
Non-Control-Data Attacks Are Realistic Threats

Shuo Chen
†
, Jun Xu

‡
, Emre C. Sezer

‡
, Prachi Gauriar

‡
, and Ravishankar K. Iyer

†

Abstract

Most memory corruption attacks and Internet worms follow a familiar pattern known as the control-data attack.

Hence, many defensive techniques are designed to protect program control flow integrity. Although earlier work did

suggest the existence of attacks that do not alter control flow, such attacks are generally believed to be rare against

real-world software. The key contribution of this paper is to show that non-control-data attacks are realistic. We

demonstrate that many real-world applications, including FTP, SSH, Telnet, and HTTP servers, are vulnerable to

such attacks. In each case, the generated attack results in a security compromise equivalent to that due to the control-

data attack exploiting the same security bug. Non-control-data attacks corrupt a variety of application data including

user identity data, configuration data, user input data, and decision-making data. The success of these attacks and the

variety of applications and target data suggest that potential attack patterns are diverse. Attackers are currently

focused on control-data attacks, but it is clear that when control flow protection techniques shut them down, they

have incentives to study and employ non-control-data attacks. This paper emphasizes the importance of future

research efforts to address this realistic threat.

1 Introduction

Cyber attacks against all Internet-connected computer

systems, including those in critical infrastructure, have

become relentless. Malicious attackers often break into

computer systems by exploiting security

vulnerabilities due to low-level memory corruption

errors, e.g., buffer overflow, format string

vulnerability, integer overflow, and double free. These

vulnerabilities not only are exploited by individual

intruders, but also make systems susceptible to

Internet worms and distributed denial of service

(DDoS) attacks. Recipe-like attack-construction

documents [2][46] widely available on the Internet

have made this type of attack widely understood.

Most memory corruption attacks follow a similar

pattern known as the control-data attack: they alter the

target program’s control data (data that are loaded to

processor program counter at some point in program

execution, e.g., return addresses and function pointers)

in order to execute injected malicious code or out-of-

context library code (in particular, return-to-library

attacks). The attacks usually make system calls (e.g.,

starting a shell) with the privilege of the victim

process. A quick survey of the CERT/US-CERT

security advisories [11][47] and the Microsoft Security

Bulletin [26] shows that control-data attacks are

considered the most critical security threats.

Because control-data attacks are currently dominant,

many defensive techniques have been proposed against

such attacks. It is reasonable to ask whether the current

dominance of control-data attacks is due to an

attacker’s inability to mount non-control-data attacks
1

against real-world software. We suspect that attackers

may in general be capable of mounting non-control-

data attacks but simply lack the incentive to do so,

because control-data attacks are generally easier to

construct and require little application-specific

knowledge on the attacker’s side. If this is indeed true,

when the deployment of control flow protection

techniques makes control-data attacks impossible,

attackers may have the incentive to bypass these

defenses using non-control-data attacks.

The emphasis of this paper is the viability of non-

control-data attacks against real-world applications.

The possibility of these attacks has been suggested in

previous work [9][42][48][52]. However, the

applicability of these attacks has not been extensively

studied, so it is not clear how realistic they are against

real-world applications.

1 Other terms are used to refer to attacks that do not alter

control flow. For example, Pincus and Baker call them pure

data exploits [29]. We call them non-control-data attacks

mainly to contrast with control-data attacks.

†
Center for Reliable and High Performance Computing,

Coordinated Science Laboratory,

University of Illinois at Urbana-Champaign,

1308 W. Main Street, Urbana, IL 61801

{shuochen,iyer}@crhc.uiuc.edu

‡
Department of Computer Science

North Carolina State University

Raleigh, NC 27695

{jxu3,ecsezer,pgauria}@ncsu.edu

14th USENIX Security SymposiumUSENIX Association 177

14th USENIX Security Symposium

The contribution of this paper is to experimentally

demonstrate that non-control-data attacks are realistic

and can generally target real-world applications. The

target applications are selected from the leading

categories of vulnerable programs reported by CERT

from 2000 to 2004 [11], including various server

implementations for the HTTP, FTP, SSH, and Telnet

protocols. The demonstrated attacks exploit buffer

overflow, heap corruption, format string, and integer

overflow vulnerabilities. All the non-control-data

attacks that we constructed result in security

compromises that are as severe as those due to

traditional control-data attacks — gaining the privilege

of the victim process. Furthermore, the diversity of

application data being attacked, including

configuration data, user identity data, user input data,

and decision-making data, shows that attack patterns

can be very diverse.

The results of our experiments show that attackers can

indeed compromise many real-world applications

without breaking their control flow integrity. We

discuss the implications of this finding for a broad

range of security defensive techniques. Our analysis

shows that finding a generic and secure solution to

defeating memory corruption attacks is still an open

problem when non-control-data attacks are considered.

Many available defensive techniques are not designed

for such attacks: some address specific types of

memory vulnerabilities, such as StackGuard [14],

Libsafe [7] and FormatGuard [8]; some have practical

constraints in the secure deployments, such as pointer

protection [9] and address-space randomization [4][6];

and others rely on control flow integrity for security,

such as system call based intrusion detection

techniques [17][18][19][21][22][23][34][47], control

data protection techniques [10][35][42], and non-

executable-memory-based protections [1][41].

In addition to demonstrating the general applicability

of non-control-data attacks, this paper can also be

viewed as a step toward a more systematic approach to

the empirical evaluation of defensive techniques. With

more and more promising defensive techniques being

proposed, researchers have started to realize the

necessity of empirical evaluation. In a survey paper

[29], Pincus and Baker explicitly call for a thorough

study of whether current defensive techniques “give

sufficient protection in practice that exploitation of

low-level defects will cease to be a significant

elevation of privilege threat.”

The rest of the paper is organized as follows: Section 2

discusses the motivation for examining the

applicability of non-control-data attacks. Section 3 and

4 present our experimental work on constructing

attacks by tampering with many types of security-

critical data other than control data. In Section 5, the

results of the experiments are used to re-examine the

effectiveness of a number of security defensive

methods. The constraints and counter-measures of non-

control-data attacks are discussed in Section 6. We

present related work in Section 7 and conclude with

Section 8.

2 Motivation

While control-data attacks are well studied and widely

used, the current understanding of non-control-data

attacks is limited. Although their existence has been

known (e.g., Young and McHugh [52] gave an example

of such attacks in a paper published even before the

spread of the notorious Morris Worm
2
), the extent to

which they are applicable to real-world applications has

not been assessed. Because non-control-data attacks

must rely on specific semantics of the target

applications (e.g., data layout, code structure), their

applicability is difficult to estimate without a thorough

study of real vulnerabilities and the corresponding

application source code. Control-data attacks, on the

other hand, are easily applicable to most real-world

applications once the memory vulnerabilities are

discovered.

This paper is also motivated by results from a number

of research papers investigating the impact of random

hardware transient errors on system security. Boneh et

al. [5] show that hardware faults can subvert an RSA

implementation. Our earlier papers [15][50] indicate

that even random memory bit-flips in applications can

lead to serious security compromises in network servers

and firewall functionalities, These bit-flip-caused errors

include corrupting Boolean values, omitting variable

initializations, incorrect computation of address offsets

and corrupting security rule data. Govindavajhala and

Appel conduct a physical random fault injection

experiment to subvert the Java language type system

[20]. All these security compromises are very specific

to application semantics, and not due to control flow

altering. It should be noted, however, that the security

compromises caused by hardware faults only suggest

potential security threats, since attackers usually do not

have the power to inject physical hardware faults to the

target systems. Nevertheless, the most compelling

message from these papers is that real-world software

applications are very likely to contain security-critical

non-control data, given that even random hardware

errors can hit them with a non-negligible probability.

2 One of the attack vectors of the Morris Worm overruns a

stack buffer in fingerd to corrupt a return address. This worm

made control-data attacks widely known to the public.

USENIX Association178

We realize that several types of memory corruption

vulnerabilities, in particular, format string

vulnerability, heap overflow, signed integer overflow,

and double free vulnerabilities, are essentially memory

fault injectors: they allow attackers to overwrite

arbitrary memory locations within the address space of

a vulnerable application. Compared to hardware

transient errors, software vulnerabilities are more

deterministic in that they always occur in the

programs, They are also more amenable to attacks in

that target memory locations can be precisely specified

by the attacker. Based on these observations, we make

the following claim:

Applicability Claim of Non-Control-Data

Attacks: Many real-world software applications

are susceptible to non-control-data attacks, and

the severity of the resulting security

compromises is equivalent to that of control-data

attacks.

Since this is a claim about real-world software, we

selected a number of representative applications and

constructed non-control-data attacks in order to answer

three major questions: (1) Which data within the target

applications are critical to security other than control

data? (2) Do the vulnerabilities exist at appropriate

stages of the application’s execution that can lead to

eventual security compromises? (3) Is the severity of

the security compromises equivalent to that of

traditional control-data attacks?

3 Security-Critical Non-Control Data

In preparation for the proposed experiment, we studied

several network server applications, and experimented

with many types of non-control data. The study

showed that the following types of data are critical to

software security:

• Configuration data

• User input

• User identity data

• Decision-making data

These classes are not meant to be mutually exclusive

or collectively complete, but rather, the classification

organizes reasoning about possibilities of non-control-

data attacks. In this section, we explain each of these

data types and why each is critical to security. For

each data type, we describe the attack scheme(s) in

Section 4 using real-world applications.

As indicated earlier, identifying security-critical non-

control data and constructing corresponding attacks

require sophisticated knowledge about program

semantics. We currently rely on manual analysis of

source code to obtain such knowledge.

Configuration Data. Site-specific configuration files

are widely used by many applications. For example,

many settings of the Apache web server can be

configured by the system administrator using

httpd.conf. The administrator can specify locations of

data and executable files, access control policies for the

files and directories, and other security and

performance related parameters [3]. Similar files are

used by FTP, SSH, and other network server

applications. Usually, the server application processes

the configuration files to initialize internal data

structures at the very beginning of program execution.

At runtime, these data structures are used to control the

behaviors of the application, and they rarely change

once the server enters the service loop. Corrupting

configuration data structures allows the attacker to

change and even control the behaviors of the target

application. In our study, we have focused on the file

path configuration information. The file path directives

define where certain data and executable files are

located so that the server can find them at runtime.

They also serve as access control policies. In the case of

a web server, the CGI-BIN path directive is not only

used to locate the CGI programs, but it also prevents a

malicious client from invoking arbitrary programs, i.e.,

only a pre-selected list of trusted programs in the

specified directory can be executed. If the configuration

data can be overwritten through memory corruption

vulnerabilities, an attacker can bypass the access

control policy defined by the administrator.

User Identity Data. Server applications usually require

remote user authentication before granting access.

These privileged applications usually cache user-

identity information such as user ID, group ID, and

access rights in memory while executing the

authentication protocol. The cached information is

subsequently used by the server for remote access

decisions. If the cached information can be overwritten

in the window between the time the information is first

stored in memory and the time it is used for access

control, the attacker can potentially change the identity

and perform otherwise unauthorized operations within

the target system.

User Input String. Changing user input is another way

to launch a successful non-control-data attack. Input

validation is a critical step in many applications to

guarantee intended security policies. If user input can

be altered after the validation step, an attacker would be

able to break into a system. We use the following steps

in the attack: (1) first, use a legitimate input to pass the

14th USENIX Security SymposiumUSENIX Association 179

14th USENIX Security Symposium

input validation checking in the application; (2) then,

alter the buffered input data to become malicious; (3)

finally, force the application to use the altered data.

The attack described here is actually a type of

TOCTTOU (Time Of Check To Time Of Use) attack:

using legitimate data to pass the security checkpoint

and then forcing the application to use corrupted data

that it considers legitimate. In the existing literature,

TOCTTOU is mainly described in the context of file

race condition attacks. The attack studied here shows

that the notion is applicable to memory data corruption

as well.

Decision-Making Data. Network server applications

usually use multiple steps for user authentication.

Decision-making routines rely on several Boolean

variables (conjunction, disjunction, or combination of

both) to reach the final verdict. No matter how many

steps are involved in the authentication, eventually at a

single point in the program control flow, there has to

be a conditional branch instruction saying either yes or

no to the remote client. Although such a critical

conditional branch instruction may appear in different

places in the binary code, it nonetheless makes the

critical decision based on a single register or memory

data value. An attacker can corrupt the values of these

final decision-making data (usually just a Boolean

variable) to influence the eventual critical decision.

Other Non-Control Data for Future Investigation.

We have discussed four different types of data that, if

corrupted, can compromise security. Many other types

of data are also critical to program security. We

identify some of them for future investigation. File

descriptors are integers to index the kernel table of

opened files. They can point to regular disk files,

standard input/output, and network sockets. If the

attacker can change the file descriptors, the security of

file system related operations can be compromised.

Changing a file descriptor to that of a regular disk file

could redirect terminal output to the file and result in

severe security damage. Another possible target is the

RPC (Remote Procedure Call) routine number. Each

RPC service is registered with an integer as its index

in the RPC callout link list. The caller invokes a

service routine by providing its index. Malicious

changes of RPC routine numbers could change the

program semantics without running any external code.

4 Validating the Applicability Claim

In this section we validate the Applicability Claim,

stated in Section 2. It would be straightforward to

manually construct vulnerable code snippets to

demonstrate non-control-data attacks. This, however,

does not validate the claim because what we need to

show is the applicability of such attacks on a variety of

real-world software applications. Toward this end, we

need first to understand which applications are frequent

targets of attacks and what types of vulnerabilities are

exploited. A quick survey was performed on all 126

CERT security advisories between the years 2000 and

2004. There are 87 memory corruption vulnerabilities,

including buffer overflow, format string vulnerabilities,

multiple free, and integer overflow. We found that 73

of them are in applications providing remote services.

Among them, there are 13 HTTP server vulnerabilities

(18%), 7 database service vulnerabilities (10%), 6

remote login service vulnerabilities (8%), 4 mail service

vulnerabilities (5%), and 3 FTP service vulnerabilities

(4%). They collectively account for nearly half of all

the server vulnerabilities.

Our criteria in selecting vulnerable applications for

experimentation are as follows: (1) Different types of

vulnerabilities should be covered. (2) Different types of

server applications should be studied in order to show

the general applicability of non-control-data attacks, (3)

There should be sufficient details about the

vulnerabilities so that we can construct attacks based on

them. There are a number of practical constraints and

difficulties in this enterprise. A significant number of

vulnerability reports do not claim with certainty that the

vulnerabilities are actually exploitable. Among the ones

that do, many do not provide sufficient details for us to

reproduce them. A number of the vulnerabilities that do

meet our criteria are in proprietary applications.

Therefore, we used open-source server applications for

which both source code and detailed information about

the vulnerabilities are available.

The rest of this section presents experimental results.

The demonstrated non-control-data attacks can be

categorized along two dimensions: the type of security-

critical data presented in Section 3 and the type of

memory errors, such as buffer overflow and format

string vulnerability. Although a significant portion of

this section is intended to illustrate various individual

non-control-data attacks in substantial detail, the goal is

to validate the applicability claim stated earlier.

4.1 Format String Attack against User

Identity Data

WU-FTPD is one of the most widely used FTP servers.

The Site Exec Command Format String Vulnerability

[12] is one that can result in malicious code execution

with root privilege. All the attack programs we obtained

from the Internet overwrite return addresses or function

pointers to execute a remote root shell.

Our goal is to construct an attack against user identity

data that can lead to root privilege compromise without

USENIX Association180

injecting any external code. Our first attempt was to

find data items that, if corrupted, could allow the

attacker to log in to the system as root user without

providing a correct password. We did not succeed in

this because the SITE EXEC format string

vulnerability occurs in a procedure that can only be

invoked after a successful user login. That means an

attacker could not change data that would directly

compromise the existing authentication steps in FTPD.

Our next attempt was to explore the possibility of

overwriting the information source that is used for

authentication. In UNIX-based systems, user names

and user IDs are saved in a file called /etc/passwd,

which is only writable to a privileged root user. A

natural thought is to corrupt information in this file in

order to get into the system. By overwriting an entry in

this file, an attacker can later legitimately log in to the

victim machine as a privileged user. We observed that

after a successful user login, the effective UID (EUID)

of the FTPD process has properly dropped to the

user’s UID, so the process runs as an unprivileged

user. Therefore, /etc/passwd can be overwritten only if

we can escalate the privilege of the server process to

root privilege. This is possible because the real UID of

the process is still 0 (root UID) even after its EUID is

set to be the user’s UID. The success of the attack

depends on whether we can corrupt a certain data

structure so that the EUID can be reverted to 0. FTPD

uses the seteuid() system call to change its EUID when

necessary. There are 18 seteuid(0) invocations in the

WU-FTPD source code, one of which appears in

function getdatasock() shown in Table 1. The function

is invoked when a user issues data transfer commands,

such as get (download file) and put (upload file). It

temporarily escalates its privilege to root using

seteuid(0) in order to perform the setsockopt()

operation. It then calls seteuid(pw->pw_uid) to drop

its privilege. The data structure pw->pw_uid is a

cached copy of the user ID saved on the heap. Our

attack exploits the format string vulnerability to

change pw->pw_uid to 0, effectively disabling the

server’s ability to drop privilege after it is escalated.

Once this is done, the remote attacker can download

and upload arbitrary files from/to the server as a

privileged user. The attack compromises the root

privilege of FTPD without diverting its control flow to

execute any malicious code.

Table 1: Source Code of getdatasock()

FILE * getdatasock(…) {

 ...

 seteuid(0);

 setsockopt(...);

 ...

 seteuid(pw->pw_uid);

 ...

}

The attack has been successfully tested on WU-FTPD-

2.6.0. First we establish a connection to the control port

of FTPD and correctly log in as a regular user, Alice.

FTPD sets its effective user ID to that of Alice (e.g.,

109). The client then sends a specially constructed

SITE EXEC command to exploit the format string

vulnerability that overwrites the pw->pw_uid memory

word to 0. The client then establishes the data

connection and issues a get command, which invokes

the function getdatasock(). Due to the corruption of pw-

>pw_uid, the execution of the function sets the EUID

of the process to 0, permanently. The client can

therefore download /etc/passwd from the server, add

any entry desired, and then upload the file to the

attacked server. An entry such as

“alice:x:0:0::/home/root:/bin/bash” indicates that Alice

can log in to the server as a root user anytime via FTP,

SSH, or other available service. Figure 1 gives the state

transition and flowchart of the attack.

FTPD runs as root

Effective UID=0

pw->pw_uid is initialed to Alice’s UID,

e.g., pw->pw_uid=109.
The effective UID is set to 109.

ftp target-machine //connect to the target machine

USER alice //log in as Alice
PASS alice-correct-password

SITE EXEC \x22\x33\x07\x08%.f…%d%n
//This command attempts to overwrite pw->pw_uid to 0

pw->pw_uid is now 0,

but effective UID is still 109

FTPD handles the GET command,

which invokes getdatasock. Due to
the corruption of pw->pw_uid, the
effective UID is escalated to 0, which
allows full access to /etc/passwd

PUT passwd //upload the modified /etc/passwd

BYE

Server states Client commands

CD /etc

GET passwd //get the file /etc/passwd

modify alice’s entry, giving her root UID
alice:x:0:0::/home/root:/bin/bash

Alice has become a user with root

privilege.

Figure 1: User Identity Data Attack against

WU-FTPD

4.2 Heap Corruption Attacks against

Configuration Data

Memory corruption vulnerabilities on an HTTP daemon

and a Telnet daemon allow configuration data attacks to

succeed in getting root shells, if these daemons run as

root. Note that some HTTP daemons can run as an

unprivileged user, e.g., a special user nobody, in which

case the root compromise is unlikely to happen whether

the attack is a control-data attack or a non-control data

attack. Our applicability claim still stands, because the

claim is that non-control-data attacks can get the same

privilege level as control-data attacks, which is the

privilege level of the victim server.

Attacking Null HTTPD. Null HTTPD is a multi-

threaded web server on Linux. Two heap overflow

14th USENIX Security SymposiumUSENIX Association 181

14th USENIX Security Symposium

vulnerabilities have been reported [38]. Available

exploit programs overwrite a Global Offset Table
3

(GOT) entry of a function when the corrupted heap

buffer is freed. The program control jumps to the

attacker’s malicious code when a subsequent

invocation of the function is made.

It can be seen that corrupting the CGI-BIN

configuration string can result in root compromise

without executing any external code. CGI (Common

Gateway Interface) is a standard for running

executables on the server for data processing. As

explain in Section 3, the CGI-BIN directive restricts a

user from executing programs outside the CGI-BIN

directory and is thus critical to the security of the

HTTP server. A client’s URL requesting the execution

of a CGI program is always relative to the CGI-BIN

configuration. Assuming the CGI-BIN path of the

server www.foo.com is /usr/local/httpd/cgi-bin, when a

request of URL http://www.foo.com/cgi-bin/bar is

processed, the HTTP server prefixes the CGI-BIN to

bar and executes the file /usr/local/httpd/cgi-bin/bar

on the server’s file system. Figure 2 shows our attack

process, which overwrites the CGI-BIN configuration

so that the shell program /bin/sh can be started as a

CGI program.

Read CGI-BIN configuration

The configuration is /usr/local/httpd/cgi-bin

CGI-BIN configuration is now /bi,

without the string terminator ‘\0’

Send the first POST command to the server,

to overwrite 2 bytes of CGI-BIN

Server translates the file name as
/bin/sh, and run it using the string

specified by the client as the standard

input .

/tmp/root-private-file, writable only to

the root, is removed

Server states Client commands

Send the second POST command to the server,

to overwrite other 2 bytes of CGI-BIN

CGI-BIN configuration is now /bin,

with the string terminator ‘\0’

Send the third POST command to run a shell
command on the server:

POST /cgi-bin/sh http/1.0↵

Content-Length: 70↵

↵

echo Content-type: text/plain ↵

echo ↵

echo ↵

rm /tmp/root-private-file ↵

↵

This will be the
standard input

string to /bin/sh

on the server.

Figure 2: Configuration Data Attack against NULL

HTTPD

The heap overflow vulnerability is triggered when a

special POST command is received by the server. Due

to the nature of heap corruption vulnerability, an

attacker usually can only precisely control the first two

bytes
4

in the corrupted word at a time to avoid a

3 The Global Offset Table (GOT) is a table of function

pointers for calling dynamically linked library functions.
4 If the value to be written is a valid address, four bytes can

be overwritten by a single heap corruption attack.

segmentation fault. We issue two POST commands to

precisely overwrite four characters in the CGI-BIN

configuration so that it is changed from

“/usr/local/httpd/cgi-bin\0” to “/bin\0”. After the

corruption, we can start /bin/sh as a CGI program and

send any shell command as the standard input to

/bin/sh. For example, by issuing a rm /tmp/root-private-

file command, we observe that the file /tmp/root-

private-file, writable only to root, was removed. This

indicates that we are indeed able to run any shell

command as root, i.e., the attack causes the root

compromise.

Attacking NetKit Telnetd. A heap overflow

vulnerability exists in many Telnet daemons derived

from the BSD Telnet daemon, including a default

RedHat Linux daemon NetKit Telnetd [13][39]. The

vulnerability is triggered when the function telrcv()

processes client requests of ‘AYT’ (i.e., Are-You-There)

configuration. The attack, downloaded from Bugtraq,

overwrites a GOT entry to run typical malicious code

starting a root shell.

When the daemon accepts a connection from a Telnet

client, it starts a child process to perform user

authentication. The file name of the executable for the

authentication is specified by a configuration string

loginprg, whose value can be specified as a command

line argument. A typical value is /bin/login. Suppose

the remote user is from attacker.com. Function

start_login(host), shown in Table 2, starts the command

/bin/login –h attacker.com –p by making an execv call

to authenticate the user. The integrity of loginprg is

critical to security.

Table 2: Attacking loginprg and host Variables in

Telnet Daemon

void start_login(char * host,…) {

addarg(&argv, loginprg);

addarg(&arg, ”-h”);

addarg(&argv, host);

addarg(&arg, ”-p”);

execv(loginprg, argv);

}

Without the corruption, the execv call is:

/bin/login –h attacker.com –p

Due to the corruption, the execv call is:

/bin/sh –h –p -p

We observe that the vulnerable function telrcv()

can be invoked after the initializations of loginprg and

host variables but before the invocation of

USENIX Association182

start_login(host). Therefore, the exploitation of the

heap overflow vulnerability allows overwriting the

loginprg value to /bin/sh and the host value to –p, so

that the command /bin/sh –h –p –p will be executed by

function start_login(), giving a root shell to the

attacker. Note that if host was not overwritten or if it

was overwritten to an empty string, the sh command

would generate a “file does not exist” error.

4.3 Stack Buffer Overflow Attack against

User Input Data

Another HTTP server, GHTTPD, has a stack buffer

overflow vulnerability in its logging function [36].

Unlike the heap corruption, integer overflow, or

format string vulnerabilities, a stack overflow does not

allow corruption of arbitrary memory locations but

only of the memory locations following the unchecked

buffer on the stack. The most popular way to exploit

the stack buffer overflow vulnerability is to use the

stack-smashing method, which overwrites a return

address [2]. The attack overwrites the function return

address saved on stack and changes it to the address of

the injected malicious code, which is also saved in the

unchecked buffer. When the function returns, it begins

to execute the injected code. Stack buffer overflow

attacks have been extensively studied, and many

runtime protection solutions have been proposed. Most

of the techniques try to detect corruption of return

addresses. We construct an attack that neither injects

code nor alters the return address. The attack alters

only the backup value of a register in the function

frame of the vulnerable function to compromise the

security validation checks and eventually cause the

root compromise.

The stack buffer overflow vulnerability is in function

log(), where a long user input string can overrun a

200-byte stack buffer. A natural way to conduct a non-

control-data attack is to see if any local stack variable

can be overwritten. We were not able to find any local

variable that can be used to compromise its security.

Instead, we found that three registers from the caller

were saved on the stack at the entry of function log()

and restored before it returns. Register ESI holds the

value of the variable ptr of the caller function

serveconnection(). Variable ptr is a pointer to the text

string of the URL requested by the remote client.

Function serveconnection() checks if the substring

“/..” (i.e., the parent directory) is embedded in the

requested URL. Without the check, a client could

execute www.foo.com/cgi-bin/../bar, an executable

outside the restricted CGI-BIN directory. We observe

that the function log() is called after serveconnection()

checks the absence of “/..” in the URL, but before the

CGI request is parsed and handled. This makes a

TOCTTOU (Time Of Check To Time Of Use) attack

possible. We first present a legitimate URL without

“/..” to bypass the absence check, then we change the

value of register ESI (value of ptr) to point to a URL

containing “/..” before the CGI request is processed.

Table 3: Source Code of servconnection() and

log()

int serveconnection(int sockfd) {

char *ptr; // pointer to the URL.

// ESI is allocated

 // to this variable.

...

1: if (strstr(ptr,”/..”))

 reject the request;

2: log(...);

3: if (strstr(ptr,”cgi-bin”))

4: Handle CGI request

...

}

Assembly of log(...)

push %ebp

mov %esp, %ebp

push %edi

push %esi

push %ebx

... stack buffer overflow code

pop %ebx

pop %esi

pop %edi

pop %ebp

ret

The attack scheme is given in Figure 3. The default

configuration of GHTTPD is /usr/local/ghttpd/cgi-bin,

so the path /cgi-bin/../../../../bin/sh is effectively the

absolute path /bin/sh on the server. We use the GET

command of the HTTP protocol to trigger the buffer

overflow condition and force the server to run /bin/sh as

a CGI program: we send the command “GET

AA…AA\xdc\xd7\xff\xbf↵↵/cgi-bin/../../../../bin/sh”
5

to

the server. The server converts the first part of the

command, “AAA…AAA\xdc\xd7\xff\xbf”, into a null-

terminated string pointed to by ptr in function

serveconnection(). This string passes the “/..” absence

check in Line 1 of serveconnection(). When the string is

passed to the log() function in Line 2, it overruns the

buffer and changes the saved copy of register ESI (i.e.,

ptr) on the stack frame of log() to 0xbfffd7dc (i.e., the

bytes following “A” characters in the request), which is

the address of the second part of the GET command

“/cgi-bin/../../../../bin/sh”. When log() returns, the value

of ptr points to this unchecked string, which is a CGI

request containing “/..”. Succeeding in the check of

5 “AA…AA” represents a long string of “A” characters.

14th USENIX Security SymposiumUSENIX Association 183

14th USENIX Security Symposium

Line 3, the request eventually starts the execution of

/bin/sh at Line 4 under the root privilege.

Read CGI-BIN configuration

The configuration is /usr/local/ghttpd/cgi-bin

The URL string pointed by ptr is
AAAAAAAA\xdc\xd7\xff\xbf.

It is a legitimate URL because no

substring “/..” is present.

Send the GET command to the server,

GET AAAAAAAA\xdc\xd7\xff\xbf↵ ↵ /cgi-bin/../../../../bin/sh

The four bytes \xdc\xd7\xff\xbf are

overwritten to ESI, making ptr pointing to

0xbfffd7dc, where the string

/cgi-bin/../../../../bin/sh is located.

/bin/sh is started as a CGI program

Server states Client commands

Interact with the root shell running on the server

Figure 3: User Input Data Attack against GHTTPD

4.4 Integer Overflow Attack against

Decision-Making Data

We also study decision-making data used by security-

related operations in server applications. These data

are usually Boolean variables used to see whether

certain criteria are met by a remote client. If so, access

will be granted. An attacker can exploit security

vulnerabilities in a program to overwrite such Boolean

variables and get access to the target system. We study

the attack in the context of a secure shell (SSH) server

implementation.

An integer overflow vulnerability [37] exists in

multiple SSH server implementations, including one

from SSH Communications Inc. and one from

OpenSSH.org. The vulnerability is triggered when an

extraordinarily large encrypted SSH packet is sent to

the server. The server copies a 32-bit integer packet

size value to a 16-bit integer. The 16-bit integer can be

set to zero when the packet is large enough. Due to

this condition, an arbitrary memory location can be

overwritten by the attacker. Available exploitation

online changes a function return address to run

malicious shell code [37]. Detailed descriptions and

analyses of this vulnerability can be found in [31] and

[32].

Our goal is to corrupt non-control data in order to log

in to the system as root without providing a correct

password. Our close examination of the source code of

the SSH server implementation from SSH

Communications Inc shows that the integer overflow

vulnerability is in function detect_attack(), which

detects the CRC32 compensation attack against the

SSH1 protocol. This function is invoked whenever an

encrypted packet arrives, including the encrypted user

password packet. The SSH server relies on function

do_authentication() (shown in Table 4) to authenticate

remote users. It uses a while loop (line 2) to

authenticate a user based on various authentication

mechanisms, including Kerberos and password. The

authentication succeeds if it passes any one of the

mechanisms. A stack variable authenticated is defined

as a Boolean flag to indicate whether the user has

passed one of the mechanisms. The initial value of

authenticated is 0 (i.e., false). Line 3 reads input packet

using packet_read(), which internally invokes the

vulnerable function detect_attack(). Our attack is to

corrupt the authenticated flag and force the program to

break out of the while loop and go to line 9, where a

shell is started for the authenticated user.

Table 4: Source Code of do_authentication()

void do_authentication(char *user, ...) {

1: int authenticated = 0;

...

2: while (!authenticated) {

 /* Get a packet from the client */

3: type = packet_read();

 // calls detect_attack() internally

4: switch (type) {

 ...

5: case SSH_CMSG_AUTH_PASSWORD:

6: if (auth_password(user, password))

7: authenticated =1;

 case ...

 }

8: if (authenticated) break;

 }

 /* Perform session preparation. */

9: do_authenticated(pw);

}

Our attack tries to log in as root without providing a

correct password. When the server is ready to accept

the root password, the SSH client sends a very large

packet to the receiving function packet_read() (Line 3).

The packet is specially formulated to trigger the integer

overflow vulnerability when packet_read() calls

detect_attack() for detection. As a result, the

authenticated flag is changed to non-zero. Although the

server does fail in function auth_password() (Line 6), it

breaks out of the while loop and proceeds to create a

shell for the client (Line 9). The client program

successfully gets into the system without providing any

password. Figure 4 shows the status of both the client

and the server during the attack.

Currently our attack program has not calculated the

correct checksum of the malicious packet that we sent

to the server, so the packet would be rejected by the

checksum validation code in the SSH server. For a

USENIX Association184

proof-of-concept attack, we deliberately make the

server accept the malicious packet without validating

its checksum. To make the attack complete, we will

need to understand the DES cryptographic algorithms

to recalculate the checksum. Note that an attack

including the checksum calculation algorithm is

publicly available [32]. Other than this peculiarity, we

have confirmed that the vulnerability allows precise

corruption of the authenticated flag and that this

corruption is sufficient to grant the root privilege to

the attacker.

Call do_authenticated() to start a root
shell

Start do_authentication()

authenticated is 0

Ask for root password

Start the modified SSH client by

ssh –v –l root TARGET_SSH_SERVER

authenticated flag is now non-zero.
Although SSH server fails in password
authentication, the attacker still gets in

because authenticated is non-zero.

Server states Client commands

Send a malicious packet as the password.

This packet overwrites the authenticated
flag to non-zero.

Figure 4: Attacking Stack Variable authenticated in

SSH Server

5 Implications for Defensive Techniques

The success in constructing non-control-data attacks

for various network server applications suggest a re-

examination of many current defensive techniques,

which can be broadly categorized into two classes:

techniques to avoid having memory-safety bugs in

software and techniques to defeat exploitations of

these bugs. We discuss these techniques below and the

impact of our result on them.

5.1 System-Call-Based Intrusion Detection

Techniques

Many host-based Instruction Detection Systems

(IDSs) monitor the behavior of an application process

at the system call level. These systems build abstract

models of a program based on system call traces. At

runtime, the IDS monitors the system calls issued by

the program. Any deviation from the pre-built abstract

model is considered abnormal or incorrect behavior of

a program. One of the earliest attempts was by Forrest

et al. [18][23] in which short sequences of system calls

(N-grams) obtained from training data are used to

define a process’s correct behavior. The monitoring is

a matter of sequence matching against the pre-built N-

gram database. Wagner and Dean [48] build abstract

system call models from the control flow graph based

on static source code analysis. A basic Non-

Deterministic Finite Automaton (NDFA) and a more

powerful Non-Deterministic Pushdown Automaton

(NPDA) that incorporates stack state are built. Sekar et

al. [34] improve Forrest’s training method by building a

Finite State Automaton (FSA) constructed from training

system traces by associating system calls with program

counter information. Feng et al. [19] further improve

the training method in the VtPath model. At every

system call, VtPath extracts the virtual stack list, which

is the list of return addresses of functions in the call

stack. Then a virtual path is extracted from two

consecutive virtual stack lists and stored as a string in a

hash table. VtPath detects some attacks that are missed

by the FSA model. In a follow-up paper, Feng et al.

[17] propose a static version of VtPath, called VPStatic,

and compare it to DYCK by Griffin et al. [21], which

constructs PDA models directly from binary code. Gao

et al. [22] propose the execution graph model that uses

training system call traces to approximate the control

flow graph that is usually only available through static

code analysis. The execution graph is built by

considering both program counter and call stack

information.

All these intrusion detection methods monitor process

behavior at the system-call level, that is, they are only

triggered upon system calls. As shown in this paper,

non-control-data attacks require no invocation of

system calls, therefore the attacks will most likely

evade detection by system-call based monitoring

mechanisms. Data flow information needs to be

incorporated in these IDS models in order to detect

non-control-data attacks.

Some IDS techniques [25] abstract a program’s normal

behavior using statistical distributions of system call

parameters. The distribution is obtained from training

data. At runtime, the IDS detects program anomalies by

observing deviations from the training model. These

methods detect intrusions based on the anomalies of

data rather than the anomalies in control flow.

Therefore, we believe that. with proper training, they

can detect some of the attacks presented in this paper,

in particular, the HTTPD CGI-BIN attack when /bin/sh

is run by the execve(), since that is most likely not in

the training model. The method, however, is not able to

detect the decision-making data attack described in

Section 4.4, where no system call parameter is

modified. Nor can it detect the user-identity data attack

discussed in Section 4.1 without considering control

flow information in the training model. It might be

difficult for a statistical algorithm to precisely extract a

fine-grained policy to detect the attacks with a

14th USENIX Security SymposiumUSENIX Association 185

14th USENIX Security Symposium

reasonably low false positive rate. Despite such

technical difficulties, considering system call

parameter anomalies is one possible way to extend

current IDSs to detect some non-control-data attacks.

5.2 Control Data Protection Techniques

Corrupting control data to alter the control flow is a

critical step in traditional attacks. Compiler techniques

and processor-architecture-level techniques have been

proposed in very recent papers to protect control data.

DIRA is a compiler to automatically insert code only

to check the integrity of control data [35]. An

explicitly stated justification for this technique is that

control-data attacks are currently considered the most

dominant attacks. Suh, Lee, and Devadas develop the

Secure Program Execution technique to defeat

memory corruption attacks [42]. The idea is to tag the

data directly or indirectly derived from I/O as spurious

data, a concept more commonly referred to as tainted

data in other literature [16][30][44]. Security attacks

are detected when tainted data is used as an instruction

or jump target addresses. Another recent work on

control data protection is Minos [10], which extends

each memory word with an integrity bit. Integrity

indicates whether the data originating from a trusted

source. It is essentially the negation of taintedness.

Very similar to Secure Program Execution, Minos

detects attacks when the integrity bit of a control data

is 0.

We agree that control data are highly critical in

security-related applications. Not protecting them

allows attacks to succeed easily. However, the general

applicability of non-control-data attacks suggests the

necessity of improvements of these techniques for

better security coverage.

5.3 Non-Executable-Memory-Based

Protections

A number of defensive techniques are based on non-

executable-memory pages, which block an attacker’s

attempt to inject malicious code onto a writable

memory page and later divert program control to

execute the injected code. StackPatch is a Linux patch

to disallow executing code on the stack [41].

Microsoft has also implemented non-executable-

memory page supports in Windows XP Service Pack 2

[1]. In addition, the latest versions of Linux and

OpenBSD are enhanced with similar protections.

These defensive techniques cannot defeat non-control-

data attacks because there is no attempt to run any

injected code during these attacks. Note that non-

executable-memory-based protections can also be

defeated by the return-to-library attacks, which divert

program control to library code instead of the injected

code [33].

5.4 Memory Safety Enforcement

CCured [27] is a program transformation tool that

attempts to statically verify that a C program is type-

safe, and thus free from memory errors. When static

analysis is insufficient to prove type-safety, it

instruments vulnerable portions of code with checks to

avoid errors such as NULL pointer dereferences, out-

of-bounds memory accesses, and unsafe type casts. Its

main mechanism for enforcing memory safety is a type-

inference algorithm that distinguishes pointers by how

safely they are used. Based on this classification of

pointers, code transformations are applied to include

appropriate runtime checks for each type of pointer.

Although CCured’s analysis techniques and runtime

system are sophisticated and guarantee memory safety,

instrumented programs often incur significant

performance overheads and require nontrivial source

code changes to ensure compatibility with external

libraries.

CRED [53] is a buffer overflow detector that uses the

notion of referent objects to add bounds checking to C

without restricting safe pointer. Any addresses resulting

from arithmetic on a pointer must lie within the same

memory object as that of the pointer. To enforce this,

CRED stores the base address and size of all memory

objects in the object table. Immediately before an in-

bounds pointer is used in an arithmetic operation, its

referent object’s bounds data is retrieved from the

object table. This data is used to ensure the pointer

arithmetic’s result lies within the bounds of the referent

object. When an out-of-bounds address is used in

pointer arithmetic, its associated referent object’s

bounds data is used to determine if the resulting address

is in bounds. To reduce performance overhead, CRED

limits its bounds checking to string buffers, which

implies that CRED does not provide protection against

attacks involving non-string buffers. In addition,

programs that perform heavy string-processing (e.g.,

web/email servers) can still incur overheads as high as

200%.

Cyclone [24] is a memory-safe dialect of C that aims to

maintain much of C’s flexible, low-level nature. It

ensures safety in C by imposing a number of

restrictions. Like CCured, Cyclone adds several pointer

types that indicate how a pointer is used and inserts

appropriate runtime checks based on a pointer’s type.

Porting C programs to Cyclone, however, can be

difficult due to its additional restrictions and semantics.

USENIX Association186

For example, Cyclone only infers pointer kinds for

strings and arrays. As such, it is often the

programmer’s responsibility to determine the

appropriate type for a pointer. This task can be very

time-consuming for large programs that make

extensive use of pointers. In addition, Cyclone

programs often perform significantly worse than their

C counterparts and commonly-used software

development tools such as compilers and debuggers

must be modified for use with Cyclone source code.

Although the techniques enforcing memory-safety

continue to show great promise, the software

engineering community has not established techniques

that allow an easy migration path from current large

code bases. Moreover, the high overheads that they

incur make them unsuitable for many kinds of

software, particularly highly trafficked servers. Due to

these reasons, memory-safety bugs are likely to still

exist for an extended period of time. Hence, research

efforts should still be invested in defensive techniques

that assume the existence of memory-safety bugs.

5.5 Other Defensive Techniques

We now discuss other runtime defensive techniques

that do not assume the control-data attack pattern.

Specialized Techniques Not Affected by Non-

Control-Data Attacks. The effectiveness of some

specialized dynamic detection techniques is not

affected by non-control-data attacks. StackGuard [14]

and Libsafe [7] can still defeat many stack buffer

overflow attacks unless security sensitive data are in

the same frame as the overflowing buffer, as in the

GHTTPD example. FormatGuard [8] is still effective

to defeat format string attacks because it does not

allow overwriting of arbitrary memory addresses.

However, these techniques are not generic enough to

defeat attacks exploiting other types of vulnerabilities.

Generic Techniques Requiring Improvement.

Among the various techniques that address a broader

range of memory vulnerabilities, the underlying

principles of the pointer protection technique

PointGuard [9], address-space randomization

techniques [4][6][51], and TaintCheck [28] are sound,

but improvements are needed to better deploy these

principles, as follows:

PointGuard is a compiler technique that embeds

pointer encryption/decryption code to protect pointer

integrity in order to defeat most memory corruption

attacks. In principle, if all pointers, including pointers

in application code and in libraries (e.g., LibC), are

encrypted, most memory corruption attacks can be

defeated. However, without the instrumented library

code, the current PointGuard cannot defeat many non-

control-data attacks. For example, the previously

presented heap overflow and format string attacks only

corrupt heap free-chunk pointers and the argument

pointers of printf-like functions, which are pointers in

LibC. Although there are technical challenges in the

instrumentation of PointGuard at the library level (e.g.,

the lack of accurate type information), we argue that

such an improvement is essential.

The principle of address-space randomization

techniques is to rearrange memory layout so that the

actual addresses of program data are different in each

execution of the program. Ideally, the addresses should

be completely unpredictable. Nevertheless, Shacham et

al. [43] have recently shown that most current

randomization implementations on 32-bit architectures

suffer from the low entropy problem: even with very

aggressive re-randomization measures, these techniques

cannot provide more than 16-20 bits of entropy, which

is not sufficient to defeat determined intruders.

Deploying address-space randomization techniques on

64-bit machines is considered more secure.

TaintCheck [28] uses a software emulator to track the

taintedness of application data. Depending on its

configuration and policies, TaintCheck can perform

checks on a variety of program behaviors, e.g., use of

tainted data as jump targets, use of tainted data as

format strings, and use of tainted data as system call

arguments. Preventing the use of tainted data as system

call arguments can be used to detect some, but not all of

the attacks described in this paper. However, as the

authors of TaintCheck have pointed out, this can lead to

false positives, as some applications require

legitimately embedding tainted data in the system call

arguments. Further, the reported runtime slowdown is

between 5-37 times. Further research is required to

address the issues of security coverage, false positive

rate, and performance overhead.

5.6 Defeating Memory Corruption Attacks:

A Challenging Problem in Practice

The above analysis shows that finding a generic and

practical technique to defeat memory corruption attacks

is still an challenging open problem. The specialized

techniques can only defeat attacks exploiting a subset of

memory vulnerabilities. As for generic defensive

techniques, many of them provide security by enforcing

control flow integrity, and thus the security coverage is

incomplete due to the general applicability of non-

control-data attacks. A few other generic solutions,

although not fundamentally relying on control flow

14th USENIX Security SymposiumUSENIX Association 187

14th USENIX Security Symposium

integrity, need improvements to overcome the

practical constraints on their deployment.

6 Empirical Discussions of Mitigating

Factors

Despite the general applicability of non-control-data

attacks, which is the main thesis of this paper, we

experienced more difficulty in constructing these

attacks than in constructing control-data attacks. In

particular, the requirement of application-specific

semantic knowledge and problems presented by the

lifetime of security-critical data are major mitigating

factors that impose difficulties on attackers.

6.1 Requirement of Application-Specific

Semantic Knowledge

An obvious constraint for constructing non-control-

data attacks is the attacker’s reliance on application-

specific knowledge. In a control-data attack, as long as

a function pointer or a return address can be

overwritten, a generic piece of shell code will be

started to do all kinds of security damage easily.

However, a non-control-data attack must preserve

control flow integrity, so an attacker needs to have in-

depth knowledge of how the target application

behaves. For example, to attack HTTP servers, we

need insights into the CGI mechanism; to attack the

WU-FTP server, we should know how the effective

UID is elevated and dropped. At the current stage, we

have not formulated an automatic method to obtain

such knowledge. The method we used in attack

construction is a combination of vulnerability report

review, debugger-aided source code review. and

certain diagnostic tools such as strace (system call

tracer) and ltrace (library call tracer). This is a time-

consuming process. As a result, we have not

succeeded in the attempt to attack Sendmail through an

integer overflow vulnerability [40], as we are not as

familiar with Sendmail semantics as we are with

HTTP, SSH, FTP, and Telnet.

However, we argue that this is not a fundamental

constraint on attackers for two reasons: 1) Knowledge

of widely used applications is not hard to obtain, so a

determined attacker is likely to eventually succeed no

matter how long it takes, if there is a strong incentive;

2) Although we spent a great deal of effort to construct

these attacks, future attackers may not need to expend

the same amount of effort. For example, if a new

vulnerability is found in another HTTP server, an

attacker could easily think of attacking the CGI-BIN

configuration. This can be thought of as similar to the

history of the stack-smashing attack; it was a mystery

when the Morris Worm spread, but it is now

straightforward to understand.

6.2 Lifetime of Security-Critical Data

Lifetime of security-critical data is another constraint

on seeking non-control-data attacks. The lifetime of a

value is defined as the interval between the time the

value is stored in a variable and the time of its last

reference before the being de-allocated or reassigned.

Only when a vulnerability is exploitable during the

lifetime of some security-critical data can an attack

succeed.

Our experience shows that although there are many

potential data critical to security, a majority of them are

eliminated by the constraint of data lifetime – the

vulnerability occurs either before the data value is

initialized or after the semantically diverging operation

is performed. Therefore, reducing the lifetime should be

considered as a secure programming practice. Two of

the discussed attacks would not succeed if the programs

were slightly changed as shown in Table 5. The original

WU-FTPD function getdatasock() uses the global data

pw->pw_uid in the seteuid call, allowing any

vulnerability occurring before getdatasock() to escalate

the process privilege. If the function was written as

(A2), where a short-living local variable is used, only a

vulnerability occurring within the lifetime of tmp

(denoted as a bidirectional arrow) could affect the

seteuid call. Similarly, in the original SSHD

do_authentication() (code B1), the lifetime of the

authenticated value covers the vulnerable

packet_read() call. By inserting the statement

“authenticated=0” after Line L1 in code B2,

authenticated flag is always refreshed in every iteration,

and thus its lifetime becomes shorter. The attack could

not succeed since the vulnerability in L1 was out of the

lifetime of authenticated flag.

The lifetimes of security-critical configuration data, as

those in the NULL HTTPD attack and the Telnetd

attack, are more difficult to reduce. A possible

protection solution is to encrypt them in a way similar

to the encryption technique used by PointGuard or to

set the memory of configuration data read-only.

USENIX Association188

Table 5: Reducing Data Lifetime for Security

(A1) Original WU-FTPD getdatasock()

{ seteuid(0);

 setsockopt(...);

seteuid(pw->pw_uid);

}

(A2) Modified WU-FTPD getdatasock()

{ tmp = geteuid();

 seteuid(0);

 setsockopt(...);

seteuid(tmp);

}

(B1)Original SSHD do_authentication()

{ int authenticated = 0;

 while (!authenticated) {

L1:type = packet_read(); //vulnerable

 switch (type) {

 case SSH_CMSG_AUTH_PASSWORD:

 if (auth_password(user, passwd))

 authenticated = 1;

 case ...

 }

if (authenticated) break;

 }

do_authenticated(pw);

}

(B2)Modified SSHD do_authentication()

{ int authenticated = 0;

 while (!authenticated) {

L1:type = packet_read(); //vulnerable

 authenticated = 0;

 switch (type) {

 case SSH_CMSG_AUTH_PASSWORD:

 if (auth_password(user, passwd))

 authenticated = 1;

 case ...

 }

if (authenticated) break;

 }

do_authenticated(pw);

}

7 Related Work

Our research is motivated by a number of papers

investigating system susceptibilities under hardware

transient errors. It has been shown that random

hardware faults can lead to security compromises in

many real-world applications. Boneh et al. [5] show

that the Chinese Remainder Theorem based

implementation of the RSA signature algorithm is

vulnerable to any hardware/software errors during

certain phases of the algorithm. The produced

erroneous cipher text allows the attacker to derive the

RSA private key. In [50], we observe that even single-

bit flip transient errors in critical sections of server

programs can cause false authentications. We also show

in an experiment [15] that bit-flip errors in Linux kernel

firewall facilities allow malicious packets to survive

firewall packet filtering. Govindavajhala and Appel

conduct a real physical fault injection experiment with a

spotlight bulb heating the PC memory chips [20]. The

Java language type system can be subverted with high

probability under this harsh condition. Although the

results in the context of random errors may not

demonstrate imminent security threats, they clearly

indicate the possibility of finding attacks other than

altering control flow in real-world systems.

Also related are papers discussing the possibility of

evading system-call-based host IDS’s by disguising

traces of system calls. Mimicry attacks [48][49] cannot

be detected by the IDS because the malicious code can

issue system call sequences that are considered

legitimate under the IDS model. The attacks proposed

by Tan et al. evade IDS detection by changing foreign

system calls to equivalent system calls used by the

original program [45]. It should be noted that mimicry

attacks still alter program control flow, and thus are

defeated by control-flow-integrity-based protections

and non-executable-memory-based protections.

Pincus and Baker conduct a study on memory

vulnerabilities and attacks [29]. They extract three

primitive attack techniques and provide a taxonomy of

current defensive techniques. A conclusion of the study

is that current defensive techniques are not

comprehensive; each one only provides partial

coverage, and no combination of them defeats all

known attacks.

8 Conclusions

We begin with the Applicability Claim: many real-

world software applications are susceptible to attacks

that do not hijack program control flow, and the

severity of the resulting security compromises is

equivalent to that of control-data attacks. The claim is

empirically validated by experiments constructing non-

control-data attacks against many major network server

applications. Each attack exploits a different type of

memory vulnerability to corrupt non-control data and

obtain the privilege of the victim process. Based on the

results of the experiments, we argue that control flow

integrity may not be a sufficiently accurate

approximation of software security. The general

applicability of non-control-data attacks represents a

realistic threat to be considered seriously in defense

research.

14th USENIX Security SymposiumUSENIX Association 189

14th USENIX Security Symposium

We study a wide range of current defensive techniques

and discuss how the general applicability of non-

control-data attacks affects the effectiveness of these

techniques. The analysis shows the necessity of further

research on defenses against memory corruption based

attacks. Finding a generic and secure way to defeat

memory corruption attacks is still an open problem.

Despite their general applicability, non-control-data

attacks are less straightforward to construct than are

control-data attacks, because the former require

semantic knowledge about target applications. Another

important constraint is the lifetime of security-critical

data. We suggest that reducing data lifetime is a secure

programming practice that increases software

resilience to attacks.

Acknowledgments

We owe thanks to many people for their insightful

suggestions and extensively detailed comments on the

technical contents and the presentation of this paper.

In particular, we thank Peng Ning at North Carolina

State University, Fei Chen, John Dunagan, Jon Pincus,

Dan Simon, and Helen Wang at Microsoft, and Fran

Baker, Zbigniew Kalbarczyk, and Karthik

Pattabiraman at University of Illinois at Urbana-

Champaign. The comments from the anonymous

reviewers have also improved the paper.

This work is supported in part by a grant from

Motorola Inc. as part of Motorola Center for

Communications, in part by NSF ACI CNS-0406351,

and in part by MURI Grant N00014-01-1-0576.

References

[1] S. Andersen and V. Abella. Data Execution Prevention.

Changes to Functionality in Microsoft Windows XP

Service Pack 2, Part 3: Memory Protection

Technologies. http://www.microsoft.com/technet/

prodtechnol/winxppro/maintain/sp2mempr.mspx

[2] Aleph One. Smashing the stack for fun and profit.

Phrack Magazine, 49(7), Nov. 1996.

[3] The Apache Software Foundation.

http://www.apache.org/

[4] PaX Address Space Layout Randomization (ASLR).

http://pax.grsecurity.net/docs/aslr.txt

[5] D. Boneh, R. A DeMillo, and R. Lipton. On the

importance of eliminating errors in cryptographic

computations. In Proceedings of Advances in

Cryptology: Eurocrypt ’97, pp.37-51, 1997

[6] S. Bhatkar, D. DuVarney, and R. Sekar. Address

obfuscation: An efficient approach to combat a broad

range of memory error exploits. In Proceedings of 12th

USENIX Security Symposium. Washington, DC, August

2003.

[7] A. Baratloo, T. Tsai, and N. Singh, Transparent run-rime

defense against stack smashing attacks, In Proceedings

of USENIX Annual Technical Conference, June 2000.

[8] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-

Hartman. FormatGuard: Automatic protection from

printf format string vulnerabilities. In Proceedings of the

10th USENIX Security Symposium, Washington, DC,

August 2001.

[9] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.

PointGuard: Protecting pointers from buffer overflow

vulnerabilities. In Proceedings of the 12th USENIX

Security Symposium. Washington, DC, August 2003.

[10] J. R. Crandall and F. T. Chong. Minos: Control data

attack prevention orthogonal to memory model. To

appear in Proceedings of the 37th International

Symposium on Microarchitecture. Portland, OR.

December 2004.

[11] CERT Security Advisories. http://www.cert.org/

advisories/

[12] CERT CC. CERT Advisory CA-2001-33 Multiple

Vulnerabilities in WU-FTPD, 2001.

[13] CERT Advisory CA-2001-21 Buffer Overflow in

telnetd. http://www.cert.org/advisories/CA-2001-21.html

[14] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P.

Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.

Automatic detection and prevention of buffer-overflow

attacks. In Proceedings of the 7th USENIX Security

Symposium, San Antonio, TX, January 1998.

[15] S. Chen, J. Xu, R. K. Iyer, and K. Whisnant. Modeling

and analyzing the security threat of firewall data

corruption caused by instruction transient errors, In

Proceedings of the IEEE International Conf. on

Dependable Systems and Networks, Washington DC,

June 2002.

[16] D. Evans and D. Larochelle. Improving security using

extensible lightweight static analysis. IEEE Software,

Jan/Feb 2002

[17] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B.

Miller. Formalizing sensitivity in static analysis for

intrusion detection. In Proceedings of the 2004 IEEE

Symposium on Security and Privacy, May 2004.

[18] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longsta. A

sense of self for Unix processes. In Proceedings of the

1996 IEEE Symposium on Security and Privacy, May

1996.

[19] H. Feng, O. Kolesnikov, P. Fogla, W. Lee and W. Gong.

Anomaly detection using call stack information. In

Proceedings of the 2003 IEEE Symposium on Security

and Privacy, May 2003.

[20] S. Govindavajhala and A. W. Appel. Using memory

errors to attack a virtual machine. In Proceedings of

IEEE Symposium on Security and Privacy, 2003,

Oakland, California. May 2003.

[21] J. Giffin, S. Jha, and B. Miller. Efficient context-

sensitive intrusion detection. In Proceedinsg of the

USENIX Association190

Symposium on Network and Distributed System

Security, February 2004.

[22] D. Gao, M. Reiter, and D. Song. Gray-box extraction of

execution graphs for anomaly detection. In Proceedings

of the 11th ACM Conference on Computer and

Communication Security, October 2004.

[23] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion

detection using sequences of system calls. Journal of

Computer Security, 6(3), 1998.

[24] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J.

Cheney, and Y. Wang. Cyclone: A safe dialect of C. In

Proceedings of USENIX Annual Technical Conference.

Monterey, CA, June 2002.

[25] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the

detection of anomalous system call arguments. In

Proceeding of ESORICS 2003, October 2003.

[26] Microsoft Security Bulletin, http://www.microsoft.com/

technet/security/

[27] G. C. Necula, S. McPeak, and W. Weimer. CCured:

Type-safe retrofitting of legacy code. In Proceedings of

the ACM Symposium on Principles of Programming

Languages (POPL), 2002

[28] J. Newsome and D. Song. Dynamic taint analysis for

automatic detection, analysis, and signature generation

of exploits on commodity software. In Proceedings of

the 12th Annual Network and Distributed System

Security Symposium (NDSS ’05), February 2005.

[29] J. Pincus and B. Baker. Mitigations for Low-level

Coding Vulnerabilities: Incomparability and

Limitations.

http://research.microsoft.com/users/jpincus/mitigations.

pdf, 2004.

[30] Perl Security. http://www.perldoc.com/perl5.6/pod/

perlsec.html

[31] K. Pekka and L. Kalle. SSH1 Remote Root Exploit.

http://www.hut.fi/~kalyytik/hacker/ssh-crc32-exploit_

Korpinen_Lyytikainen.html. 2002

[32] P. Starzetz. CRC32 SSHD Vulnerability Analysis.

http://packetstormsecurity.org/0102-

exploits/ssh1.crc32. txt

[33] R. Wojtczuk. Defeating Solar Designer Non-executable

Stack Patch. http://geek-girl.com/bugtraq, January

1998.

[34] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A

fast automaton-based method for detecting anomalous

program behaviors. In Proceedings of the 2001 IEEE

Symposium on Security and Privacy, May 2001.

[35] A. Smirnov and T. Chiueh. DIRA: Automatic detection,

identification and repair of control-data attacks. In

Proceedings of the 12th Network and Distributed

System Security Symposium (NDSS), San Diego, CA,

February 3-4, 2005.

[36] Ghttpd Log() Function Buffer Overflow Vulnerability.

http://www.securityfocus.com/bid/5960

[37] SSH CRC-32 Compensation Attack Detector

Vulnerability. http://www.securityfocus.com/bid/2347/

[38] Null HTTPd Remote Heap Overflow Vulnerability.

http://www.securityfocus.com/bid/5774 and

http://www.securityfocus.com/bid/6255

[39] Multiple Vendor Telnetd Buffer Overflow Vulnerability.

http://www.securityfocus.com/bid/3064

[40] Sendmail Debugger Arbitrary Code Execution

Vulnerability. http://www.securityfocus.com/bid/3163

[41] Solar Designer. StackPatch. http://www.openwall.

com/linux

[42] G. Suh, J. Lee, and S. Devadas. Secure program

execution via dynamic information flow tracking. In

Proceedings of the 11th International Conference on

Architectural Support for Programming Languages and

Operating Systems. Boston, MA. October 2004.

[43] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,

and D. Boneh. On the effectiveness of address space

randomization. In Proceedings of the ACM Conference

on Computer and Communications Security (CCS).

Washington, DC. Oct. 2004.

[44] U. Shankar, K. Talwar, J. Foster, and D. Wagner.

Detecting format string vulnerabilities with type

qualifiers. In Proceedings of the 10th USENIX Security

Symposium, 2001.

[45] K.M.C. Tan, K.S. Killourhy and R.A. Maxion.

Undermining an anomaly-based intrusion detection

system using common exploits. RAID, 2002.

[46] Tim Newsham. Format String Attacks.

http://muse.linuxmafia.org/lost+found/format-string-

attacks.pdf

[47] United States Computer Emergency Readiness Team.

Technical Cyber Security Alerts, http://www.us-

cert.gov/cas/techalerts/

[48] D. Wagner and D. Dean. Intrusion detection via static

analysis. In Proceedings of the IEEE Symposium on

Security and Privacy, 2001.

[49] D. Wagner and P. Soto. Mimicry attacks on host-based

intrusion detection systems. In Proceedings of the 9th

ACM Conference on Computer and Communications

Security (CCS), 2002.

[50] J. Xu, S. Chen, Z. Kalbarczyk, R. K. Iyer, An

experimental study of security vulnerabilities caused by

errors. In Proceedings of the IEEE International Conf.

on Dependable Systems and Networks, Göteborg,

Sweden, July 01-04, 2001.

[51] J. Xu, Z. Kalbarczyk and R. K. Iyer. Transparent

Runtime Randomization for Security. In Proceedings of

Symposium on Reliable and Distributed Systems

(SRDS), Florence, Italy, October 6-8, 2003.

[52] W. Young and J. McHugh. Coding for a believable

specification to implementation mapping, In Proceedings

of the IEEE Symposium on Security and Privacy, 1987.

[53] O. Ruwase and M. S. Lam. A practical dynamic buffer

overflow detector. In Proceedings of the 11th Annual

Network and Distributed System Security Symposium,

pages 159–169, February 2004.

14th USENIX Security SymposiumUSENIX Association 191

