Cryptographic Voting Protocols: A Systems Perspective

Chris Karlof

Naveen Sastry

David Wagner

{ckarlof, nks, daw} @cs.berkeley.edu
University of California, Berkeley

Abstract

Cryptographic voting protocols offer the promise of veri-
fiable voting without needing to trust the integrity of any
software in the system. However, these cryptographic
protocols are only one part of a larger system composed
of voting machines, software implementations, and elec-
tion procedures, and we must analyze their security by
considering the system in its entirety. In this paper, we
analyze the security properties of two different crypto-
graphic protocols, one proposed by Andrew Neff and an-
other by David Chaum. We discovered several potential
weaknesses in these voting protocols which only became
apparent when considered in the context of an entire vot-
ing system. These weaknesses include: subliminal chan-
nels in the encrypted ballots, problems resulting from
human unreliability in cryptographic protocols, and de-
nial of service. These attacks could compromise election
integrity, erode voter privacy, and enable vote coercion.
Whether our attacks succeed or not will depend on how
these ambiguities are resolved in a full implementation
of a voting system, but we expect that a well designed
implementation and deployment may be able to mitigate
or even eliminate the impact of these weaknesses. How-
ever, these protocols must be analyzed in the context of
a complete specification of the system and surrounding
procedures before they are deployed in any large-scale
public election.

1 Introduction

Democracies are built on their population’s consent, and
a trustworthy voting system is crucial to this consent. Re-
cently, “Direct Recording Electronic” voting machines
(DREs) have come under fire for failing to meet this stan-
dard. The problem with paperless DRE:s is that the vot-
ing public has no good way to tell whether votes were
recorded or counted correctly, and many experts have ar-
gued that, without other defenses, these systems are not
trustworthy [15, 20].

Andrew Neff and David Chaum have recently pro-
posed revolutionary schemes for DRE-based electronic
voting [5, 23, 24]. The centerpiece of these schemes
consists of novel and sophisticated cryptographic proto-
cols that allow voters to verify their votes are cast and
counted correctly. Voting companies Votegrity and Vote-
Here have implemented Chaum’s and Neff’s schemes,
respectively. These schemes represent a significant ad-
vance over previous DRE-based voting systems: voters
can verify that their votes have been accurately recorded,
and everyone can verify that the tallying procedure is cor-
rect, preserving privacy and coercion resistance in the
process. The ability for anyone to verify that votes are
counted correctly is particularly exciting, as no prior sys-
tem has offered this feature.

This paper presents a first step towards a security anal-
ysis of these schemes. Our goal is to determine whether
these new DRE-based cryptographic voting systems are
trustworthy for use in public elections. We approach
this question from a systems perspective. Neff’s and
Chaum’s schemes consist of the composition of many
different cryptographic and security subsystems. Com-
posing security mechanisms is not simple, since it can
lead to subtle new vulnerabilities [10, 18, 25]. Conse-
quently, it is not enough to simply analyze a protocol
or subsystem in isolation, as some attacks only become
apparent when looking at an entire system. Instead, we
perform a whole-system security analysis.

In our analysis of these cryptographic schemes, we
found two weaknesses: subliminal channels in the en-
crypted ballots and problems resulting from human unre-
liability in cryptographic protocols. These attacks could
potentially compromise election integrity, erode voter
privacy, and enable vote coercion. In addition, we found
several detectable but unrecoverable denial of service at-
tacks. We note that these weaknesses only became appar-
ent when examining the system as a whole, underlining
the importance of a security analysis that looks at cryp-
tographic protocols in their larger systems context.

USENIX Association

14th USENIX Security Symposium

33

| Weakness | Protocols Threat Model Affects
Random subliminal channels Neff Malicious DRE colluding with Voter privacy, coercion
outsider resistance
Semantic subliminal channels | Chaum Malicious DRE colluding with Voter privacy, coercion
outsider resistance
Message reordering attacks Neff Malicious DRE and human error | Election integrity, public
verifiability
Social engineering attacks Neff, Chaum | Malicious DRE and human error | Election integrity, public
verifiability
Discarded receipts Neff, Chaum | Malicious DRE or bulletin board | Election integrity
Other human factor attacks Neff, Chaum | Malicious DRE Ability of voter to prove
DRE is cheating
Denial of service attacks Neff, Chaum | Malicious DRE or tallying soft- | Voter confidence, elec-
ware tion integrity

Table 1: Summary of weaknesses we found in Neff’s and Chaum’s voting schemes.

The true severity of the weaknesses depends on how
these schemes are finally implemented. During our se-
curity analysis, one challenge we had to deal with was
the lack of a complete system to analyze. Although Neff
and Chaum present fully specified cryptographic proto-
cols, many implementation details—such as human in-
terfaces, systems design, and election procedures—are
not available for analysis. Given the underspecification,
it is impossible to predict with any confidence what the
practical impact of these weaknesses may be. Conse-
quently, we are not yet ready to endorse these systems
for widespread use in public elections. Still, we expect
that it may be possible to mitigate some of these risks
with procedural or technical defenses, and we present
countermeasures for some of the weaknesses we found
and identify some areas where further research is needed.
Our results are summarized in Table 1.

2 Preliminaries

David Chaum and Andrew Neff have each proposed
a cryptographic voting protocol for use in DRE ma-
chines [4, 5, 23, 24, 29]. Although these protocols dif-
fer in the details of their operation, they are structurally
similar. Both protocols consist of four stages: election
initialization, ballot preparation, ballot tabulation, and
election verification.

Before the election, we select a set of election trustees
with competing interests, chosen such that it is unlikely
that all trustees will collude. During election initializa-
tion, the trustees interact amongst themselves before the
election to choose parameters and produce key material
used throughout the protocol. The trustees should rep-
resent a broad set of interest groups and governmental
agencies to guarantee sufficient separation of privilege

and discourage collusion among the trustees.

Ballot preparation begins when a voter visits a polling
station to cast her vote on election day, and ends when
that ballot is cast. To cast her vote, the voter interacts
with a DRE machine in a private voting booth to select
her ballot choices. The DRE then produces an electronic
ballot representing the voter’s choices and posts this to a
public bulletin board. This public bulletin board serves
as the ballot box. At the same time, the DRE interacts
with the voter to provide a receipt. Receipts are designed
to resist vote buying and coercion, and do not allow the
voter to prove to a third party how she voted. Also, each
voter’s ballot is assigned a unique ballot sequence num-
ber (BSN). BSNs ease auditing and verification proce-
dures, without compromising voter privacy.

After all ballots have been posted to the bulletin board,
the ballot tabulation stage begins. In ballot tabulation,
the election trustees execute a publicly verifiable mul-
tistage mix net, where each trustee privately executes a
particular stage of the mix net [12, 24]. To maintain
anonymity, the trustees strip each ballot of its BSN be-
fore it enters the mix net. Each stage of the mix net
takes as input a set of encrypted ballots, partially de-
crypts or re-encrypts them (depending on the style of mix
net), and randomly permutes them. The final result of the
mix net is a set of plaintext ballots which can be publicly
counted but which cannot be linked to the encrypted bal-
lots or to voter identities. In cryptographic voting proto-
cols, the mix net is designed to be universally verifiable:
the trustee provides a proof which any observer can use
to confirm that the protocol has been followed correctly.
This means a corrupt trustee cannot surreptitiously add,
delete, or alter ballots.

At various points during this process, voters and ob-
servers may engage in election verification. After her

34

14th USENIX Security Symposium

USENIX Association

ballot has been recorded on the public bulletin board, the
voter may use her receipt to verify her vote was cast as in-
tended and will be accurately represented in the election
results. Note that the receipt does not serve as an official
record of the voter’s selections; it is only intended for
convincing the voter that her ballot was cast correctly.
Election observers (e.g., the League of Women Voters)
can verify certain properties about ballots on the public
bulletin board, such as, that all ballots are well-formed or
that the mix net procedure was performed correctly.

Both the Chaum and Neff protocols require DREs to
contain special printing devices for providing receipts.
The security requirements for the printer are: 1) the
voter can inspect its output, and 2) neither the DRE nor
the printer can erase, change, or overwrite anything al-
ready printed without the voter immediately detecting
it. There are some differences in the tasks these devices
perform and additional security requirements they must
meet, which we will discuss later.

2.1 Security Goals

Neff’s and Chaum’s voting schemes strive to achieve the
following goals:

Cast-as-intended: A voter’s ballot on the bulletin board
should accurately represent her choices.

Counted-as-cast: The final tally should be an accurate
count of the ballots on the bulletin board.

Verifiability: The previous two properties should be
verifiable. Verifiably cast-as-intended means each
voter should be able to verify her ballot on the bul-
letin board accurately represents the vote she cast.
Verifiably counted-as-cast means everyone should
be able to verify that the final tally is an accurate
count of the ballots contained on the bulletin board.

One voter/one vote: Ballots on the bulletin board
should exactly represent the votes cast by legitimate
voters. Malicious parties should not be able to add,
duplicate, or delete ballots.

Coercion resistance: A voter should not be able to
prove how she voted to a third party not present in
the voting booth.

Privacy: Ballots should be secret.

2.2 Threat Models

We must consider a strong threat model for voting proto-
cols. In national elections, billions of dollars are at stake,
and even in local elections, controlling the appropriation

of municipal funding in a large city can be sufficient mo-
tivation to compromise significant portions of the elec-
tion system [14]. We consider threats from three separate
sources: DREsg, talliers, and outside coercive parties. To
make matters worse, malicious parties might collude to-
gether. For example, malicious DREs might collude with
outside coercers to buy votes.

Malicious DREs can take many forms [3]. A program-
mer at the manufacturer could insert Trojan code, or a
night janitor at the polling station could install malicious
code the night before the election. We must assume ma-
licious DREs behave arbitrarily. Verification of all the
DRE software in an election is hard, and one goal of
Neff’s and Chaum’s schemes is to eliminate the need to
verify that the DRE software is free from Trojan horses.

We also must consider malicious parties in the tallying
process, such as a malicious bulletin board or malicious
trustees. These parties wield significant power, and can
cause large problems if they are malicious. For example,
if the bulletin board is malicious, it can erase all the bal-
lots. If all the software used by the trustees is malicious,
it could erase the private portions of the trustees’ keys,
making ballot decryption impossible.

To evaluate a voting system’s coercion resistance, we
must consider outside coercive parties colluding with
malicious voters. We assume the coercer is not present
in the voting booth. Attacks where the coercer is phys-
ically present are outside the scope of voting protocols
and can only be countered with physical security mech-
anisms. Similarly, attacks where a voter records her ac-
tions in the poll booth (e.g., with a video or cell phone
camera) are also outside the scope of voting protocols,
and we do not consider them here.

Finally, we must consider honest but unreliable partic-
ipants. For example, voters and poll workers might not
fully understand the voting technology or utilize its ver-
ification properties, and a malicious party might be able
to take advantage of this ignorance, apathy, or fallibility
to affect the outcome of the election.

3 Two Voting Protocols

In this section, we describe Neff’s and Chaum’s voting
protocols in detail.

3.1 Neff’s Scheme

Andrew Neff has proposed a publicly verifiable crypto-
graphic voting protocol for use in DREs [23, 24]. During
election initialization, the trustees perform a distributed
key generation protocol to compute a master public key;
decryption will only be possible through the cooperation
of all trustees in a threshold decryption operation. Also,

USENIX Association

14th USENIX Security Symposium

35

81 Fipdignt |

v XPES HZ

52 Dand Lwor]

(5 REEAE B TPV L P

Figure 1: This is an example of a detailed receipt
for Neff’s scheme, taken from the VoteHere website,
http://www.votehere.com.

there is a security parameter /. A DRE can surrepti-
tiously cheat with a probability of 2. Neff suggests
10 <7 < 15.

Neff’s scheme is easily extensible to elections with
multiple races, but for the sake of simplicity assume
there is a single race with candidates C1,...,C,. Af-
ter a voter communicates her choice C; to the DRE, the
DRE constructs an encrypted electronic ballot represent-
ing her choice and commits to it. Each ballot is assigned
a unique BSN. The voter is then given the option of in-
teracting with the DRE further to obtain a receipt. In
Figure 1, we show an example of a receipt taken from
the VoteHere website. This receipt enables the voter to
verify with high probability that her vote is accurately
represented in the tallying process.

After the voter communicates her intended choice C;
to the DRE, it constructs a verifiable choice (VC) for C;.
A VC is essentially an encrypted electronic ballot repre-
senting the voter’s choice C; (see Figure 2). A VCis a
n x ¢ matrix of ballot mark pairs (BMPs), one row per
candidate (recall that ¢ is a security parameter). Each
BMP is a pair of El Gamal ciphertexts. Each ciphertext
is an encryption of O or 1 under the trustees’ joint public
key, written @ or| 1 |for short. Thus, each BMP is a pair
, an encryption of (by, b).

The format of the plaintexts in the BMPs differs be-
tween the row corresponding to the chosen candidate C;
(i.e., row 7) and the other (“unchosen”) rows. Every BMP

in row ¢ should take the form @ @ or . In con-

trast, the BMPs in the unchosen rows should be of the

form @ or @ Any other configuration is an

1 2 3 ¢
i [o1) (0] 1] +++ (o)1
@ W (] (o] -+« (11

Cs [1][0] [0](1] [0][1] [1][0]

Cn[1][0] [1ilo] [o][1] [1][0]

Figure 2: A verifiable choice (VC) in Neff’s scheme. []
represents an encryption of bit b. This VC represents a
choice of candidate C5. Note the second row contains
encryptions of (0,0) and (1,1), and the unchosen rows
contain encryptions of (0, 1) and (1,0).

indication of a cheating or malfunctioning DRE. More
precisely, there is a n X £ matrix z so that the k-th BMP

in unchosen row j is , and the k-th BMP
in the choice row 1 is .

Consider the idealized scenario where all DREs are
honest. The trustees can tally the votes by decrypting
each ballot and looking for the one row consisting of
(0,0) and (1, 1) plaintexts. If decrypted row 4 consists
of (0,0) and (1, 1) pairs, then the trustees count the bal-
lot as a vote for candidate C;.!

In the real world, we must consider cheating DREs.
Up to this point in the protocol, the DRE has constructed
a VC supposedly representing the voter’s choice C;, but
the voter has no assurance this VC accurately represents
her vote. How can we detect a dishonest DRE?

Neff’s scheme prints the pair (BSN, hash(V C)) on the
receipt and then splits verification into two parts: 1) at the
polling booth, the DRE will provide an interactive proof
of correct construction of the VC to the voter; 2) later, the
voter can compare her receipt to what is posted on the
bulletin board to verify that her ballot will be properly
counted. At a minimum, this interactive protocol should
convince the voter that row ¢ (corresponding to her in-
tended selection) does indeed contain a set of BMPs that
will be interpreted during tallying as a vote for C}, or
in other words, each BMP in her chosen row is of the
form @ @ Neff introduces a simple protocol for this:
for each such BMP, the DRE provides a pledge bit p;
then the voter randomly selects the left or right position
and asks the DRE to provide a proof that the ciphertext
in that position indeed decrypts to p; and the DRE does
so by revealing the randomness used in the encryption.

Here we are viewing the ciphertext @ as a commitment

IThis is a simplified view of how the trustees tally votes in Neff’s
scheme, but it captures the main idea.

36

14th USENIX Security Symposium

USENIX Association

1 2 3
¢ [0 ®0 O «++ [0
@O [0 @O+ O
Cs (D[o] [0](D) (@[1] <<+ (D[O]

¢, W[o] Mo} [0 1©

¢
[0](D

Figure 3: An opened verifiable choice (OVC) in Neff’s
scheme. [b]represents an encryption of bit b, and (b) rep-
resents an opened encryption of bit b. An opened encryp-
tion of b contains both b and the randomness w used to
encrypt b in the VC.

to b, and @ is opened by revealing b along with the ran-
domness used during encryption. If this BMP has been
correctly formed as @ @, the DRE can always convince
the voter by using the value b as a pledge; however, if the
BMP contains either @ or @ the voter has a
% probability of detecting this. By repeating the proto-
col for each of the / BMPs in row i, the probability that
a malformed row escapes detection is reduced to (%)e .
The role of the interactive protocol is to ensure that the
receipt will be convincing for the person who was in the
voting booth but useless to anyone else.

In practice, it is unrealistic to assume the average voter
will be able to parse the VC and carry out this proto-
col unassisted within the polling station. Instead, Neff’s
scheme enables the voter to execute it later with the as-
sistance of a trusted software program. The DRE first
prints the pledges on the receipt, and then receives and
prints the voter’s challenge. The challenge ¢; for the row
1 is represented as a bit string where the k-th bit equal
to 0 means open the left element of the k-th BMP and 1
means open the right element.

The DRE then constructs an opened verifiable choice
(OVC) according to the voter’s challenge and submits it
to the bulletin board. In Figure 3, we show an example
of an OVC constructed from the VC in Figure 2. We rep-
resent an opened encryption of bit b in an half-opened
BMP by @ In the OVC, the opened BMPs in row ¢ are
opened according to c;, so that each half-opened BMP
contains a pair of the form @ (if ¢;), = 0) or @
(if ¢;x» = 1). To ensure that the OVC does not reveal
which candidate was selected, the BMPs in the uncho-
sen rows are also half-opened. In unchosen row j, the
DRE selects an £-bit challenge c; uniformly at random
and then opens this row according to c;. Thus, an OVC
consists of an n x ¢ matrix of half-opened BMPs. Con-
sequently, the usual invocation of the receipt formation

protocol is as follows:

1. Voter — DRE : i

2. DRE — Printer : BSN, hash(V ()

3. DRE — Printer : commit(py, ..., pn)
4. Voter — DRE : c;

5. DRE — Printer : Cly.-+yCn

6. DRE — B.Board: OV C

Here we define p; , = z; and pj = xj B¢k (5 F).
While at the voting booth, the voter only has to check that
the challenge c; she specified does indeed appear on the
printed receipt in the -th position (i.e., next to the name
of her selected candidate). Later, the voter can check
that the OVC printed in step 5 does appear on the bul-
letin board and matches the hash printed in step 2 (and
that the candidates’ names are printed in the correct or-
der), and that the OVC contains valid openings of all the
values pledged to in step 3 in the locations indicated by
the challenges printed in step 5. Note that the VC can be
reconstructed from the OVC, so there is no need to print
the VC on the receipt or to post it on the bulletin board.

To prevent vote buying and coercion, the voter is op-
tionally allowed to specify challenges for the unchosen
rows between steps 2 and 3, overriding the DRE’s default
random selection of ¢; (j #). If this were omitted, a
vote buyer could tell the voter in advance to vote for can-
didate C; and to use some fixed value for the challenge
¢;, and the voter could later prove how she voted by pre-
senting a receipt with this prespecified value appearing
as the i-th challenge.

After the election is closed, the trustees apply a univer-
sally verifiable mix net to the collection of posted ballots.
Neff has designed a mix net for El Gamal pairs [21, 24],
and it is used here.

In VoteHere’s implementation of Neff’s scheme, vot-
ers are given the option of taking either a detailed or ba-
sic receipt. The detailed receipt contains all the infor-
mation described in this section (Figure 1), but a basic
receipt contains only the pair (BSN, hash(V(')). This
decision is made separately for each race on a ballot,
and for each race that a voter selects a detailed receipt
she must independently choose the choice and unchosen
challenges for that race.

A basic receipt affords a voter only limited verifi-
cation capabilities. Since a basic receipt foregoes the
pledge/challenge stage of Neff’s scheme, a voter cannot
verify her ballot was recorded accurately. However, a
basic receipt does have some value. It enables the voter
to verify that the ballot the DRE committed to in the
poll booth is the same one that appears on the bulletin
board. Since the DRE must commit to the VC before
it knows whether the voter wants a detailed or basic re-
ceipt, a DRE committing a VC that does not accurately
represent the voter’s selection is risking detection if the

USENIX Association

14th USENIX Security Symposium

37

1. Voter — DRE :)

2. DRE — Printer : BSN, hash(V ()

3. DRE — Voter : basic or detailed?

4. Voter — DRE: 7, wherer € {basic, detailed}
5a. DRE — Printer : commit(p1, . ..,pn)

5b. Voter — DRE : Ci

5¢. DRE — Printer : c¢1,...,¢p

6. DRE — B.Board : OV

Figure 4: Summary of receipt generation in Neff’s
scheme with the option of basic or detailed receipts.
Steps 5a, 5b, and 5¢ happen only if r» = detailed.

Pres: PIR | |1
e ||
: """
H."EEEN."N
| M []]
ENEEEEEE

Top laM \Bottom layer

o e
e
™ e ™
o ™ ™
e ™
S
i
e

e ™
e
e
e
P ™ ™
i
e
P "

Figure 5: Representation of the printed ballot and trans-
parencies. The top two images show the ballot as well as
a zoomed in portion of the two overlayed transparencies
portrayed below.

voter chooses a detailed receipt. The receipt protocol
augmented with this additional choice is summarized in
Figure 4.

3.2 Chaum’s Visual Crypto Scheme

David Chaum uses a two-layer receipt based on transpar-
ent sheets for his verifiable voting scheme [4, 5, 29]. A
voter interacts with a DRE machine to generate a ballot
image B that represents the voter’s choices. The DRE
then prints a special image on each transparency layer.
The ballot bitmaps are constructed so that overlaying
the top and bottom transparencies (7' and B) reveals the
voter’s original ballot image. On its own, however, each

Encoding for Transparency

0: &
0: g™

"

Encoding for Overlay or My

@, Truth Table | 09,1=1 FP™b, "=
0©,0=0 g, gi= gt
12,1=0 By, My= My
19,0=1 Mgo, M=

Figure 6: Visual Cryptography. A printed pixel on a sin-
gle transparency has a value in {0, 1}, encoded as shown
in the first row. We apply the visual xor operator &,
by stacking two transparencies so that light can shine
through areas where the subpixels are clear. The pixels
in the overlay take values from {0, 1}. The bottom table
shows the truth table for the visual xor operator and its
parallels to the binary xor operator.

layer is indistinguishable from a random dot image and
therefore reveals nothing about the voter’s choices (see
Figure 5).

The DRE prints cryptographic material on each layer
so that the trustees can recover the original ballot image
during the tabulation phase. The voter selects either the
top or bottom layer, and keeps it as her receipt. A copy
of the retained layer is posted on the bulletin board, and
the other layer is destroyed. The voter can later verify
the integrity of their receipt by checking that it appears
on the bulletin board and that the cryptographic material
is well formed.

Visual cryptography exploits the physical properties
of transparencies to allow humans to compute the xor
of two quantities without relying on untrusted software.
Each transparency is composed of a uniform grid of pix-
els. Pixels are square and take values in {0, 1}. We print
@™ for a O-valued pixel and My for a 1-valued pixel. We
refer to each of the four smaller squares within a pixel
as subpixels. Overlaying two transparencies allows light
to shine through only in locations where both subpixels
are clear, and the above encoding exploits this so that
overlaying performs a sort of xor operation. Pixels in the
overlay take values in {(j, i} Pixels in the overlay have
a different appearance than those in the individual trans-
parency layer: 0 appears as m or By while 1 appears as
Il Using &, to represent the visual overlay operation,
we see that 0 @, 0 = 0, 0®, 1 = 1, and in general if
a ® b= cthen a @, b = ¢ (see Figure 6).

Chaum’s protocol satisfies three properties:

1. Visual Check: Given the desired ballot image B,
the DRE must produce two transparencies 7' and
B so that T @, B = B. This property allows
the voter to verify the correct formation of the two
transparencies.

38

14th USENIX Security Symposium

USENIX Association

2. Recovery: Given a single transparency 1" or B and
the trustee keys, it must be possible to recover the
original ballot image B.

3. Integrity: T and B contain a commitment. There
is a way to open T or B and to verify the opening
so that for all other top and bottom pairs 7" and B’
such that 77 @, B’ ~ B and T (or B’) does not
decrypt to B, then B’ (or T") is unopenable. In other
words, for a pair of transparencies that overlay to
form B (or a close enough approximation for the
voter to accept it as B), the DRE should only be
able to generate a witness for a transparency if the
other transparency decrypts to 5.

We will consider each pixel to have a type € {,
} in addition to its value € {0,1}. The pixel’s type
will determine how we compute the value. We label
pixels on the transparency so that no pixels of the same
type are adjacent to each other, forming a repeating grid
of alternating pixel types. Additionally, when the two
transparencies are stacked, we require that pixels are

only atop —pixels and —pixels are only atop

pixels. The upper left corner of the top transparency
[P
looks like: 5 and the upper left corner of the bottom

[PIE][P]
transparency looks like: [EfEE. The —pixels in a layer
come from a pseudorandom stream. The stream is com-
posed of n separate streams, one from each trustee. Each
of these trustee streams is based on the trustee number
and the voter’s BSN; the seed will be encrypted using
each trustee’s public key requiring the trustee to partici-
pate in the decryption process. The value of the -pixel
is set so that overlaying it with the corresponding
pixel in the other layer yields a ballot pixel. An —pixel

alone reveals no information: it is the xor of a —pixel
and the ballot image.

3.2.1 Details on Transparency Formation

Next, we present the details on transparency formation
for the interested reader. This section may be safely
skipped on first reading.

The pseudorandom stream for a given transparency is
composed of n pseudorandom streams, each of which
is seeded by a different value. For each of the top and
bottom transparencies, there is one stream per trustee.
The i™ trustee’s seed for the top is

st; £ h(sign,, (BSN), 1) (1)

where BSN represents the unique ballot sequence num-
ber assigned to the voter and sign,,, (-) is a signature using

K+, a key specific to the DRE, and h(-) is a hash function.
The i trustee’s seed for the bottom is

sb; £ h(signy, (BSN), 1) Q)

The hash expansion function A’ (-) is used to generate the
trustee stream. Trustee streams are xored together to pro-
duce the pseudorandom stream for the top layer:

n
PT 2P W (st;) 3)
i=1
The corresponding bottom stream uses the bottom seeds:
n
PBEH M(sh:) “4)
i=1

We can now define each pixel’s value. We view the
ballot as a stream of pixels B, and BJi] denotes the 7!

pixel. A —pixel 1 on the top transparency is assigned

the value PT'[i]. The —pixel i on the bottom trans-
parency is defined to have value PT[i] & B[i]. When
viewing the two transparencies in alignment, then, the
voter sees the original ballot stream B because PT'[i] &,
(PT[i] ® B[i]) = PT[i] ® (PT[i] ® B[i]) = B[i]. When
taken alone, neither transparency reveals any informa-
tion since each pixel is either pseudorandomly generated
or the xor of a pseudorandom quantity and the original
ballot.

After constructing the two layers, the DRE appends an
onion encryption of the seeds so the trustees can jointly
recover PT or PB. The DRE adds

DB £ ey, (sbnller, . (- - |lexs (sba[ex, (s01))))
DT £ ey, (stallex, (- [lex, (stallex, (st1)))) (5)

to each transparency. DT and DB are known as dolls.
ek, (-) is a public-key encryption function that uses the i
trustee’s public key, k;.

The voter is then presented a choice to either choose
the top or bottom transparency as a receipt. After the
voter chooses a receipt layer, the DRE appends signa-
tures committing to the voter’s and its choices. Without
loss of generality, assume the voter keeps the top trans-
parency as a receipt. The DRE then prints sign, (BSN)
as an opening for the top layer (see the integrity require-
ment of the previous section). This opening allows the
voter to verify that the DRE properly formed st; and that
the DRE printed the -pixels on the chosen layer as
it should. By recreating the onion encryption, the voter
can verify that DT is properly formed. Finally, the DRE
appends a copy of the chosen layer to the bulletin board.
We show a summary of Chaum’s protocol in Figure 7.

When the voter performs these checks, a malicious
DRE has only a 1/2 chance of evading detection. By

USENIX Association

14th USENIX Security Symposium

39

1. Voter — DRE :
2. DRE — Printer : transparency images
3. DRE — Printer : BSN, DB, DT
4. Voter — Printer : ¢ where ¢ € {top, bottom}
5. DRE — Printer : sign,_(BSN),
sign,, . (BSN, DT, DB, chosen transparency)

candidate choices

Figure 7: Summary of Chaum’s protocol.

extension, its chance of changing a significant number
of ballots without being caught is exponentially small.
For instance, a DRE can cheat by forming the
pixels incorrectly so the voter will see what they ex-
pect in the overlay yet the ballot will decrypt to some
other image. However, the voter will detect cheating
if her receipt transparency contains incorrectly formed
-pixels. Therefore, a malicious DRE must commit
to cheating on either the top or bottom transparency (not
both, or else it will surely be caught) and hope the voter
does not choose that layer as a receipt.

3.2.2 Tabulation & Verification

Chaum uses a Jakobsson et al. style mix net to decode
the transparency chosen by the voter and recover their
choices from B in the tallying phase [12]. The values
of the pseudorandom pixels do not contain any informa-
tion, while the encrypted pixels contain the ballot im-
age xor-ed with the pseudorandom pixels from the other
transparency. For each ballot that a trustee in the mix net
receives, trustee ¢ in the mix net recovers its portion of
the pseudorandom stream. Let’s assume the voter chose
a top transparency. In the case, trustee ¢ will first decrypt
the doll provided by the DRE (Equation (5)) to obtain sb;
and then xor h’(sb;) into the -pixels in the encrypted
ballot. This trustee next permutes all of the modified bal-
lots and passes the collection to the next trustee. When
the ballots exit the mix net, the -pixels still contain
pseudorandom data, but the encrypted pixels will contain
the voter’s ballot pixels from B.

4 Subliminal Channels

Subliminal channels, also known as covert communica-
tion channels, arise in electronic ballots when there are
multiple valid representations of a voter’s choices. If the
DRE can choose which representation to submit to the
bulletin board, then the choice of the representation can
serve as a subliminal channel. Subliminal channels are
particularly powerful because of the use of public bul-
letin boards in voting protocols. A subliminal channel in

ballots on the bulletin board could be read by anyone (if
the decoding algorithm is public) or only by a select few
(if the decoding algorithm is secret).

A subliminal channel in an encrypted ballot carrying
the voter’s choices and identifying information about the
voter threatens voter privacy and enables vote coercion.
For example, as Keller et al. note, a DRE could embed in
each encrypted ballot the time when the ballot was cast
and who the voter chose for president [13]. Then, a ma-
licious observer present in the polling place could record
when each person voted and later correlate that with the
data stored in the subliminal channel to recover each
person’s vote. Alternatively, if a malicious poll worker
learns a voter’s BSN, she can learn how a person voted
since each encrypted ballot includes the BSN in plain-
text. Detecting such attacks can be quite difficult: with-
out specific knowledge of how to decode the subliminal
channel, the encrypted ballots may look completely nor-
mal. The difficulty of detection, combined with the enor-
mous number of voters who could be affected by such an
attack, makes the subliminal channel threat troubling.

The above scenarios illustrate how an adversary can
authentically learn how someone voted. Coercion then
becomes simple: the coercer requires the voter to reveal
their BSN or the time at which they voted, then later ver-
ifies whether there exists a ballot with that identifying
information and the desired votes.

The threat model we consider for subliminal channel
attacks is a malicious DRE colluding with an external
party. For example, a malicious programmer could intro-
duce Trojan code into DREs and then sell instructions on
how to access the subliminal channel to a coercer.

Neither Neff’s nor Chaum’s protocol completely ad-
dress subliminal channels in ballots. In this section, we
present subliminal channel vulnerabilities in these proto-
cols and some possible mitigation strategies.

One interesting observation is that subliminal channels
are a new problem created by these protocols. Subliminal
channels only become a serious problem because the bul-
letin board’s contents are published for all to see. Since
all the ballots are public and anonymously accessible, de-
coding the channel does not require any special access
to the ballots. Subliminal channels are not a significant
problem with current non-cryptographic DREs because
electronic ballots are not public.

4.1 Randomness

Several cryptographic primitives in Neff’s scheme re-
quire random values, and subliminal channel vulnera-
bilities arise if a malicious DRE is free to choose these
random values.” These primitives use randomness to

2Chaum’s scheme, as originally published, does not specify which
encryption primitives should be used to construct the onion encryp-

40

14th USENIX Security Symposium

USENIX Association

achieve semantic security [8], a strong notion of secu-
rity for encryption schemes which guarantees that it is
infeasible for adversaries to infer even partial informa-
tion about the messages being encrypted (except maybe
their length). Each choice for the random number allows
a different valid ballot, which creates opportunities for
subliminal channels.

Subliminal channels are easy to build in protocols or
encryption schemes that use randomness. If a crypto-
graphic protocol requests the DRE to choose a random
number 7 and then publish it, the DRE can encode ||
bits through judicious selection of r. Alternatively, given
any randomized encryption scheme ey (+, -), the DRE can
hide a bit b in an encryption of a message m by comput-
ing ¢ = ex(m,r) repeatedly using a new random num-
ber r each time until the least significant bit of h(c) is
b. More generally, a malicious DRE can use this tech-
nique to hide ¢ bits in ¢ with expected O(2*) work. Thus,
all randomized encryption schemes contain subliminal
channels.

Random subliminal channel attack. Neff’s scheme
uses randomness extensively. Each BMP consists of a
pair of El Gamal ciphertexts, and the El Gamal encryp-
tions are randomized. In forming the OVC, the DRE re-
veals half of the random values w used in the encryptions
(Figure 3).

For each BMP, one of the encryption pairs will be
opened, revealing the random encryption parameter w.
This presents a subliminal channel opportunity.®> Al-
though the DRE must commit to the ballot before the
voter chooses which side of the BMP to open, a mali-
cious DRE can still embed |w| bits of data for each BMP
by using the same w for both encryptions in the BMP. In
this way w is guaranteed to be revealed in the ballot.

This attack enables a high bandwidth subliminal chan-
nel in each voter’s encrypted ballot. For example, in an
election with 8 races and 5 candidates per race, there will
be 40 - ¢ ballot mark pairs, where Neff suggests ¢ > 10.
A reasonable value of |w]| is 1024 bits. The total channel,
then, can carry 128 bytes in each of the 400 BMPs, for
a total of 51200 bytes of information per ballot. This is
more than enough to leak the voter’s choices and identi-
fying information about the voter.

tion in Equation 5 [5]. Subsequently, Chaum has related to us that he
intended the encryption to use a deterministic encryption scheme [6]
precisely to avoid using random values and the associated subliminal
channel vulnerability. There is some risk in using this non-standard
construction since the widely accepted minimum notion of security for
public key encryption is IND-CPA, which requires a source of random-
ness.

3 Another way a malicious DRE could embed a subliminal channel
in Neff’s scheme is if the voter doesn’t choose all her unchoice chal-
lenges (i.e., the DRE is free to choose some of them). However, Neff
outlines a variant of his proposal that solves this using two printers [23].

4.2 Mitigating Random Subliminal Chan-
nels

Eschew randomness. One approach to prevent sub-
liminal channels is to design protocols that don’t re-
quire randomness. Designing secure protocols that do
not use randomness is tricky, since so many proven cryp-
tographic primitives rely on randomness for their secu-
rity. Proposals relying on innovative uses of determin-
istic primitives, including Chaum’s, deserve extra atten-
tion to ensure that forgoing randomness does not intro-
duce any security vulnerabilities. Ideally, they would be
accompanied by a proof of security.

Random tapes and their implementation. In a per-
sonal communication, Neff suggested that DREs could
be provided with pre-generated tapes containing the ran-
dom bits to use for all of their non-deterministic choices,
instead of allowing them to choose their own random-
ness [22]. With a random tape for each BSN, the ballot
becomes a deterministic function of the voter’s choices
and the random tape for that BSN. As long as the BSN
is assigned externally before the voter selects her candi-
dates, the ballots will be uniquely represented. This will
eliminate the threat of random subliminal channels in en-
crypted ballots.

It is not enough for the intended computation to be
deterministic; it must be verifiably so. Thus, we need a
way to verify that the DRE has used the bits specified on
the random tape, not some other bits. We present one
possible approach to this problem using zero-knowledge
(ZK) proofs [9] which allows everyone to verify that each
DRE constructed ballots using the random numbers from
its tape. We imagine that there are several optimizations
to this approach which improve efficiency.

Suppose before the election, the trustees generate a se-
ries 75,1, 7,2, . .. of random values for each BSN s, and
post commitments C(rs 1), C(rs2), ... on a public bul-
letin board. The election officials then load the random
values 75 1,752, ... on the DRE which will use BSN s.

During the election, for each randomized function
evaluation f(r,-), the DRE uses the next random value
in the series and furnishes a ZK proof proving it used the
next random value in the series. For example, in Neff’s
scheme, along with each @, which is an El Gamal en-
cryption e(r, b), the DRE includes a non-interactive zero
knowledge proof of knowledge proving that 1) it knows
a value r, ; which is a valid opening of the commitment
C(rs,i) and 2) e(rs;,b) = @ Verifying that each r ;
is used sequentially within a ballot enables any observer
to verify that the encryption is deterministic, so there can
be no random subliminal channels in @ or its opening

(b)-

USENIX Association

14th USENIX Security Symposium

41

Howeyver, there is a wrinkle to the above solution:
under most schemes, constructing the zero-knowledge
proof itself requires randomness, which creates its own
opportunities of subliminal channels. It may be possible
to determinize the ZK proof using research on unique
zero-knowledge proofs (uniZK) [16, 17].

This approach may require further analysis to deter-
mine whether it is able to satisfy the necessary security
properties.

Trusted hardware. Utilizing trusted hardware in
DREs can also help eliminate subliminal channels. In
this approach, the trusted hardware performs all com-
putations that require random inputs and signs the en-
crypted ballot it generates. The signature enables every-
one to verify the ballot was generated inside the trusted
hardware. As long as trustees verify the DRE’s trusted
hardware is running the correct software and the trusted
hardware isn’t compromised, DREs will not be able to
embed a random subliminal channel.

4.3 Multiple Visual and Semantic Repre-
sentations

A tabulator that accepts multiple equivalent visual or se-
mantic representations of the voter’s choice creates an-
other subliminal channel opportunity. For example, if
the tabulator accepts both James Polk and James K. Polk
as the same person, then a DRE can choose which ver-
sion to print based on the subliminal channel bit it wants
to embed.

Semantic subliminal channel attack. Chaum’s
scheme is vulnerable to multiple visual representations.
A malicious DRE can create alternate ballot images
for the same candidate that a voter will be unlikely to
detect. Recall that Chaum’s scheme encrypts an image
of the ballot, and not an ASCII version of the voter’s
choices. The voter examines two transparencies together
to ensure that the resulting image accurately represents
their vote. A DRE could choose to use different fonts
to embed subliminal channel information; the choice
of font is the subliminal channel. To embed a higher
bandwidth subliminal channel, the DRE could make
minor modifications to the pixels of the ballot image
that do not affect its legibility. Unless the voter is
exceptionally fastidious, these minor deviations would
escape scrutiny as the voter verifies the receipt. After
mixing, the subliminal channel information would be
present in the resulting plaintext ballots.

There is no computational cost for the DRE to embed
a bit of information in the font. It can use a simple policy,
such as toggling a pixel at the top of a character to encode

a one, and a pixel at the bottom to encode a zero. On a 10
race ballot, using such a policy just once per word could
embed 30 bits of information.

There is a qualitative difference between the semantic
subliminal channels and the random subliminal channels.
The information in the semantic channels will only be-
come apparent after the mix net decrypts the ballot since
the channel is embedded in the plaintext of the ballot. In
contrast, the random subliminal channels leak informa-
tion when the ballots are made available on the bulletin
board.

Mitigation. To prevent the semantic subliminal chan-
nel attack, election officials must establish official unam-
biguous formats for ballots, and must check all ballots
for conformance to this approved format. Any deviation
indicates a ballot produced by a malicious DRE. Such
non-conforming ballots should not be allowed to appear
on the bulletin board, since posting even a single suspi-
cious ballot on the bulletin board could compromise the
privacy of all voters who used that DRE. Unfortunately,
the redaction of such deviant ballots means that such bal-
lots in will not be able to be verified by the voter through
normal channels.

An even more serious problem is that this policy vio-
lates assumptions made by the mix net. One would need
to ensure the mix net security properties still hold when
a subset of the plaintexts are never released.

The order in which ballots appear will also need to
be standardized. Otherwise, a DRE can choose a spe-
cific ordering of ballots on the public bulletin board as a
low bandwidth subliminal channel [15]. Fortunately, it is
easy to sort or otherwise canonicalize the order of ballots
before posting them publicly.

4.4 Discussion

Subliminal channels pose troubling privacy and voter co-
ercion risks. In the presence of such attacks, we are
barely better off than if we had simply posted the plain-
text ballots on the bulletin board in unencrypted form for
all to see. The primary difference is that subliminal chan-
nel data may be readable only by the malicious parties.
This situation seems problematic, and we urge protocol
designers to design voting schemes that are provably and
verifiably free of subliminal channels.

5 Human Unreliability in Crypto Protocols

Previous studies have shown that non-cryptographers
have a limited understanding of cryptography and how to
use it [28, 30]. In these voting protocols, we are not just
asking humans to use cryptography, but asking them to

42

14th USENIX Security Symposium

USENIX Association

become an active participant in a cryptographic protocol.
Participating in an interactive cryptographic protocol is
tricky and error-prone, and humans may not notice if the
DRE makes subtle deviations from the protocol which
dramatically affect security. To make matters worse, the
voter has no trustworthy computer to aid her; she can
only rely on a potentially compromised DRE.

The security of Neff’s and Chaum’s schemes relies on
1) the DRE not knowing how the voter will make fu-
ture decisions, 2) the interactions between the DRE and
voter happening in a particular order, and 3) the voter
carefully monitoring the DRE’s output. For example, in
Chaum’s scheme, the DRE must print (i.e., commit) the
transparencies and dolls DB and DT before the voter
chooses which transparency to take. If the DRE knows
which transparency the voter will select before it com-
mits to the dolls and transparency image, it can construct
the dolls in a way such that the ballot will decrypt to an
arbitrary image (see Section 3.2.1).

In this section we show three types of attacks which
leverage human ignorance of the intricacies of crypto-
graphic protocols. First, we present message reorder-
ing attacks and social engineering attacks, which enable
DREs to undetectably replace voters’ ballots with votes
of its own choosing. Next, we discuss attacks which take
advantage of voters who apathetically discard their re-
ceipts at the polling station. Finally, we show attacks
where a voter may be able to detect wrongdoing but can-
not authoritatively prove DRE misbehavior to election
officials. We follow with some mitigation strategies.

5.1 Message Reordering and Social Engi-
neering Attacks

Message reordering attacks. The security of crypto-
graphic protocols implicitly relies on the participants de-
tecting any reordering of the messages in the protocol.
With human participants, this assumption is not neces-
sarily valid; if the deviation is minor, the average voter
may not notice. In a message reordering attack, a mali-
cious DRE attempts to cheat voters by slightly reordering
the steps of the cryptographic voting protocol.

VoteHere’s implementation of Neff’s scheme is vul-
nerable to message reordering attacks. Recall that Vote-
Here’s implementation of Neff’s scheme gives voters the
option of a basic or detailed receipt after it has commit-
ted to the ballot construction (Figure 4). Now suppose
that the DRE reorders steps 2, 3, and 4 in Figure 4 in the

following way:

1. Voter — DRE: 1

3. DRE — Voter : basic or detailed?

4. Voter — DRE: r, where r € {basic, detailed}
2. DRE — Printer: BSN, hash(VC)

5a. DRE — Printer : commit(p1,...,Dn)

5b. Voter — DRE : ¢

5c. DRE — Printer: c¢y1,...,cp

6. DRE — B.Board : OVC

The change to the voter’s experience is probably minor,
but the advantage afforded the DRE is large—the DRE
learns whether the voter wants a basic or detailed receipt
before it must commit to the ballot construction V' C.
With a basic receipt, a voter gives up her right to later ver-
ify her ballot is actually a vote for the desired candidate.
A basic receipt only contains (BSN, hash(V'C)). This is
generally fine—if the DRE doesn’t know whether a voter
wants a basic or detailed receipt until after it commits to
the VC, it risks detection if the voter chooses a detailed
receipt and it constructed a VC for a different candidate.
But if the DRE learns the voter wants a basic receipt be-
fore it commits to the VC, it can undetectably submit
a ballot for any candidate. If the voter wants a detailed
receipt, the DRE just behaves honestly and properly con-
structs the VC.

By making a slightly more noticeable change to the
voter experience, a DRE can cheat even if the voter
chooses a detailed receipt. Consider the following mes-
sage reordering attack when a voter chooses a detailed
receipt (again, altered from Figure 4):

1. Voter — DRE :)

3. DRE — Voter : basic or detailed?
4. Voter — DRE : detailed

5b. Voter — DRE : c;

2. DRE — Printer: BSN, hash(VC)
5a. DRE — Printer : commit(p1, ..., Pn)
5c. DRE — Printer : Cly..yCn

6. DRE — B.Board: OVC

In this attack, the DRE gets all the information from the
voter before it prints or commits to anything. The DRE
can now undetectably construct the VC to represent a
vote for any candidate. Since the DRE knows the voter’s
choice challenge c; before it constructs the VC, it can
construct the VC where row ¢ is an unchosen row and se-
lect another row as the choice row. Since ¢; determines
how row ¢ of the VC is opened, the DRE can construct
the VC such that the row ¢ of the OVC is consistent with
the challenge c;. This means when the voter checks her
ballot later on the bulletin board, it will verify correctly
even though it is actually a vote for another candidate.

USENIX Association

14th USENIX Security Symposium

43

Social engineering attacks. In a social engineering at-
tack, an adversary attempts to fool a victim into volun-
tarily revealing a secret [2]. Social engineering is usu-
ally discussed in the context of passwords. For exam-
ple, an adversary posing as tech support calls the CEO of
a company to “verify” some things about her computer
and tells her that her password is needed to do this. We
present two social engineering attacks where the DRE
fools the voter into revealing her future actions.

For our first attack, consider Chaum’s scheme. As we
see in the summary of Chaum’s protocol in Figure 7, the
voter relays her choice of layer to the printer, and not
the DRE. The DRE cannot cheat after it commits to the
transparency image, BSN, DB, and DT. But nothing
prevents a DRE from simply asking the voter which layer
she will choose in advance and then hoping that she ac-
tually chooses the layer she said she would. In this social
engineering attack, the DRE slightly alters the protocol:

1. Voter — DRE : candidate choices

*. DRE — Voter : top or bottom?

*. Voter — DRE : ¢«, where ¢, € {top, bottom}
2. DRE — Printer : transparency images

3. DRE — Printer: BSN, DB, DT

4. Voter — Printer : ¢, where ¢ € {top, bottom}
5. DRE — Printer : sign; (BSN),

signy o (BSN, DT, DB, chosen transparency)

where * represents added steps. In step 5, the DRE can
construct the doll DB or DT (depending on the voter’s
response c,) and the two layers such that the ballot de-
crypts to an arbitrary image of the DRE’s choosing (see
Section 3.2.1). This attack is successful and undetectable
as long as ¢, = c (i.e., the voter doesn’t change her mind
or make a mistake). With a sternly worded message, the
DRE can strongly encourage the voter to honor her orig-
inal choice.

Our second attack succeeds since most non-
cryptographers probably do not realize that multiple
executions of a cryptographic protocol should be in-
dependent. For example, random choices in separate
executions should be freshly generated. In Neff’s
scheme, suppose a DRE triggers a reboot after it learns
a voter’s random challenge ¢; for her chosen row, and
then restarts the protocol, feigning an error. If the
voter chooses the same challenge c¢; again, the DRE
can undetectably forge a ballot for a different candidate
by constructing row ¢ as an unchosen row consistent
with the challenge c;. If the voter happens to choose a
different challenge, the DRE can escape detection by
rebooting again and then behaving normally.

5.2 Discarded Receipts

The security of Neff’s and Chaum’s scheme relies on
voters using their receipts to verify their ballots. If an
adversary can determine that certain ballots will not be
verified, she can undetectably alter or replace these bal-
lots. We expect some voters will be apathetic about the
verification process and discard their receipts. Without
her receipt, it is unlikely a voter will verify her ballot on
the bulletin board. A malicious poll worker could collect
receipts discarded in or near the polling station and tell
a malicious DRE the BSNs of ballots which are safe to
replace or alter.

5.3 Other Human Factor Attacks

In this section, we present other human factor attacks
where a voter may be able to detect wrongdoing but can-
not authoritatively prove DRE misbehavior to election
officials.

Generating an invalid signature. Both Neff’s and
Chaum’s scheme require the DRE to sign receipts it pro-
duces. The primary purpose of signed receipts is to pre-
vent voters from falsely claiming fraud. The concern is
that some voter might try to cast doubt on the election
results by forging a receipt to frame a DRE. If after ver-
ifying her ballot on the bulletin board a voter claims the
DRE cheated her, she must produce a receipt with a valid
signature to prove it. Thus, the main purpose of signing
receipt is not to prevent voters against cheating DREs,
but to prevent election officials against misbehaving vot-
ers.

However, signatures create problems for honest voters
interacting with malicious DREs. If at some point the
DRE realizes it will be caught cheating when the voter
later verifies her ballot on the bulletin board, the DRE can
produce a receipt with an invalid signature. Although the
voter can detect she was cheated, she cannot prove this
to the election authorities. The signature on her receipt
is invalid, and for all they know, might be forged.

Printing the wrong DRE Machine ID. For auditing
purposes, receipts in Neff’s and Chaum’s schemes con-
tain the DRE’s machine ID. However, we cannot trust a
malicious DRE to print its correct identifier, since using a
false identifier will shift suspicion. For example, a DRE
may generate bogus signatures and use an identifier from
an honest machine. When election officials receive fraud
complaints from voters with the invalid receipts contain-
ing the honest machine’s identifier, the legitimate votes
from the honest DRE might be called into question. Ul-
timately, this casts suspicion on the entire election.

44

14th USENIX Security Symposium

USENIX Association

Ignoring voter input. DREs can ignore voter input
in an attempt to forge ballots. For example, in Neff’s
scheme, if a DRE wants to forge a VC for a candidate of
its own choosing, it might ignore the voter’s challenges
and instead use and print challenges consistent with the
forged VC. An observant voter will be able to clearly de-
tect that this has occurred, since the challenges printed
on the receipt will not match what the voter typed in.
However, it might be difficult for the voter to prove to
a third party that the DRE cheated in this way. First, if
a voter wants to try to demonstrate the misbehavior to a
poll worker, she might have to reveal her voting inten-
tions. Second, if the DRE only ignores voter input every
50 voters, subsequent attempts to replicate the misbehav-
ior will fail.

5.4 Mitigation Strategies

Message reordering and social engineering attacks.
Message reordering and social engineering attacks have
a high chance of succeeding because the average human
voter doesn’t fully understand the importance of message
ordering in cryptographic protocols or how a commit-
ment scheme works. Also, humans may be forgiving of
or not notice slight deviations from the “canonical” vot-
ing experience. Even if the voter notices that the DRE
does not print something exactly when it should have,
she might ignore the deviation if the rest of the voting
experience goes smoothly and all the numbers on her re-
ceipt “match up”.

Since message reordering and social engineering at-
tacks only involve slight modifications to a voter’s in-
teraction with the DRE, the only defense we foresee is
ultimately unsatisfying: parallel testing. To resist these
attacks, election officials must audit DREs throughout
the day to verify they do not even slightly deviate from
the canonical behavior. Note that pre-election auditing is
not sufficient since there are many ways that a malicious
DRE could arrange to cheat only on election day. How-
ever, live testing of DREs on election day can be risky.
For example, we must ensure that a malicious DRE can-
not submit audit votes from testers as legitimate votes.

Auditing for message reordering and social engineer-
ing attacks is difficult. It requires auditors to be inti-
mately familiar with the details of DRE operation. The
changes in the voting experience these attacks impose
might appear completely innocuous to a naive observer.
Also, to evade random auditing, a clever DRE may
choose to only launch message reordering and social en-
gineering attacks intermittently.

Voter education may help mitigate these attacks. Voter
education can effectively turn every voter into an auditor.
However, if the system requires too many instructions
and checks, voters may worry that if they make a mis-

take, they will be cheated. Others may reject the system
on principle, arguing that it should not be hard to cor-
rectly use a voting system.

Discarded receipts. To address the problems with dis-
carded receipts, we must educate voters that receipts are
valuable and should not be frivolously discarded in a
public place.

Other human factor attacks. One approach to the
problem of machines generating invalid signatures is to
have voters verify the signature on their receipts at the
polling station. However, since voters cannot verify sig-
natures on their own, this approach requires another set
of hardware devices and software that voters must trust.
Also, it is not obvious how the signature verification
devices receive the public keys from the DREs in the
polling station in a trustworthy manner. If the device
loads them directly from the DREs, a malicious DRE
may give a different public key to the verification device
than the one it was loaded with.

DREs cannot be trusted to reliably print their ma-
chine IDs on receipts. The best solution is to require re-
ceipts and transparencies to be preprinted with machine
IDs and loaded onto the corresponding machines at the
polling stations. This solution prevents malicious DREs
from lying about their machine ID, but it creates logis-
tical hassles. Blank paper and transparency stock is no
longer generic—a particular roll can only be used by one
machine.

One possible defense against DREs that ignore voter
input is parallel testing of live machines on election day.
However, as previously discussed, parallel testing has
limitations.

6 Denial of Service Attacks and Election
Recovery

Although Neff’s and Chaum’s schemes can detect many
attacks, recovering legitimate election results in the face
of these attacks may be difficult. In this section, we
present several detectable but irrecoverable denial of ser-
vice (DoS) attacks launched at different stages of the vot-
ing and tallying process. We consider attacks launched
by malicious DREs and attacks launched by malicious
tallying software, and discuss different recovery mecha-
nisms to resist these attacks.

6.1 Denial of Service (DoS) Attacks

Launched by malicious DREs. Malicious DREs can
launch several DoS attacks which create detectable, but

USENIX Association

14th USENIX Security Symposium

45

unrecoverable situations. We present two classes of at-
tacks: ballot deletion and ballot stuffing.

In a ballot deletion attack, a malicious DRE erases vot-
ers’ ballots or submits random bits in their place. Elec-
tion officials and voters can detect this attack after the
close of polls, but there is little they can do at that point.
Since the electronic copy serves as the only record of the
election, it is impossible to recover the legitimate ballots
voted on that DRE.

DREs can launch more subtle DoS attacks using ballot
stuffing. Recall that both Neff’s and Chaum’s schemes
use ballot sequence numbers (BSNs) to uniquely iden-
tify ballots. BSNs enable voters to find and verify their
ballots on the public bulletin board, and by keeping track
of the set of valid BSNs, election officials can track and
audit ballots.

In the BSN duplication attack, a DRE submits multi-
ple ballots with the same BSN. Election officials will be
able to detect this attack after the ballots reach the bul-
letin board, but recovery is difficult. It is not clear how to
count ballots with the same BSN. Suppose a DRE sub-
mits 100 valid ballots (i.e., from actual voters) and 100
additional ballots, using the same BSN for all the bal-
lots. How do talliers distinguish the invalid ballots from
the valid ones?

In the BSN stealing attack, a malicious DRE “steals”
BSNs from the set of BSNs it would normally assign to
legitimate voters’ ballots. For a particular voter, the DRE
might submit a vote of its own choosing for the BSN
it is supposed to use, and on the voter’s receipt print a
different (invalid) BSN. Since the voter will not find her
ballot on the bulletin board, this attack can be detected,
but recovery is tricky: how do election officials identify
the injected ballots and remove them from the tally?

Neff’s and Chaum’s scheme enable voters and/or elec-
tion officials to detect these attacks, but recovery is non-
trivial because 1) the voters’ legitimate ballots are miss-
ing and 2) it is hard to identify the invalid ballots injected
by the DRE.

Launched by malicious tallying software. DoS at-
tacks in the tallying phase can completely ruin an elec-
tion. For example, malicious tallying softwares can
delete the trustees’ keys, making decryption and tallying
of the encrypted ballots forever impossible. Malicious
bulletin board software can erase, insert, or delete bal-
lots.

Selective DoS. An attacker could use DoS attacks to
bias the outcome of the election. Rather than ruining
the election no matter its outcome, a more subtle adver-
sary might decide whether to mount a DoS attack or not
based on who seems to be willing the race. If the adver-
sary’s preferred candidate is winning, the adversary need

do nothing. Otherwise, the adversary might try to disrupt
or ruin the election, forcing a re-election and giving her
preferred candidate a second chance to win the election,
or at least raising questions about the winner’s mandate
and reducing voters’ confidence in the process.

There are many ways that selective DoS attacks might
be mounted:

e If an outsider has a control channel to malicious
DRE:s, the outsider could look at the polls and com-
municate a DoS command to the DREs.

e An autonomous DRE could look at the pattern of
votes cast during the day, and fail (deleting all votes
cast so far at that DRE) if that pattern leans towards
the undesired candidate. This would disrupt votes
cast only in precincts leaning against the attacker’s
preferred candidate.

e If trustees’ software is malicious, it could collude to
see how the election will turn out, then cause DoS
if the result is undesirable. Note that if all trustees
are running the same tallying software, this attack
would require only a single corrupted programmer.

Selective DoS attacks are perhaps the most troubling
kind of DoS attack, because they threaten election in-
tegrity and because attackers may have a real motive to
launch them.

6.2 Mitigation Strategies and Election Re-
covery

Note that in all these attacks, non-malicious hardware or
software failures could cause the same problems. This
may make it hard to distinguish purposeful attacks from
unintentional failures.

The above attacks create irrecoverable situations be-
cause voters’ legitimate ballots are lost or corrupted, the
bulletin board contains unidentifiable illegitimate ballots
submitted by malicious DREs, or both. In this section,
we evaluate two recovery mechanisms for these DoS at-
tacks: revoting and a voter verified paper audit trail.

Revoting. One recovery strategy is to allow cheated
voters to revote. Depending on the scope of the attack
or failure, this could range from allowing only partic-
ular voters to revote to completely scrapping the elec-
tion and starting over. However, revoting is problem-
atic. Redoing the entire election is the most costly coun-
termeasure. Alternatively, election officials could allow
only those voters who have detected cheating to revote.
Unfortunately, this is insufficient. Less observant voters
who were cheated may not come forward, and it may be
hard to identify and remove illegitimate ballots added by

46

14th USENIX Security Symposium

USENIX Association

a malicious DRE. Revoting does not help with selective
DoS.

Voter verified paper audit trail. A voter verified pa-
per audit trail (VVPAT) system produces a paper record
verified by the voter before her electronic ballot is
cast [19]. This paper record is cast into a ballot box. The
paper trail is an official record of the voter’s vote but is
primarily intended for use in recounts and auditing.

It would not be hard to equip cryptographic voting sys-
tems with a VVPAT. This would provide a viable mecha-
nism for recovering from DoS attacks. In addition to pro-
viding an independent record of all votes cast, VVPAT
enables recovery at different granularities. If election
officials conclude the entire electronic record is ques-
tionable, then the entire VVPAT can be counted. Al-
ternatively, if only a single precinct’s electronic record
is suspect, then this precinct’s VVPAT record can be
counted in conjunction with the other precincts’ elec-
tronic records. This approach enables officials to keep
the universal verifiability of the uncorrupted precincts
while recovering the legitimate record of the corrupted
precinct.

A third benefit of VVPAT is that it provides an inde-
pendent way to audit that the cryptography is correctly
functioning. This would be one way to help all voters,
even those who do not understand the mathematics of
these cryptographic schemes, to be confident that their
vote will be counted correctly.

7 Implementing Secure
Voting Protocols

Cryptographic

A secure implementation of Neff and Chaum’s protocol
will still need to resolve many issues. In this section, we
outline important areas that Neff and Chaum have not yet
specified. These parts of the system need to be fully de-
signed, implemented, and specified before one can per-
form a comprehensive security review. Also, we list three
open research problems which we feel are important to
the viability of these schemes.

7.1 Underspecifications

Bulletin board. Both protocols rely on a public bul-
letin board to provide anonymous, read only access to
the data. The data must be stored robustly, overcoming
software and mechanical failures as well as malicious at-
tacks. Further, only authenticated parties should be able
to append messages to the bulletin board. An additional
requirement is to ensure that the system delivers the same
copy of the bulletin board contents to each reader. If the
bulletin board were able to discern a voter’s identity, say

by IP address, it could make sure the voter always saw
a mix transcript that included a proof that their vote was
counted. But, for the official transcript, the mix net and
bulletin board could collude to omit the voter’s ballot. In
this scenario, the voter would think her vote had been
counted but in reality it was not.

Neff and Chaum have not yet elaborated on a proposed
bulletin board architecture or the properties they require.
We imagine that the principles of distributed storage sys-
tems, such as Farsite, CFS, or OceanStore [1, 7, 27],
might be applicable in the bulletin board setting. How-
ever, without a further specification of exactly which ar-
chitecture would be used, we cannot evaluate the sys-
tem’s security.

BSN assignment. Neff’s and Chaum’s schemes do not
specify how to assign BSNs to voters’ ballots. BSNs
could be assigned externally by a smartcard initializer
which authorizes a voter to use a DRE, or be assigned by
DREs, say by a monotonically increasing counter pre-
fixed by the DRE machine ID.* Clever BSN assignment
combined with careful auditing and sign-in procedures
could help limit the scope of some of the DoS attacks in
Section 6, but since DREs can always erase or corrupt a
voter’s electronic ballot after she casts it, we still must
consider recovery mechanisms.

User interfaces. The attacks presented in Section 5 re-
quire a malicious programmer to modify the DRE’s soft-
ware and present a different user interface from the cor-
rect version. A related attack would be a malicious DRE
neglecting to present a valid candidate to the voter.

Clever user interfaces may be able to overcome such
attacks, by making it plainly obvious to the voter that
thing are amiss. We don’t know of any user interface
specification or architecture for Neff’s or Chaum’s voting
system.

Tallying software. Both Neff’s and Chaum’s schemes
treat the tallying software as a black box. We surmise,
that it, too, has stringent requirements on its correct im-
plementation. If all trustees use tallying software from
a single source, then this software might collude with-
out the trustees’ knowledge and invalidate the system’s
integrity guarantees. Though n-version programming
might be able to counter this threat, it makes software de-
velopment very expensive and requires detailed interface
specifications to ensure that all versions of the software
will interoperate. We have not seen any details on how
to ensure that the tallying software cannot collude.

4David Chaum later conveyed to us that he intended his scheme to
use a counter to assign BSNs [6].

USENIX Association

14th USENIX Security Symposium

47

7.2 Open Research Problems

Subliminal channels. Developing cryptographic pro-
tocols that address subliminal channels would help resist
privacy and coercion attacks. Subliminal channels in the
ballots subvert the confidentiality guarantees provided by
encryption. We present some techniques in Section 4 to
eliminate subliminal channels in encrypted ballots, but
we believe this is still an area for future research.

Mix net security models. We would like to see a def-
inition of security for mix nets that is comprehensive
for the voting setting. Such a definition must be nat-
ural enough to inspire confidence that it is the correct
model. For instance, Jakobsson illustrates a subtle pri-
vacy violation if the encryption used in the mixes do
not provide non-malleability [11], and others have shown
similar results [26]. This illustrates the importance and
non-triviality of formulating a correct security model for
mix nets. We believe the security of cryptographic vot-
ing systems would benefit from a thorough study of the
relationship between the mix net requirements and those
of the rest of the system.

Humans as protocol participants. These voting pro-
tocols require voters to not just use a cryptographic sys-
tem, but also to participate in a cryptographic proto-
col. Cryptographic protocols are fragile to deviations and
mistakes in their implementation, and humans have been
known to make mistakes. A high level understanding of
the protocol is not sufficient; to minimize errors, voters
often need to understand how the protocol works. Al-
ternatively, voting protocols must be designed to be as
foolproof as possible to “faulty” implementations in the
average voter. Voter education could help, but this raises
an important human-computer interaction problem: how
do we educate voters about these issues without discour-
aging them that these systems are too complicated to se-
curely use?

8 Conclusion

We laud Neff’s and Chaum’s ambitious goal: developing
a coercion free, privacy preserving voter-verifiable elec-
tion system. Their systems represent a significant secu-
rity improvement over current DRE-based paperless sys-
tems. Neff’s and Chaum’s schemes also strive to limit
reliance on trusted software and hardware. Most notably,
these schemes do not require voters to trust DREs since
voters can detect malicious behavior.

Neff’s and Chaum’s schemes are fully specified at the
cryptographic protocol level, but they are underspeci-
fied from the systems and human interaction level. Due
in part to this underspecification, we have discovered a

number of potential weaknesses which only became ap-
parent when considered in the context of an entire voting
system. We expect that a well designed implementation
and deployment may be able to mitigate or even elimi-
nate the impact of these weaknesses.

We found solutions for some of these weaknesses, but
we also identified new challenges and open problems
for electronic voting systems. First, subliminal chan-
nels have the potential to erode voter privacy and enable
voter coercion. Any system that uses a public bulletin
board must ensure that the ballots it posts have a unique
representation. Second, these voting protocols present a
new research challenge by placing human voters directly
within an interactive cryptographic protocol. Protocol
designers have previously assumed participants are in-
fallible computer agents, but voting protocols must cope
with human error and ignorance.

Despite these challenges, we are optimistic about the
future prospects of these voting systems.

Acknowledgments

We would like to thank Andrew Neff and David Chaum
for helping us understand their voting protocols. Joe
Hall, David Molnar, Rob Johnson, Umesh Shankar, and
Monica Chew gave invaluable feedback on earlier drafts
of this work. This work was supported in part by the
NSF under grant CCR-0093337, by the Knight Founda-
tion under a subcontract through the Caltech/MIT Voting
Technology Project, and by the US Postal Service.

References

[1] Atul Adya, William Bolosky, Miguel Castro, Gerald Cer-
mak, Ronnie Chaiken, John Douceur, Jon Howell, Jacob
Lorch, Marvin Theimer, and Roger Wattenhofer. FAR-
SITE: Federated, available, and reliable storage for a in-
completely trusted environment. In 5th Symposium on
Operating System Design and Implementation (OSDI),
pages 1-14, December 2002.

[2] Ross Anderson. Security Engineering: A Guide to Build-
ing Dependable Distributed Systems, chapter 3, ‘“Pass-
words”, pages 35-50. John Wiley and Sons, Inc., 2001.

[3] Jonathan Bannet, David W. Price, Algis Rudys, Justin
Singer, and Dan S. Wallach. Hack-a-vote: Demonstrating
security issues with electronic voting systems. /EEE Se-
curity and Privacy Magazine, 2(1):32-37, Jan./Feb. 2004.

[4] Jeremy Bryans and Peter Ryan. A dependability analysis
of the Chaum digital voting scheme. Technical Report
CS-TR-809, University of Newcastle upon Tyne, July
2003.

[5] David Chaum. Secret-ballot receipts: True voter-
verifiable elections. IEEE Security & Privacy Magazine,
2(1):38-47, Jan.—Feb. 2004.

[6] David Chaum, February 2005. Personal Communication.

48

14th USENIX Security Symposium

USENIX Association

(7]

(8]

(9]

Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area cooperative storage
with CFS. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP '01), pages 202—
215, October 2001.

Shafi Goldwasser and Silvio Micali. Probabilistic en-
cryption. Journal of Computer and System Sciences,
28(2):270-299, April 1984.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
In SIAM Journal on Computing, volume 18, pages 270-
299, 1984.

(21]

[22]

(23]

[24]

C. Andrew Neff. A verifiable secret shuffle and its appli-
cation to e-voting. In 8th ACM Conference on Computer
and Communications Security (CCS 2001), pages 116—
125, November 2001.

C. Andrew Neff, October 2004. Personal Communica-
tion.

C. Andrew Neff. Practical high certainty intent verifica-
tion for encrypted votes. http://www.votehere.
net/vhti/documentation, October 2004.

C. Andrew Neff. Verifiable mixing (shuffling) of El-
Gamal pairs. http://www.votehere.net/vhti/
documentation, April 2004.

[10] Nevin Heintze and J. D. Tygar. A model for secure pro- [25] Peter G. Neumann. Principled assuredly trustworthy
tocols and their compositions. Software Engineering, composable architectures. Final report for Task 1
22(1):16-30, January 1996. of SRI Project 11459, as part of DARPA’s Compos-

[11] Markus Jakobsson. A practical mix. In Advances in Cryp- able High-Assurance Trustworthy Systems (CHATS) pro-
tology — EUROCRYPT 1998, volume 1403 of Lecture gram, 2004.

Notes in Compu[er Science, pages 448-461. Springer- [26] Birgit Pfitzmann and Andreas Pfitzmann. How to break
Verlag, May/June 1998. the direct RSA-implementation of MIXes. In Advances in
. . Cryptology — EUROCRYPT 1989, volume 434 of Lecture

[12] Markus Jakobsson, Ari Juels, and Ronald Rivest. Mak- Notes in Computer Science. pages 373-381. Sprinoer-
. p > pag pring
ing mix nets robust for electronic voting by randomized Verlag, April 1989.
partial checking. In 11th USENIX Security Symposium,
pages 339-353, August 2002. [27] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weath-

] erspoon, Ben Zhao, and John Kubiatowicz. Pond: the

[13] Art}}ur Ke'ller, Dav1d Mertz, Joseph.Hall,. and Arqold OceanStore prototype. In 2nd USENIX Conference on
Urkin. Privacy issues in an electronic voting machine. File and Storage Technologies (FAST *03), pages 1-14,
In ACM Workshop on Privacy in the Electronic Soci- March 2003.
ety, pages 33-34, October 2004. Full paper available
at http://www.sims.berkeley.edu/"jhall/ [28] Bruce Schneier. Secrets and Lies, chapter 17, “The Hu-
papers/. gz)a(;lol:actor”, pages 255-269. John Wiley and Sons, Inc.,

(141 Paul Kocker an.d Bruce Schneier. In51df.:r risks in elec- [29] Poorvi Vora. David Chaum’s voter verification using en-
tions. Communications of the ACM, 47(7):104, July 2004. . . .

crypted paper receipts. Cryptology ePrint Archive, Report

[15] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, 2005/050, February 2005. http://eprint.iacr.
and Dan S. Wallach. Analysis of an electronic voting sys- org/.
tem. In IEEE Symposium on Security and Privacy, pages . s .
27-40, May 2004, [30] Alma Wbltten and J .D. Tygar. Why Johnny can’t encrypt:

’ A usability evaluation of PGP 5.0. In 8th USENIX Secu-

[16] Matt Lepinski, Silvio Micali, and abhi shelat. Collusion- rity Symposium, pages 169-184, August 1999.
free protocols. In Proceedings of the 37th ACM Sympo-
sium on Theory of Computing, May 2005.

[17] Matt Lepinski, Silvio Micali, and abhi shelat. Fair zero
knowledge. In Proceedings of the 2nd Theory of Cryp-
tography Conference, February 2005.

[18] Heiko Mantel. On the composition of secure systems. In
1IEEE Symposium on Security and Privacy, pages 88—101,

May 2002.

[19] Rebecca Mercuri. A better ballot box? IEEE Spectrum,
39(10):46-50, October 2002.

[20] Deirdre Mulligan and Joseph Hall. Preliminary
analysis of e-voting problems highlights need for
heightened standards and testing. A whitepaper
submission to the NRC’s Committee on Electronic
Voting, http://www7.nationalacademies.
org/cstb/project_evoting mulligan.pdf,

December 2004.
USENIX Association 14th USENIX Security Symposium 49

