routing guard ensures
that even if an adversary were to observe obfuscated
identifier from the set OTKi for one full year, it would
be highly infeasible for the adversary to guess the token
rlti.

We now describe the concrete implementation of the
routing guard. For the sake of simplicity, we assume a
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unit circle for the Chord’s identifier space; that is, node
identifiers and file identifiers are real values from 0 to 1
that are arranged on the Chord ring in the anti-clockwise
direction. Let ID(r) denote the identifier of node r. If r
is the destination node of a lookup on file identifier rlti,
i.e., r = Γ(rlti), then r is the node that immediately suc-
ceeds rlti in the anti-clockwise direction on the Chord
ring. Formally, r = Γ(rlti) if ID(r) ≥ rlti and there
exists no other nodes, say v, on the Chord ring such that
ID(r) > ID(v) ≥ rlti.

We first introduce the concept of safe obfuscation to
guide us in finding an obfuscated identifier set OTK i

for a given replica location token rlti. We say that an
obfuscated identifier otki is a safe obfuscation of iden-
tifier rlti if and only if a lookup on both rlti and otki

result in the same physical node r. For example, in Fig-
ure 3, identifier otki

1 is a safe obfuscation of identifier
rlti (Γ(rlti) = Γ(otki

1) = r), while identifier otki
2 is un-

safe (Γ(otki
2) = r′ 6= r).

We define the set OTKi as a set of all identifiers in
the range (rlti − srg, rlti), where srg denotes a safe
obfuscation range (0 ≤ srg < 1). When a user intends
to query for a replica location token rlti, the user actu-
ally performs a lookup on an obfuscated identifier otki =
obfuscate(rlti) = rlti−random(0, srg). The function
random(0, srg) returns a number chosen uniformly and
randomly in the range (0, srg).

We choose a safe value srg such that:

(C1) With high probability, any obfuscated identifier
otki is a safe obfuscation of the token rlti.

(C2) Given a set of obfuscated identifier otki it is very
hard for an adversary to guess the actual identifier
rlti.

Note that if srg is too small condition C1 is more likely
to hold, while condition C2 is more likely to fail. In
contrast, if srg is too big, condition C2 is more likely to
hold but condition C1 is more likely to fail. In our first
prototype development of LocationGuard, we introduce
a system defined parameter prsq to denote the minimum
probability that any obfuscation is required to be safe. In
the subsequent sections, we present a technique to derive
srg as a function of prsq . This permits us to quantify the
tradeoff between condition C1 and condition C2.

6.2 Determining the Safe Obfuscation Range

Observe from Figure 3 that a obfuscation rand on iden-
tifier rlti is safe if rlti−rand > ID(r′), where r′ is
the immediate predecessor of node r on the Chord ring.
Thus, we have rand < rlti−ID(r′). The expression
rlti−ID(r′) denotes the distance between identifiers rlti

and ID(r′) on the Chord identifier ring, denoted by dist(rlti,
ID(r′)). Hence, we say that a obfuscation rand is safe
with respect to identifier rlti if and only if rand < dist(rlti,
ID(r′)), or equivalently, rand is chosen from the range
(0, dist(rlti, ID(r′))).

We use Theorem 6.1 to show that Pr(dist(rlti, ID(r′))
> x) = e−x∗N , whereN denotes the number of nodes on
the overlay network and x denotes any value satisfying
0 ≤ x < 1. Informally, the theorem states that the prob-
ability that the predecessor node r′ is further away from
the identifier rlti decreases exponentially with the dis-
tance. For a detailed proof please refer to our tech-report
[23].

Observe that an obfuscation rand is safe with re-
spect to rlti if dist(rlti, ID(r′)) > rand, the proba-
bility that a obfuscation rand is safe can be calculated
using e−rand∗N .

Now, one can ensure that the minimum probability
of any obfuscation being safe is prsq as follows. We
first use prsq to obtain an upper bound on rand: By
e−rand∗N ≥ prsq , we have, rand ≤ −loge(prsq)

N . Hence,
if rand is chosen from a safe range (0, srg), where srg

= −loge(prsq)
N , then all obfuscations are guaranteed to be

safe with a probability greater than or equal to prsq .

For instance, when we set prsq = 1−2−20 andN =
1 million nodes, srg = − loge(prsq)

N = 2−40. Hence, on
a 128-bit Chord ring rand could be chosen from a range
of size srg = 2128 ∗ 2−40 = 288. Table 1 shows the
size of a prsq−safe obfuscation range srg for different
values of prsq . Observe that if we set prsq = 1, then srg

= − loge(prsq)
N = 0. Hence, if we want 100% safety, the

obfuscation range srg must be zero, i.e., the token rlti

cannot be obfuscated.

Theorem 6.1 LetN denote the total number of nodes in
the system. Let dist(x, y) denote the distance between
two identifiers x and y on a Chord’s unit circle. Let
node r′ be the node that is the immediate predecessor for
an identifier rlti on the anti-clockwise unit circle Chord
ring. Let ID(r′) denote the identifier of the node r′.
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Figure 3: Lookup Using File Identifier
Obfuscation: Illustration

1 − prsq 2−10 2−15 2−20 2−25 2−30

srg 298 293 288 283 278

E[retries] 2−10 2−15 2−20 2−25 2−30

hardness (years) 238 233 228 223 218

Table 1: Lookup Identifier obfuscation

Then, the probability that the distance between identi-
fiers rlti and ID(r′) exceeds rg is given by Pr(dist(rlti,
ID(r′)) > x) = e−x∗N for some 0 ≤ x < 1.

6.3 Ensuring Safe Obfuscation

Given that when prsq < 1, there is small probability that
an obfuscated identifier is not safe, i.e., 1−prsq > 0. We
first discuss the motivation for detecting and repairing
unsafe obfuscations and then describe how to guarantee
good safety by our routing guard through a self-detection
and self-healing process.

We first motivate the need for ensuring safe obfusca-
tions. Let node r be the result of a lookup on identifier
rlti and node v (v 6= r) be the result of a lookup on
an unsafe obfuscated identifier otki. To perform a file
read/write operation after locating the node that stores
the file f , the user has to present the location token rlti

to node v. If a user does not check for unsafe obfusca-
tion, then the file token rlti would be exposed to some
other node v 6= r. If node v were malicious, then it could
misuse the capability rlti to corrupt the file replica actu-
ally stored at node r.

We require a user to verify whether an obfuscated
identifier is safe or not using the following check: An
obfuscated identifier otki is considered safe if and only
if rlti ∈ (otki, ID(v)), where v = Γ(otki). By the defi-
nition of v and otki, we have otki ≤ ID(v) and otki ≤
rlti (rand ≥ 0). By otki ≤ rlti ≤ ID(v), node v

should be the immediate successor of the identifier rlti

and thus be responsible for it. If the check failed, i.e.,
rlti > ID(v), then node v is definitely not a succes-
sor of the identifier rlti. Hence, the user can flag otki

as an unsafe obfuscation of rlti. For example, refer-
ring Figure 3, otki

1 is safe because, rlt
i ∈ (otki

1, ID(r))

and r = Γ(otki
1), and otki

2 is unsafe because, rlti /∈
(otki

2, ID(r′)) and r′ = Γ(otki
2).

When an obfuscated identifier is flagged as unsafe,
the user needs to retry the lookup operation with a new
obfuscated identifier. This retry process continues until
max retries rounds or until a safe obfuscation is found.
Since the probability of an unsafe obfuscation is extremely
small over multiple random choices of obfuscated tokens
(otki), the call for retry rarely happens. We also found
from our experiments that the number of retries required
is almost always zero and seldom exceeds one. We be-
lieve that using max retries equal to two would suffice
even in a highly conservative setting. Table 1 shows the
expected number of retries required for a lookup opera-
tion for different values of prsq .

6.4 Strength of Routing guard

The strength of a routing guard refers to its ability to
counter lookup sniffing based attacks. A typical lookup
sniffing attack is called the range sieving attack. In-
formally, in a range sieving attack, an adversary sniffs
lookup queries on the overlay network, and attempts to
deduce the actual identifier rlti from its multiple obfus-
cated identifiers. We show that an adversary would have
to expend 228 years to discover a replica location token
rlti even if it has observed 225 obfuscated identifiers of
rlti. Note that 225 obfuscated identifiers would be avail-
able to an adversary if the file replica f i was accessed
once a second for one full year by some legal user of the
file f .

One can show that given multiple obfuscated identi-
fiers it is non-trivial for an adversary to categorize them
into groups such that all obfuscated identifiers in a group
are actually obfuscations of one identifier. To simplify
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the description of a range sieving attack, we consider
the worst case scenario where an adversary is capable of
categorizing obfuscated identifiers (say, based on their
numerical proximity).

We first concretely describe the range sieving attack
assuming that prsq and srg (from Theorem 6.1) are pub-
lic knowledge. When an adversary obtains an obfus-
cated identifier otki, the adversary knows that the ac-
tual capability rlti is definitely within the range RG =
(otki, otki + srg), where (0, srg) denotes a prsq−safe
range. In fact, if obfuscations are uniformly and ran-
domly chosen from (0, srg), then given an obfuscated
identifier otki, the adversary knows nothing more than
the fact that the actual identifier rlti could be uniformly
and distributed over the range RG = (otki, otki + srg).
However, if a persistent adversary obtains multiple ob-
fuscated identifiers {otki

1, otk
i
2, · · · , otki

nid} that belong
to the same target file, the adversary can sieve the iden-
tifier space as follows. Let RG1, RG2, · · · , RGnid de-
note the ranges corresponding to nid random obfusca-
tions on the identifier rlti. Then the capability of the
target file is guaranteed to lie in the sieved rangeRGs =
∩nid

j=1RGj . Intuitively, if the number of obfuscated iden-
tifiers (nid) increases, the size of the sieved range RGs

decreases. For all tokens tk ∈ RGs, the likelihood that
the obfuscated identifiers {otki

1, otk
i
2, · · · , otki

nid} are
obfuscations of the identifier tk is equal. Hence, the ad-
versary is left with no smart strategy for searching the
sieved range RGs other than performing a brute force
attack on some random enumeration of identifiers tk ∈
RGs.

Let E[RGs] denote the expected size of the sieved
range. Theorem 6.2 shows that E[RGs] = srg

nid . Hence,
if the safe range srg is significantly larger than nid then
the routing guard can tolerate the range sieving attack.
Recall the example in Section 6 where prsq = 1− 2−20,
N = 106, the safe range srg = 288. Suppose that a
target file is accessed once per second for one year; this
results in 225 file accesses. An adversary who logs all
obfuscated identifiers over a year could sieve the range
to about E[|RGs|] = 263. Assuming that the adver-
sary performs a brute force attack on the sieved range,
by attempting a file read operation at the rate of one read
per millisecond, the adversary would have tried 235 read
operations per year. Thus, it would take the adversary
about 263/235 = 228 years to discover the actual file
identifier. For a detailed proof of Theorem 6.2 refer to
our tech-report [23].

Table 1 summarizes the hardness of breaking the ob-
fuscation scheme for different values of prsq (minimum
probability of safe obfuscation), assuming that the ad-
versary has logged 225 file accesses (one access per sec-
ond for one year) and that the nodes permit at most one
file access per millisecond.

Discussion. An interesting observation follows from the
above discussion: the amount of time taken to break the
file identifier obfuscation technique is almost indepen-
dent of the number of attackers. This is a desirable prop-
erty. It implies that as the number of attackers increases
in the system, the hardness of breaking the file capabili-
ties will not decrease. The reason for location key based
systems to have this property is because the time taken
for a brute force attack on a file identifier is fundamen-
tally limited by the rate at which a hosting node permits
accesses on files stored locally. On the contrary, a brute
force attack on a cryptographic key is inherently paral-
lelizable and thus becomes more powerful as the number
of attackers increases.

Theorem 6.2 Let nid denote the number of obfuscated
identifiers that correspond to a target file. Let RGs de-
note the sieved range using the range sieving attack.
Let srg denote the maximum amount of obfuscation that
could be prsq−safely added to a file identifier. Then,
the expected size of range RGs can be calculated by
E[|RGs|] = srg

nid .

7 Location Inference Guards

Inference attacks over location keys refer to those at-
tacks wherein an adversary attempts to infer the location
of a file using indirect techniques. We broadly classify
inference attacks on location keys into two categories:
passive inference attacks and host compromise based in-
ference attacks. It is important to note that none of the
inference attacks described below would be effective in
the absence of collusion among malicious nodes.

7.1 Passive inference attacks

Passive inference attacks refer to those attacks wherein
an adversary attempts to infer the location of a target file
by passively observing the overlay network. We studied
two passive inference attacks on location keys.
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The lookup frequency inference attack is based on
the ability of malicious nodes to observe the frequency
of lookup queries on the overlay network. Assuming
that the adversary knows the relative file popularity, it
can use the target file’s lookup frequency to infer its lo-
cation. It has been observed that the general popularity
of the web pages accessed over the Internet follows a
Zipf-like distribution [27]. An adversary may study the
frequency of file accesses by sniffing lookup queries and
match the observed file access frequency profile with a
actual (pre-determined) frequency profile to infer the lo-
cation of a target file. This is analogous to performing a
frequency analysis attack on old symmetric key ciphers
like the Caesar’s cipher [26].

The end-user IP-address inference attack is based on
assumption that the identity of the end-user can be in-
ferred from its IP-address by an overlay network node r,
when the user requests node r to perform a lookup on its
behalf. A malicious node r could log and report this in-
formation to the adversary. Recall that we have assumed
that an adversary could be aware of the owner and the
legal users of a target file. Assuming that a user accesses
only a small subset of the total number of files on the
overlay network (including the target file) the adversary
can narrow down the set of nodes on the overlay net-
work that may potentially hold the target file. Note that
this is a worst-case-assumption; in most cases it may not
possible to associate a user with one or a small number
IP-addresses (say, when the user obtains IP-address dy-
namically (DHCP [2]) from a large ISP (Internet Service
Provider)).

7.2 Host compromise based inference at-
tacks

Host compromise based inference attacks require the ad-
versary to perform an active host compromise attack be-
fore it can infer the location of a target file. We studied
two host compromise based inference attacks on loca-
tion keys.

The file replica inference attack attempts to infer the
identity of a file from its contents; note that an adversary
can reach the contents of a file only after it compromises
the file holder (unless the file holder is malicious). The
file f could be encrypted to rule out the possibility of
identifying a file from its contents. Even when the repli-
cas are encrypted, an adversary can exploit the fact that
all the replicas of file f are identical. When an adversary

compromises a good node, it can extract a list of identi-
fier and file content pairs (or a hash of the file contents)
stored at that node. Note that an adversary could per-
form a frequency inference attack on the replicas stored
at malicious nodes and infer their filenames. Hence, if
an adversary were to obtain the encrypted contents of
one of the replicas of a target file f , it could examine
the extracted list of identifiers and file contents to obtain
the identities of other replicas. Once, the adversary has
the locations of cr copies of a file f , the f could be at-
tacked easily. This attack is especially more plausible on
read-only files since their contents do not change over a
long period of time. On the other hand, the update fre-
quency on read-write files might guard them file replica
inference attack.

File size inference attack is based on the assump-
tion that an adversary might be aware of the target file’s
size. Malicious nodes (and compromised nodes) report
the size of the files stored at them to an adversary. If
the size of files stored on the overlay network follows
a skewed distribution, the adversary would be able to
identify the target file (much like the lookup frequency
inference attack).

For a detailed discussion on inference attacks and
techniques to curb them please refer to our technical re-
port [23]. Identifying other potential inference attacks
and developing defenses against them is a part of our
ongoing work.

7.3 Location Rekeying

In addition to the inference attacks listed above, there
could be other possible inference attacks on a LocationGuard
based file system. In due course of time, the adversary
might be able to gather enough information to infer the
location of a target file. Location rekeying is a general
defense against both known and unknown inference at-
tacks. Users can periodically choose new location keys
so as to render all past inferences made by an adversary
useless. In order to secure the system from Biham’s key
collision attacks [4], one may associate an initialization
vector (IV) with the location key and change IV rather
than the location key itself.

Location rekeying is analogous to rekeying of cryp-
tographic keys. Unfortunately, rekeying is an expensive
operation: rekeying cryptographic keys requires data to
be re-encrypted; rekeying location keys requires files to
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be relocated on the overlay network. Hence, it is im-
portant to keep the rekeying frequency small enough to
reduce performance overheads and large enough to se-
cure files on the overlay network. In our experiments
section, we estimate the periodicity with which location
keys have to be changed in order to reduce the probabil-
ity of an attack on a target file.

8 Discussion

In this section, we briefly discuss a number of issues re-
lated to security, distribution and management of Loca-
tionGuard.

Key Security. We have assumed that in LocationGuard
based file systems it is the responsibility of the legal
users to secure location keys from an adversary. If a user
has to access thousands of files then the user must be re-
sponsible for the secrecy of thousands of location keys.
One viable solution could be to compile all location keys
into one key-list file, encrypt the file and store it on the
overlay network. The user now needs to keep secret only
one location key that corresponds to the key-list. This
128-bit location key could be physically protected using
tamper-proof hardware devices, smartcards, etc.

Key Distribution. Secure distribution of keys has been a
major challenge in large scale distributed systems. The
problem of distributing location keys is very similar to
that of distributing cryptographic keys. Typically, keys
are distributed using out-of-band techniques. For in-
stance, one could use PGP [18] based secure email ser-
vice to transfer location keys from a file owner to file
users.

Key Management. Managing location keys efficiently
becomes an important issue when (i) an owner owns sev-
eral thousand files, and (ii) the set of legal users for a file
vary significantly over time. In the former scenario, the
file owner could reduce the key management cost by as-
signing one location key for a group of files. Any user
who obtains the location key for a file f would implicitly
be authorized to access the group of files to which f be-
long. However, the later scenario may seriously impede
the system’s performance in situations where it may re-
quire location key to be changed each time the group
membership changes.

The major overhead for LocationGuard arises from
key distribution and key management. Also, location

rekeying could be an important factor. Key security, dis-
tribution andmanagement in LocationGuard using group
key management protocols [11] are a part of our ongoing
research work.

Other issues that are not discussed in this paper in-
clude the problem of a valid user illegally distributing
the capabilities (tokens) to an adversary, and the robust-
ness of the lookup protocol and the overlay network in
the presence of malicious nodes. In this paper we as-
sume that all valid users are well behaved and the lookup
protocol is robust. Readers may refer to [24] for de-
tailed discussion on the robustness of lookup protocols
on DHT based overlay networks.

9 Experimental Evaluation

In this section, we report results from our simulation
based experiments to evaluate the LocationGuard approach
for building secure wide-area network file systems. We
implemented our simulator using a discrete event sim-
ulation [8] model, and implemented the Chord lookup
protocol [25] on the overlay network compromising of
N = 1024 nodes. In all experiments reported in this pa-
per, a random p = 10% ofN nodes are chosen to behave
maliciously. We set the number of replicas of a file to be
R = 7 and vary the corruption threshold cr in our ex-
periments. We simulated the bad nodes as having large
but bounded power based on the parameters α (DoS at-
tack strength), λ (node compromise rate) and µ (node
recovery rate) (see the threat model in Section 3). We
study the cost of using location key technique by quan-
tifying the overhead of using location keys and evaluate
the benefits of the location key technique by measuring
the effectiveness of location keys against DoS and host
compromise based target file attacks.

9.1 LocationGuard

Operational Overhead. We first quantify the perfor-
mance and storage overheads incurred by location keys.
All measurements presented in this section were obtained
on a 900 MHz Intel Pentium III processor running Red-
Hat Linux 9.0. Let us consider a typical file read/write
operation. The operation consists of the following steps:
(i) generate the file replica identifiers, (ii) lookup the
replica holders on the overlay network, and (iii) process
the request at replica holders. Step (i) requires computa-
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tions using the keyed-hash function with location keys,
which otherwise would have required computations us-
ing a normal hash function. We found that the compu-
tation time difference between HMAC-MD5 (a keyed-
hash function) and MD5 (normal hash function) is negli-
gibly small (order of a few microseconds) using the stan-
dard OpenSSL library [17]. Step (ii) involves a pseudo-
random number generation (few microseconds using the
OpenSSL library) and may require lookups to be retried
in the event that the obfuscated identifier turns out to
be unsafe. Given that unsafe obfuscations are extremely
rare (see Table 1) retries are only required occasionally
and thus this overhead is negligible. Step (iii) adds no
overhead because our access check is almost free. As
long as the user can present the correct filename (token),
the replica holder would honor a request on that file.

Now, let us compare the storage overhead at the users
and the nodes that are a part of the overlay network.
Users need to store only an additional 128-bit location
key (16 Bytes) along with other file meta-data for each
file they want to access. Even a user who uses 1 mil-
lion files on the overlay network needs to store only an
additional 16MBytes of location keys. Further, there is
no extra storage overhead on the rest of the nodes on the
overlay network. For a detailed description of our im-
plementation of LocationGuard and benchmark results
for file read and write operations refer to our tech-report
[23].

Denial of Service Attacks. Figure 4 shows the proba-
bility of an attack for varying α and different values of
corruption threshold (cr). Without the knowledge of the
location of file replicas an adversary is forced to attack
(DoS) a random collection of nodes in the system and
hope that that at least cr replicas of the target file is at-
tacked. Observe that if the malicious nodes are more
powerful (larger α) or if the corruption threshold cr is
very low with respect to the size (N ) of the network,
then the probability of an attack is higher. If an adver-
sary were aware of the R replica holders of a target file
then a weak collection of B malicious nodes, such as
B = 102 (i.e., 10% of N ) with α = R

B = 7
102 = 0.07,

can easily attack the target file. It is also true that for
a file system to handle the DoS attacks on a file with
α = 1, it would require a large number of replicas (R
close to B) to be maintained for each file. For example,
in the case where B = 10% × N and N = 1024, the
system needs to maintain as large as 100+ replicas for
each file. Clearly, without location keys, the effort re-
quired for an adversary to attack a target file (i.e., make

it unavailable) is dependent only on R, but is indepen-
dent of the number of good nodes (G) in the system. On
the contrary, the location key based techniques scale the
hardness of an attack with the number of good nodes in
the system. Thus even with a very small R, the location
key based system can make it very hard for any adver-
sary to launch a targeted file attack.

Host Compromise Attacks. To further evaluate the ef-
fectiveness of location keys against targeted file attacks,
we evaluate location keys against host compromise at-
tacks. Our first experiment on host compromise attack
shows the probability of an attack on the target file as-
suming that the adversary can not collect capabilities (to-
kens) stored at the compromised nodes. Hence, the tar-
get file is attacked if cr or more of its replicas are stored
at either malicious nodes or compromised nodes. Figure
5 shows the probability of an attack for different values
of corruption threshold (cr) and varying ρ = µ

λ (mea-
sured in number of node recoveries per node compro-
mise). We ran the simulation for a duration of 100

λ time
units. Recall that 1

λ denotes the mean time required for
one malicious node to compromise a good node. Note
that if the simulation were run for infinite time then the
probability of attack is always one. This is because, at
some point in time, cr or more replicas of a target file
would be assigned to malicious nodes (or compromised
nodes) in the system.

From Figure 5 we observe that when ρ ≤ 1, the sys-
tem is highly vulnerable since the node recovery rate is
lower than the node compromise rate. Note that while
a DoS attack could tolerate powerful malicious nodes
(α > 1), the host compromise attack cannot tolerate the
situation where the node compromise rate is higher than
their recovery rate (ρ ≤ 1). This is primarily because
of the cascading effect of host compromise attack. The
larger the number of compromised nodes we have, the
higher is the rate at which other good nodes are compro-
mised (see the adversary model in Section 3). Table 2
shows the mean fraction of good nodes (G′) that are in
an uncompromised state for different values of ρ. Ob-
serve from Table 2 that when ρ = 1, most of the good
nodes are in compromised state.

As we have mentioned in Section 4.3, the adversary
could collect the capabilities (tokens) of the file replicas
stored at compromised nodes; these tokens can be used
by the adversary at any point in future to corrupt these
replicas using a simple write operation. Hence, our sec-
ond experiment on host compromise attack measures the
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Figure 4: Probability of a Target File
Attack for N = 1024 nodes and

R = 7 using DoS Attack
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Figure 5: Probability of a Target File
Attack for N = 1024 nodes and

R = 7 using Host Compromise Attack
(with no token collection)
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Figure 6: Probability of a Target File
Attack for N = 1024 nodes and

R = 7 using Host Compromise Attack
with token collection from
compromised nodes

ρ 0.5 1.0 1.1 1.2 1.5 3.0
G′ 0 0 0.05 0.44 0.77 0.96

Table 2: Mean Fraction of Good Nodes in Uncompromised State (G′)

probability of a attack assuming that the adversary col-
lects the file tokens stored at compromised nodes. Figure
6 shows the mean effort required to locate all the replicas
of a target file (cr = R). The effort required is expressed
in terms of the fraction of good that need to be compro-
mised by the adversary to attack the target file.

Note that in the absence of location keys, an adver-
sary needs to compromise at most R good nodes in or-
der to succeed a targeted file attack. Clearly, location
key based techniques increase the required effort by sev-
eral orders of magnitude. For instance, when ρ = 3, an
adversary has to compromise 70% of the good nodes in
the system in order to attain the probability of an attack
to a nominal value of 0.1, even under the assumption
that an adversary collects file capabilities from compro-
mised nodes. If an adversary compromises every good
node in the system once, it gets to know the tokens of
all files stored on the overlay network. In Section 7.3
we had proposed location re-keying to protect the file
system from such attacks. The exact period of location
re-keying can be derived from Figure 6. For instance,
when ρ = 3, if a user wants to retain the attack prob-
ability below 0.1, the time interval between re-keying
should equal the amount of time it takes for an adver-
sary to compromise 70% of the good nodes in the sys-
tem. Table 3 shows the time taken (normalized by 1

λ )
for an adversary to increase the attack probability on a
target file to 0.1 for different values of ρ. Observe that
as ρ increases, location re-keying can be more and more
infrequent.

Lookup Guard. We performed the following exper-
iments on our lookup identifier obfuscation technique
(see Section 6): (i) studied the effect of obfuscation range
on the probability of a safe obfuscation, (ii) measured
the number of lookup retries, and (iii) measured the ex-
pected size of the sieved range (using the range sieving
attack). We found that a safe range for identifier ob-
fuscation is very large even for large values of sq (very
close to 1); we observed that number of lookup retries is
almost zero and seldom exceeds one; we found that the
size of the sieved range is too large to attempt a brute
force attack even if file accesses over one full year were
logged. Finally, our experimental results very closely
match the analytical results shown in Table 1. For more
details on our experimental results refer to our tech-report
[23].

10 Related Work

Serverless distributed file systems like CFS [7], Farsite
[1], OceanStore [15] and SiRiUS [10] have received sig-
nificant attention from both the industry and the research
community. These file systems store files on a large
collection of untrusted nodes that form an overlay net-
work. They use cryptographic techniques to ensure file
data confidentiality and integrity. Unfortunately, crypto-
graphic techniques cannot protect a file holder from DoS
or host compromise attacks. LocationGuard presents
low overhead and highly effective techniques to guard
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ρ 0.5 1.0 1.1 1.2 1.5 3.0
Re-keying Interval 0 0 0.43 1.8 4.5 6.6

Table 3: Time Interval between Location Re-Keying (normalized by 1
λ
time units)

a distributed file system from such targeted file attacks.

The secure Overlay Services (SOS) paper [13] de-
scribes an architecture that proactively prevents DoS at-
tacks using secure overlay tunneling and routing via con-
sistent hashing. However, the assumptions and the appli-
cations in [13] are noticeably different from that of ours.
For example, the SOS paper uses the overlay network
for introducing randomness and anonymity into the SOS
architecture to make it difficult for malicious nodes to at-
tack target applications of interest. LocationGuard tech-
niques treat the overlay network as a part of the target
applications we are interested in and introduce random-
ness and anonymity through location key based hashing
and lookup based file identifier obfuscation, making it
difficult for malicious nodes to target their attacks on a
small subset of nodes in the system, who are the replica
holders of the target file of interest.

The Hydra OS [6], [22] proposed a capability-based
file access control mechanism. LocationGuard can be
viewed as an implementation of capability-based access
control on a wide-area network. The most important
challenge for LocationGuard is that of keeping a file’s
capability secret and yet being able to perform a lookup
on it (see Section 6).

Indirect attacks such as attempts to compromise cryp-
tographic keys from the system administrator or use fault
attacks like RSA timing attacks, glitch attacks, hard-
ware and software implementation bugs [5] have been
the most popular techniques to attack cryptographic al-
gorithms. Similarly, attackers might resort to inference
attacks on LocationGuard since a brute force attack (even
with range sieving) on location keys is highly infeasi-
ble. Due to space restrictions we have not been able
to include location inference guards in this paper. For
details on location inference guards, refer to our tech-
report [23].

11 Conclusion

In this paper we have proposed LocationGuard for se-
curing wide area serverless file sharing systems from

targeted file attacks. Analogous to traditional crypto-
graphic keys that hide the contents of a file, LocationGuard
hide the location of a file on an overlay network. Lo-
cationGuard retains traditional cryptographic guarantees
like file data confidentiality and integrity. In addition,
LocationGuard guards a target file from DoS and host
compromise attacks, provides a simple and efficient ac-
cess control mechanism and adds minimal performance
and storage overhead to the system. We presented exper-
imental results that demonstrate the effectiveness of our
techniques against targeted file attacks. In conclusion,
LocationGuard mechanisms make it possible to build
simple and secure wide-area network file systems.
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