64

conference

reports

This issue’s reports
focus on the 13th

USENIX Security Sym-

posium, held in San
Diego, California,
August 9—13,2004.

Our thanks to the
scribe coordinator:

Rik Farrow

Our thanks to the
summarizers:
Alvin AuYoung
Eric Cronin

Marc Dougherty
Serge Egelman
Rachel Greenstadt
Stefan Kelm
Zhenkai Liang
Chad Mano

Nick Smith
Ashish Raniwala
Tara Whalen

Wei Xu

;LOGIN: VOL. 29, NO. 6

KEYNOTE ADDRESS
Back to the Future

William “Earl” Boebert, Sandia
National Laboratory

Summarized by Tara Whalen

Earl Boebert opened his remarks by
saying that his views were his own,
since “nobody in their right mind
would let me speak for them.” The
wealth of knowledge and insight
expressed in his keynote talk dem-
onstrated that nobody in their right
mind would ignore his expertise.
Boebert stated that a lot has been
forgotten about security over the
years, so it is necessary for some-
body who’s been around for a while
to speak up.

Boebert said that the way to build
buildings that stay up is to look at
buildings that fall down. Security
experts should not ask, “Why does
it work?” but “How does it fail?”
What is worrisome is that currently
insecurity has been pushed to the
end nodes, which is the worst place
for it to be. Why did this happen?
It was driven by economics: You
make money by giving people what
they want. Quoting comedian Rich
Hall, Boebert said that what Ameri-
cans wanted was “crap in a hurry,”
and, apparently, so do computer
people. However, an alternative
exists: engineering. Software devel-
opers used to aspire to well-engi-
neered solutions before the indus-
try was overwhelmed with the “get
rich quick” ethos.

Boebert went on to talk about the
higher-level goals of engineering:
operational and formal assurance.
Operational assurance is what you
gain from experience: “It hasn’t
killed anybody yet, so it must be
okay.” However, to gain operational
assurance, you must always carry
out your operations in exactly the
same way. Instead, you could rely
on formal assurance, a structured
argument that shows what you can
safely do. Boebert then talked about
assurance in the context of his ex-
perience with Multics.

Multics was developed around
principles that supported formal
assurance, including unity of
mechanism (doing a task all in one
place) and separation of policy and
mechanism. In addition, one of its
design strengths was simplicity. For
example, Multics’ virtual memory
design was useful for what it got rid
of: buffers, inodes, puts, and gets,
which were replaced by a unified
name space. Also, backups were
automatic and silent; Boebert used
Multics from 1969 to 1988 and
never lost a file.

Multics was based on a “large
process model” of the movement of
an execution point through code
modules. This supports assurance
arguments about system security.
For example, in Multics, access
rights were part of the segment
descriptor word (used for the page
table). This provides a “hardware
lemma”: You cannot avoid hitting
the access bits, because they are
integral to forming a hardware
address.

Boebert also discussed online
threats, using the term “Internet
slime” to describe such problems as
active content. What you want to
have is a system such that the
Internet slime cannot under any
circumstances get access to the ker-
nel. Following the Multics design,
you set up an intermediate module
between the slime and the kernel:
slime can’t call the kernel object
directly, but has to go through a
“gate” object. The intermediate
module performs argument valida-
tion, after which it can provide
access to the kernel object, which
keeps the slime object safely away.
In case a really bad slime object
tried to fool the kernel object into
calling back to the slime, the hard-
ware ring would trap it and stop
the disaster from happening.

Other good features of Multics
included pointers, single copies of
procedures, and heavy use of
dynamic linking. A NASA study
concluded that you should either
change software a little every day or

a lot once a year if you want to have
a stable system. Because it sup-
ported online software updates,
Multics was remarkably stable.

Boebert added that “we had some
lousy ideas back then, but in our
own defense, we never came up
with anything as silly as security as
a side effect of copyright enforce-
ment.” He concluded with a brief
prognosis: “When an old fart
comes up here, he’s supposed to
forecast the future optimistically, so
we all go away with a nice feeling.”
However, he is not optimistic that
we will ever see a system as rigor-
ously engineered as Multics: The
desire for “crap in a hurry” will pre-
vent this in the foreseeable future,
sadly.

One audience member asked how
we could bring back the climate in
which Multics was engineered.
Boebert replied that he would try to
reinstate the principles, rather than
the system itself. He thinks that it
would be nice if somebody would
“do one [operating system] right
for the sake of doing one right,” as
a learning experience.

ATTACK CONTAINMENT

Summarized by Stefan Kelm
A Virtual Honeypot Framework
Niels Provos, Google, Inc.

This year’s first refereed paper was
presented by Niels Provos, the
author of honeyd, which he de-
scribed during this talk. A honey-
pot can be defined as a computing
resource that we explicitly want to
have probed or attacked in order to
study an attacker and his actions
on our system. In terms of their
implementation, honeypots can be
divided into low-interaction vs.
high-interaction honeypots as well
as physical vs. virtual honeypots.

honeyd offers a framework for cre-
ating low-interaction virtual hon-
eypots. It is able to simulate TCP,
UDP, and ICMP packets and to
adapt what Niels described as “dif-
ferent operating system personali-

;LOGIN: DECEMBER 2004

ties.” Thus, honeyd simulates the
TCP/IP stack behavior of a huge
number of today’s known OS
implementations, thereby hiding
the IP stack of the actual system
honeyd is running on. This is real-
ized by the so-called “personality
engine,” one of the core compo-
nents of honeyd. The personality
engine is based on nmap’ finger-
print file: Anyone running nmap
against a honeyd system will there-
fore get whatever OS has been con-
figured to show up.

Another core component is the
traffic dispatcher: Since honeyd
does not itself intercept any net-
work traffic, the traffic needs to be
redirected to honeyd. The traffic
dispatcher then has to decide how
to handle any incoming packets.
Since there are several ways to redi-
rect traffic, honeyd is able to simu-
late not only a single IP address but
complete network topologies, con-
sisting of multiple hosts running
different operating systems. Inter-
estingly, honeyd seems to do very
well performance-wise: On a stan-
dard PC, honeyd is able to simulate
roughly 2000 TCP connections per
second.

Niels went on to describe possible
applications, namely, detecting and
disabling worms as well as prevent-
ing spam. The author concluded
that honeyd provides an efficient
and scalable framework that de-
ceives fingerprinting. Future work
will be to enhance honeyd for fur-
ther attack detection.

A number of interesting questions
were asked by the attendees, two of
which focused on honeyd in an
IPv6 environment. Niels acknowl-
edged that deploying IPv6 honey-
pots will likely be more expensive.

For more information, contact
niels@google.com or see http:/
www.citi.umich.eduw/u/provos/
honeyd/.

Collapsar: A VM-Based Architec-
ture for Network Attack Detention
Center

Xuxian Jiang and Dongyan Xu,
Purdue University

This talk can be seen as a follow-up
to the previous one. Dongyan
started by describing some of the
problems of current honeypots,
namely, lack of expertise, incon-
sistencies when operating multiple
honeypots, and no central manage-
ment. His solution is called Collap-
sar, a VM-based architecture which
is founded on Lance Spitzner’s hon-
eyfarm idea.

Collapsar tries to integrate two
goals: implementing a distributed
honeypot presence within a net-
work topology, while maintaining a
centralized honeypot operation. It
consists of three main functional
components: (1) the redirector
runs in each participating network
and captures all traffic to unused
1P addresses, which is then redi-
rected to another component;

(2) the front end acts as an inter-
face between the redirectors and
what is called the “Collapsar cen-
ter”; (3) the virtual honeypots
inside the Collapsar center are
implemented as high-interaction
honeypots and are therefore able to
simulate different operating sys-
tems as well as popular services
such as Sendmail and Apache. In
addition, there are a number of dif-
ferent assurance modules, provid-
ing, for example, traffic logging and
subsequent data correlation.

Dongyan next described the results
of a Collapsar experiment they've
been running. The honeypot archi-
tecture was deployed in a local
environment that consisted of traf-
fic redirected from five different
networks with 40 honeypots run-
ning within the Collapsar center.
During that experiment they were
able to do a forensic analysis on
incidents such as attacks on
Apache or on XP. As to the per-
formance, they measured TCP
throughput as well as ICMP latency

13TH USENIX SECURITY SYMPOSIUM 65

66

for both VMware and UML (user-
mode Linux).

The authors observed that Collap-
sar even allows for more sophisti-
cated analyses, such as stepping-
stone identification and detection
of network scans.

During the discussion one member
of the audience remarked that Col-
lapsar relies on the (bad) principle
of “security by obscurity” in that
the redirectors need to remain in
the “dark IP space” (i.e., hidden
from possible attackers) in order to
function properly. This was con-
firmed by Dongyan.

For more information, contact
dxu@cs.purdue.edu or see
http://www.cs.purdue.eduwhomes/
jiangx/collapsar.

Very Fast Containment of
Scanning Worms

Nicholas Weaver, International Com-
puter Science Institute; Stuart Stani-
ford, Nevis Networks; Vern Paxson,
International Computer Science
Institute and Lawrence Berkeley
National Laboratory

Nicholas Weaver talked about a
new and very fast method to scan
for kinds of “Internet slime” in
order to stop these worms effi-
ciently. Static defenses have been
and still are insufficient to stop
worms from spreading in networks.
The reaction needs to be automatic.

The algorithm Nicholas and his
group have developed aims to
implement worm containment, i.e.,
isolating a worm and subsequently
stopping it from spreading further.
Their work is based on the Thresh-
old Random Walk (TRW), which
has been modified for better hard-
ware and software implementation
possibilities. The basic idea is to
use caches in order to keep track of
incoming and outgoing connec-
tions; if a particular counter has
been reached, connections start
being blocked.

One interesting addition to the
algorithm seems to be cooperation
between said containment devices.

;LOGIN: VOL. 29, NO. 6

If a device is able to use the status
of other devices as another detec-
tor, the scanning results should be
improved. The speaker concluded
that not only are they able to
enhance worm containment using
their implementation, but they also
gain a better understanding of par-
ticular worm attacks.

For more information, contact
nweaver@icsi.berkeley.edu.

RFID: Security and Privacy for
Five-Cent Computers

Ari Juels, RSA Labs
Summarized by Ashish Raniwala

Ari Juels, principal research scien-
tist at RSA, gave an excellent pres-
entation on security and privacy
issues for RFID. RFID does not
refer to any single device but to a
spectrum of them, ranging from the
basic RFID tag and EZ Pass to
mobile phones. The talk focused on
the basic RFID tag, which is a pas-
sive device that gets all its power
from the RFID reader. In contrast
to a bar code, RFID does not
require line of sight between the tag
and the reader. Additionally, RFID
provides a unique ID for every
object, as compared to bar codes,
which only identify the type of
object. An RFID has fairly limited
memory (hundreds of bits), com-
putational power (thousands of
gates), and wireless range (few
meters), making it hard to imple-
ment any real cryptographic func-
tions or non-static keys.

RFID is already seeing many practi-
cal applications, starting from sup-
ply-chain visibility to anti-counter-
feiting drugs. With push from such
industry giants as Wal-Mart and
Gillette and the decreasing cost of
tags and readers (estimated to be 5
cents/tag and several hundred to
several thousand dollars/reader by
2008), RFIDs are expected to
become the physical extension of
the Internet.

However, there are several security
and privacy issues associated with
RFID usage. An RFID tag can be

clandestinely scanned to get per-
sonal information such as items
carried on person. Limited comput-
ing resources make it hard to
enforce strong access control on the
RFID. Because of such concerns,
RFIDs are already facing strong
opposition, not just from cus-
tomers but from corporations as
well. For example, corporations
need to worry about espionage and
tag counterfeiting.

One approach to address the pri-
vacy issues is to “kill” the RFID tag
as soon as the customer checks out
items from the store. However,
RFIDs are much more useful in
their “live” state. Ari mentioned
several novel applications that
require that RFIDs stay alive post-
checkout. For example, one can
imagine a “smart” closet that can
detect what clothes one has and
suggest latest styles, or a “smart”
medicine cabinet that can aid cog-
nitively impaired patients, or auto-
mated sorting of recycled objects.

Ari suggests that it is hard to come
up with useful solutions if one
assumes the omnipresent oracle
adversarial model. One needs to
work with more realistic and
weaker adversarial assumptions.
Ari discussed three different
approaches based on his own
research. The first approach,
termed “minimalist cryptography,”
is based on the observation that an
adversary has to be physically close
to the tag to be able to read it, and
therefore can query it only a few
times in any attack session. One
can therefore store multiple pseu-
donyms on the tag, and return a
different one each time the adver-
sary queries. This makes it hard for
the adversary to associate any tag
with a particular object. The
object-pseudonyms association can
be known only to a trusted verifier.
This approach can be further
strengthened by throttling the
query rate to prevent rapid,
repeated scanning of the tag, and
by refreshing the set of pseudo-
nyms using a trusted reader.

The second approach is based on
the idea of a “blocker tag,” which
can simulate all possible tags for
any object. The blocker tag exploits
the “tree-walking” anti-collision
protocol used in ordinary tag-
reader communications, and re-
turns both “0” and “1” every time
the reader queries for the next bit
of the tag. This spams the reader
with a large number of tags, pro-
tecting the privacy of the person.
A blocker tag, however, needs to
be selective in its blocking; for in-
stance, it should only block pur-
chased items carried by a shopper,
not the unpurchased ones. Juels
discussed use of a privacy bit that
can be turned on or off based on
whether the user wants the item to
belong to the privacy zone.

The third approach uses a proxy
RFID device, such as a mobile
phone. The proxy device acquires
the tags of the object and deacti-
vates the original tag. All queries to
the tag are then answered by the
proxy device while enforcing the
desired privacy policies. The proxy
device can release the acquired tag
and reactivate the original tag when
itis about to leave the wireless
range of the proxy.

RFIDs have led to a significant pri-
vacy debate, but at this point these
security and privacy problems are
more psychological than techno-
logical. Currently, RFID deployers
can barely get the technology to
work. For instance, UHF tags do
not work well when close to the
human body. It is hard to distin-
guish items in one shopper’s cart
from those in another’s, because of
the uncontrolled wireless range.

Ari concluded the talk by dis-
cussing some of the open issues for
research: more realistic adversarial
models for evaluating security
techniques, and anti-cloning to
prevent cloning of RFIDs. Ari
pointed to http://www.rfid-security
.com for more information.

;LOGIN: DECEMBER 2004

PANEL: CAPTURE THE FLAG

Giovanni Vigna, University of
California, Santa Barbara; Marc
Dougherty, Northeastern University;
Chris Eagle, Naval Postgraduate
School; Riley Eller; CoCo Communi-
cations Corp.

Summarized by Rachel
Greenstadt

The goal of this panel was to
explore the utility of Capture the
Flag competitions as pedagogical
tools. These are competitions in
which teams compete to defend
their computers/data and attack
those of the other team. A scoring
bot periodically gauges the progress
of the various teams and assigns
points.

The panel, moderated by Tina Bird,
got off to a rough start as Riley/Cae-
sar—representing the Ghetto Hack-
ers—was delayed. The Ghetto
Hackers run the famous Capture
the Flag competition at DefCon. He
arrived by the end, but the panel
began with the other panelists:
Chris Eagle, associate chairman of
the Naval Postgraduate School and
a member of their Capture the Flag
team; Marc Dougherty, who runs a
Capture the Flag competition at
Northeastern; and Giovanni Vigna,
an associate professor of CS at
UCSB who runs Capture the Flag
competitions at his school and par-
ticipates in the DefCon competi-
tion. It turned out Chris repre-
sented the winning team at this
year’s DefCon, and Giovanni, the
second place team.

Marc Dougherty got his start in
Capture the Flag competitions by
participating in the competition at
Northeastern and winning by
exploiting a trivial weakness in the
game setup. He decided to help fix
the competition and has been
involved in it ever since. He likes
Capture the Flag competitions
because they give students an
opportunity to play with tools they
wouldn’t get to play with (legiti-
mately) otherwise. At Northeast-

ern, Capture the Flag is all-volun-
teer, not part of any class, and is all
about fun. They run their competi-
tion attached to the Internet (as
opposed to most other competi-
tions, which have an air gap), but
the students are careful. Marc’s
working on a modular system for
running and scoring games so that
they are easier to set up and run.
He hopes to have it out, and avail-
able to the public, by October.

Chris has been involved with Cap-
ture the Flag for four years; this
year his team won at DefCon. In
describing their victory, he ex-
plained how the setup of the game
can have unintended consequen-
ces. This year’s DefCon was sup-
posed to be all about offense—85%
of the points were gained from
offense, only 15% from defense—
but Chris acknowledged that Gio-
vanni’s team had a better offense
than his. However, the way the
scoring bot worked was to access
each system and then award points
based on how many of your own
and other teams’ tokens you had.
Chris’s team won by waiting for
Giovanni’s team to hack a bunch
of systems and then hacking theirs,
stealing all their tokens and de-
fending them well.

Giovanni concurred with this
analysis and also mentioned that
DefCon was tricky this year
because the VM image of the sys-
tem they were supposed to attack
and protect was Windows, and who
knows how to deal with that? Gio-
vanni talked more about running a
competition in a university setting.
Capture the Flag competitions are a
great tool to educate students in
security. In this hands-on experi-
ence, the students learn a lot about
buffer overflows, SQL injection,
etc. You can also structure the com-
petition so that you get useful data
for your research, which is a nice
side effect. The competitions help
students develop teamwork and
crisis management skills. All the
panelists agreed that the most diffi-
cult part of running the competi-

13TH USENIX SECURITY SYMPOSIUM 67

68

tions was developing a good scor-
ing system. A competition requires
a lot of time to set up initially, but
running it becomes easier after
that.

This was Caesar’s fourth year
involved in running the DefCon
Capture the Flag competition. After
the Ghetto Hackers won the com-
petition the third time in a row,
they decided to run it. This year
they changed the system so that the
scoring bot monitored who had the
tokens of the various teams. Before
this, scoring was just based on
rooting a box, which is not an
interesting measure per se, since it
doesn’t provide a realistic view of
the way information is stolen today
(at this point, Tina noted that two
of the panelists’ eyebrows moved).
The competition was easier to pre-
pare this year; they got people with
a bunch of drinks coding nonstop
for 10 days and it was done. All the
panelists praised the way the Def-
Con qualifying round was run this
year. The Ghetto Hackers are orga-
nizing a large, Internet-based con-
test, called Mega Root Fu. The
Ghetto Hackers are willing to run
competitions in exchange for air-
line and hotel costs and a weekend
beer budget ($200-$300 of alcohol
a day).

Fighting Computer Virus Attacks
Peter Szor, Symantec Corporation
Summarized by Wei Xu

Every month, critical vulnerabili-
ties are reported in a wide variety of
operating systems and applications.
Computer virus attacks are quickly
becoming the number one security
problem and range from large-scale
social engineering attacks to
exploiting critical vulnerabilities.
In this talk Szor discussed the state
of the art in computer viruses and
computer virus defense. He pre-
sented some promising host-based
prevention techniques that can
stop entire classes of fast-spreading
worms, as well as worms using
buffer overflow attacks. He also dis-

;LOGIN: VOL. 29, NO. 6

cussed in-depth worm and exploit
analysis.

Szor first presented a short history
of self-replicating structures. Mod-
ern computers started from von
Neumann’s architecture, in which
programs are stored in primary
memory and the CPU executes the
instructions one by one. In 1948
von Neumann introduced Kinema-
ton, a self-reproductive machine.
Later Ed Fredkin used cellular
automata to represent self-repro-
ductive machines. In 1966, warrior
programs, Darwin and Core Wars,
were devised. In these programs,
warriors fight each other, which is
very similar to modern worms.
John Horton Conway’s 1970 Game
of Life is unusual. The game fol-
lows a set of simple rules, but it can
produce a remarkably large number
of patterns. In the early seventies,
self-replicating programs emerged.
For instance, in 1971-1972,
Creeper was born during the early
development of ARPANET. In
1975, the self-replicating version of
the Animal game was released,
written by John Walker, founder of
Autodesk, Inc. In 1982, Skrenta’s
Elk Cloner, a virus on Apple II, was
developed. Peter showed a quick
demo of Elk Cloner using an Apple
11 emulator.

Peter then presented several repre-
sentative virus code evolution tech-
niques. The complexity of virus
threats has increased over time. In
1987, code encryption began to be
used to hide the function of the
virus code, and in 1990, code per-
mutation was introduced into
viruses. The number of permuta-
tions of a single virus has increased
significantly. For example, in 2000
W32.Ghost had 10 factorial differ-
ent permutations. Polymorphic
viruses, which first appeared in
1991, can create an endless number
of new decryptors that use different
encryption methods to encrypt the
constant part of the virus body. An
even more powerful technique used
by polymorphic viruses is external
polymorphic engines (Polymorphic

Engine Object, or MtE). Emulation
provides a very good approach to
detection of this type of virus.

Metamorphic viruses are more dif-
ficult to detect. Here “metamor-
phic” means “body polymorphic.”
Unlike other polymorphic viruses,
metamorphic viruses do not
require a decryptor. Instead, the
virus body is “recompiled” in new
generations, and the virus code can
shrink and expand itself. Source
code mutation (encrypted source
code compiled into slightly differ-
ent but equivalent encrypted
source code) is usually used in
metamorphic viruses (e.g.,
W32.Apparition). Equivalent
instruction sequences are one s
uch technique. There are metamor-
phic viruses for Windows operat-
ing systems, including the recent
Windows .NET framework
(MSIL.Gastropod in 2004). Sur-
prisingly, there are also multi-plat-
form metamorphic viruses, such as
{W32, Linux}/Simile.D, which
infects both Windows and Linux
systems.

There is a class of “undetectable”
computer viruses. W95.Zmist is
one example. This virus is an entry-
point-obscuring virus that is meta-
morphic. Moreover, the virus ran-
domly uses an additional
polymorphic decryptor. Zmist also
supports a unique new technique:
code integration. The Mistfall
engine contained in the virus is
capable of decompiling portable
executable files to their smallest
elements. Zmist first moves code
blocks out of the way, inserts itself
into the code, regenerates code and
data references, including reloca-
tion information, and rebuilds the
executable.

Next Szor talked about modern
worm attacks. Nowadays, we have
another important problem: fast-
spreading worms. The frequency of
worm attacks is increasing, and
worms are getting faster than
update and patch deployment.
Meanwhile, known vulnerabilities
are on the rise. There are many

incidents of worms that caused
major DoS attacks; for instance, the
Blaster worm contributed to a
major blackout. Here are several
famous worms: Blaster (August
2003), Code Red (July 2001),
Nimda (September 2001), Slammer
(January 2003).

The Code Red worm is based on a
buffer overflow attack on Microsoft
Internet Information Server (11S).
The worm uses GET requests to
trigger the buffer overflow vulnera-
bilities in IIS.

The Slammer worm is another
buffer overflow-based attack tar-
geting Microsoft SQL Server. The
Slammer code is amazingly small,
only 376 bytes.

To detect these types of worms, we
can use generic IDS signatures
characterized by the sizes of buffer
and input strings as well as other
important attack patterns. Below is
arule to detect Slammer:

alert udp any any -> any
1434 (msg: “"MS02-039
exploitation”; content:
“|04|"; offset 0; depth:1;
dsize>60)

where 60 is calculated by
size_of_buffer - (string_size1 -
string_size3 - terminating_zero)
=128-40-27-1 =60.

Szor gave the details of how Blaster
works. Basically, Blaster exploits
the target on port 135/tcp of Win-
dows XP/2000 and uses the TFTP
protocol to upload the worm code
onto the victim systems.

Szor then presented various worm-
blocking techniques.

In a host-based layered security
model, we have layers such as per-
sonal firewall, anti-virus protec-
tion, host-based IDS, and OS/appli-
cation layer prevention or access
control. The network can also be a
part of this model. Outbound
SMTP worm blocking is an exam-
ple of network protection. In this
case, emails sent by an SMTP client
are first redirected to a scan man-
ager for virus scanning before being

;LOGIN: DECEMBER 2004

passed to the SMTP server. The
scan manager can use a NAV client
and consists of a decomposer and
anti-virus engines.

Digital Immune System can provide
worm/virus protections for a large-
scale network. In this system, the
customer-side AV client communi-
cates with a quarantine server,
which itself talks to the vendor-
side servers through a customer
gateway. The vendor-side servers
include automated/manual analysis
centers and definition servers.
Anti-virus researchers interact with
these servers to identify new
viruses/worms and provide detec-
tion mechanisms.

There are many techniques for
blocking buffer overflow attacks:
code reviews, security updates
(patches), compiler-level exten-
sions (e.g., StackGuard; ProPolice;
and Buffer Security Check in MSVC
Net 7.0/7.1), user-mode exten-
sions (e.g., Libsafe), kernel exten-
sions against user-mode overflows
(e.g., PAX, SecureStack), and OS
built-in protections (e.g., Solaris on
SPARC).

An NX (non-executable) page
attribute on AMD64, EM64T, and
updated Pentium 4 can be used to
prevent buffer overflow attacks.
When an NX-marked page is exe-
cuted, an exception is generated.
The Data Execution Prevention
(DEP) in Windows XP SP2 takes
advantage of this feature. Note that
there are already viruses that are
aware of DEP.

In order to block worms, we can
also deploy other techniques such
as exception-handling validation,
injected code detection (shell-code
blocking), and self-sending code
blocking (send blocking). These
techniques can stop attacks after a
buffer overflow or prevent
viruses/worms from propagating.

Szor showed demos on blocking
shell code in both Windows and
UNIX systems. He also showed
demos on blocking various worms.
It is worth mentioning that the

Witty worm made use of exploita-
tions of third-party software (Inter-
net Security Systems’ security prod-
ucts).

In the end, Szor pointed out some
future threats from viruses/worms.

Worms can do secure updating. For
example, the Hybris worm has
more than 20 plug-ins, and these
plug-ins can be downloaded via
secure channels by the worm itself.

Worms can communicate. They
can export/import user accounts/
passwords, payloads, mutation
engines, and exploit modules.

Viruses for mobile phones, smart
phones, and pocket PCs will
become a huge problem. In fact,
there already exist proof-of-concept
viruses for these platforms.

Q. Have you seen any viruses on
mobile devices that spread by
means other than Bluetooth?

A. Haven'’t seen such viruses. But
we expect to see viruses that leave a
backdoor on mobile devices and
use SMTP to send out emails with
attachments or invitation SMS mes-
sages to infect other devices.

Q. How would I get access to proof-
of-concept viruses?

A. No public accesses. We get them
by submissions.

Q. What is the meaning of “proof-
of-concept” viruses?

A. These are viruses that do not
want to hide themselves.

Q. How can one detect Zmist
today?
A. Ttis hard. But we can detect the

virus using a disassembler.

Q. Is there convergence between
anti-spam and anti-virus efforts?

A. We have recognized that anti-
spam techniques are very impor-
tant. We are investigating this.

13TH USENIX SECURITY SYMPOSIUM 69

70

PROTECTING SOFTWARE
Summarized by Chad Mano

TIED, LibsafePlus: Tools for
Runtime Buffer Overflow
Protection

Kumar Avijit, Prateek Gupta, and
Deepak Gupta, IIT Kanpur

Kumar Avijit presented a two-
pronged approach for protecting
both new and legacy code from the
“menace” called buffer overflow.
This is accomplished by using
TIED (Type Information Extractor
and Depositor) and LibsafePlus.

TIED uses debugging data gener-
ated by the compiler to create a
data structure containing the size
information of all global and auto-
matic buffers. This data structure is
inserted into the program binary to
be used at runtime. LibsafePlus is
an extension of the Libsafe tool
which provides more extensive
bounds-checking features. Libsafe-
Plus identified all 20 buffer over-
flow attacks in the Wilander and
Kamkar test suite, while Libsafe
identified only six.

The overhead associated with these
tools is around 10 percent. The
code is available at http://www
.security.itk.ac.in/projects/Tied-
Libsafeplus.

Privtrans: Automatically Parti-
tioning Programs for Privilege
Separation

David Brumley and Dawn Song,
Carnegie Mellon University

David Brumley explained that
attackers target privileged pro-
grams because “it gives them a big-
ger bang for their buck.” Programs
can be partitioned into two sepa-
rate entities to increase protection.
This prevents a bug in the unprivi-
leged part of the program from giv-
ing access to a privileged area. The
privileged program, or monitor,
handles sensitive processes, such as
opening /etc/passwd. The unprivi-
leged program, or slave, handles all
other processes. The important
result of partitioning is a small

;LOGIN: VOL. 29, NO. 6

monitor, which means the trusted
base is easier to secure.

Partitioning of programs is tradi-
tionally done manually. Mr. Brum-
ley presented the first approach to
automatic privilege separation.
This is accomplished using a tool
called Privtrans. Variables and
functions in the source code must
first be annotated to identify the
privileged parts of the program. For
the programs tested this took
between 20 minutes and two
hours. Privtrans takes the anno-
tated source and creates separate
monitor and slave source code.
Communication between the two
programs is implemented with
RPC.

Privtrans is able to obtain results
similar to manually partitioned
code. The associated overhead is
reasonable for the increase in soft-
ware security.

Avfs: An On-Access Anti-Virus
File System

Yevgeniy Miretskiy, Abhijith Das,
Charles P Wright, and Erez Zadok,
Stony Brook University

Yevgeniy Miretskiy presented Avfs,
which is a true on-access virus-
scanning file system. In contrast to
on-open, on-close, and on-exec
scanning, which run in user space,
Avfs runs in kernel space and pro-
vides incremental file scanning,
which prevents infected files from
being written to disk.

Avfs is based on the ClamAV virus
scanner, which was enhanced and
renamed Oyster. The enhance-
ments improve the scalability from
a linear function to a logarithmic
function. The important features of
Avfs are that it detects viruses early
to prevent file system corruption, it
avoids repetitive unnecessary scan-
ning by implementing partial scan-
ning, it works transparently in ker-
nel space, and it can be ported to
many file systems.

I Voted? How the Law Increasingly
Restricts Independent Security
Research

Cindy Cohn, EFF
Summarized by Rachel Greenstadt

Cindy Cohn used the work Avi
Rubin and his colleagues did exam-
ining the Diebold voting machines
to illustrate a problem facing secu-
rity researchers today: In order to
do our research, we need “her or
someone like her” to answer our
legal questions.

The first hurdle she often faces
when dealing with these matters is
people questioning the need for
independent security research. She
often has to explain that the vendor
might not otherwise be motivated
to fix security problems and that,
since we are all connected, good
security is in the public interest.
The insecure system in question in
this case was the Diebold voting
software. The source code was
leaked on the Internet, and
researchers at Johns Hopkins and
Rice did an independent security
audit. They found serious
problems.

The talk focused on four areas of
the law where the Diebold study
could be called into question.
These were copyright law, the
DMCA, the Computer Fraud and
Abuse Act, and trade-secret law. In
the case of copyright law, Diebold
owned the copyright to the code.
In order to study the code, the
researchers needed to make copies,
facing as much as $150,000 in fines
for infringement. In this case, the
researchers had a good case for
making fair use of the code, since it
was for critical and scientific work
and didn’t impede the market.
However, the law is structured
poorly for protecting fair use, as
there is no cut-and-dried way to tell
whether an action qualifies as fair
use, so you need to hire a lawyer.

Next came the DMCA. The DMCA
prohibits people from circumvent-
ing a technological measure that
controls access to a copyrighted

work. The scientific exception is
effectively useless. Some of the files
were encrypted zip archives, so the
EFF instructed the researchers only
to audit code that had been
unzipped by others. Members of
the audience expressed incredulity
that a zipped archive could be con-
sidered an effective control mecha-
nism. Another issue raised by the
DMCA is publishing findings. It is
unclear how far this goes: DeCSS?
source code showing how to bypass
some DRM? a high-level descrip-
tion of such code? an academic pa-
per? This last case was at issue in
the SDMI challenge paper pre-
sented at USENIX 01 Annual Tech-
nical Conference. The RIAA made
threats but then backed down, so
no legal precedent has been set.

The Computer Fraud and Abuse
Act is the generic federal computer
intrusion law. It states that unau-
thorized access to a protected com-
puter is illegal. Even though the
code was publicly available on
Diebold’s servers, someone proba-
bly broke this law to access it.
There was a concern that Diebold
might claim an intruder stole the
code and handed it to the research-
ers. That would be difficult since
the code was so widely available on
the Internet. But the researchers
had to depend on code falling out
of the sky.

The last issue that often comes up
is trade-secret law, which basically
states that a company’s desire to
keep any particular information
secret has to be respected and that
anyone who publishes that infor-
mation is liable. Many vendors
would love to claim that the secu-
rity flaws in their products are
trade secrets. Fortunately, reverse
engineering is allowable. However,
not all security flaws can be found
through reverse engineering, and
EULA licenses often prevent
reverse engineering. This institu-
tionalizes security through obscu-
rity.

The researchers in the Diebold situ-
ation finally got enough clearance

;LOGIN: DECEMBER 2004

to do their research, but there were
a lot of legal pitfalls, and EFF needs
support. Cindy urged the audience
to support HR 107, which provides
a fix to the DMCA, and said that it
is important to talk about the need
for security research with people
who are nontechnical. A good way
to frame the issue is in terms of
consumer protection: people need
to be protected from companies
that will sell you snake oil security
and buggy software. Avi Rubin
mentioned that everything turned
out okay in their case, but would
she advise other researchers to take
the same risk? Cindy responded
that, at the end of the day, she does
not tell people what to do. It’s her
job to lay out the risks, costs, and
benefits and whether EFF will rep-
resent them. Great advances in the
law have happened because people
were willing to take chances and
bear it if they lost. The history of
the law demonstrates that people
are rarely given rights, that they
must take them. She can tell you
what the law says now, but then
you have to make your decision.

PROTECTING SOFTWARE II
Summarized by Stefan Kelm

Side Effects Are Not Sufficient to
Authenticate Software

Umesh Shankar, Monica Chew, and
J.D. Tygar, University of California,
Berkeley

This talk was somewhat different
from most of the other ones, in that
it didn’t present a solution to a
security problem but presented an
attack to a security solution that
had been presented at the previous
security symposium.

Umesh presented a number of
problems with Genuinity, a system
allegedly able to authenticate
remote systems without using
trusted hardware. Since the Gen-
uinity source code was not avail-
able to the authors, they based their
attack scenarios on what had been
published already. The basic idea
behind Genuinity is the computa-

tion of checksums by remote sys-
tems, which subsequently gets veri-
fied by the authenticating system.
The authors described and imple-
mented what they called a substitu-
tion attack: They computed the
correct checksum quickly while
running non-approved (arbitrary)
kernel code. Thereafter, the origi-
nal data in the computation needed
to be substituted.

Umesh even went to so far as to
argue that remotely authenticating
systems will not be possible at all
without some form of trusted hard-
ware. Moreover, he questioned the
availability of useful applications
except, e.g., set-top game boxes.

For more information, contact
ushankar@cs.berkeley.edu or see
http://www.cs.berkeley.edu/~ushan
kar/research.

On Gray-Box Program Tracking
for Anomaly Detection

Debin Gao, Michael K. Reiter, and
Dawn Song, Carnegie Mellon
University

In this more theoretical talk, Debin
Gao presented work on anomaly
detection systems. Today there are
anumber of systems trying to de-
tect anomalies by closely monitor-
ing system calls; these systems usu-
ally can be grouped into white box,
black box, and gray box systems.
The motivation behind this work
was to perform a systematic study
on existing systems.

During the analysis Debin and his
team discovered that all the current
systems can be organized along
three axes: (1) the information as
extracted from the process on each
system call; (2) the granularity of
atomic units; and (3) the size of the
so-called “sliding window.” In doing
so they try to focus on all of the 18
resulting areas instead of looking at
only one, pointing out advantages
and disadvantages of one area over
another. Detailed results are
described in the proceedings.

In the Q&A session two attendees
remarked that this work does not

13TH USENIX SECURITY SYMPOSIUM 7

72

take system-call parameters into
account, which the author con-
firmed. For more information, con-
tact dgao@ece.cmu.edu.

Finding User/Kernel Pointer Bugs
with Type Inference

Rob Johnson, David Wagner; Univer-
sity of California, Berkeley

The final presentation of this ses-
sion focused on the issue of point-
ers that are passed from user appli-
cations into kernel space and that
might cause security problems.
Misusing this “feature,” an attacker
might be able to read or write to
kernel memory, or simply crash the
machine. According to Rob, this
has been and still is a persistent
problem in the Linux kernel (as
well as other kernels).

The solution presented by the
authors uses type qualifiers that
enhance the standard C language
types by defining both a kernel and
a user type qualifier. This has been
implemented using CQUAL, a
type-qualifier inference tool.

In an experimental setup, they
tested their enhancements against
several versions of the Linux kernel,
using CQUAL in verification as well
as bug-finding mode. Of the many
interesting results, they presented
17 different security vulnerabilities,
some of which had escaped detec-
tion both by other auditing tools
and by manual audits. Moreover, all
but one of those bugs was con-
firmed to be exploitable by an
attacker. As an additional result, not
in their paper, they reported that
their analysis of Linux 2.6.7-rc3
revealed that although some bugs
had been fixed, they were able to
find seven new security vulnerabili-
ties in only two days.

Someone asked why programmers
are not using the kind of solution
presented here even though similar
work has been available for quite
some time. Rob replied that he
thinks this is beginning to change.

For more information, see http://
www.cs.berkeley.edu/~rtjohnso/.

;LOGIN: VOL. 29, NO. 6

Metrics, Economics, and Shared
Risk at the National Scale

Dan Geer; Verdasys, Inc.
Summarized by Serge Egelman

Dan Geer’s talk centered on risk
assessment as applied to national
security. He covered the current
state of risk assessment, the nature
of risk, how various models are
used to measure risk, and predic-
tions for risk in the near future.

Geer first explained how risk
assessment is related to engineer-
ing; getting the problem statement
correct is extremely critical. The
correct problem cannot be solved
unless the right questions are asked
and the problem is thoroughly
understood. In terms of national
security, the questions are centered
around what can attack our infra-
structure, what can be done about
it, what the time frame is, and who
will care about it.

Because of the Internet and other
enabling technologies, our society
has greatly increased the amount of
information that is available. While
this increases productivity, it also
increases risk since, in an interde-
pendent society like ours, it is now
increasingly easy to stumble into
different locales. The technologies
are still following Moore’s Law, yet
the skills needed to properly use
this new power are unable to keep
pace. This divergence is creating a
dangerous situation with broad
implications.

Geer mentioned sitting in on a risk
management discussion at a major
bank. The key to managing their
risk is knowing exactly how much
risk to take. Not taking enough risk
does not take full advantage of
potential returns (thus losing
money), whereas taking too much
risk can result in insolvency. The
biggest problem for them is finding
this median. In finding the right
amount of risk, scenarios are dis-
cussed. These scenarios cover every
conceivable factor, as risk is the
result of many interdependencies.
This system is the basis for our

banks and financial markets, and it
largely works, for one reason:
There is zero ambiguity about who
is responsible for taking the risks.
And this is a problem for national
security because it is not very clear
who owns the risk.

Along this line of reasoning, online
risk is difficult to calculate because
the Internet is a new and unique
domain. The economic models
function because the institutions
are fairly static and predictable,
whereas the Internet crosses many
boundaries and jurisdictions. John
Perry Barlow suggests that the
Internet is separate from other
jurisdictions, while others argue
that it belongs to every jurisdiction.
Attacks on the Internet are easy
because the HTTP transport model
allows the attacker to concentrate
on the attack itself, as he or she
does not need to worry about prop-
agating it. Software companies are
increasingly relying on HTTP for
communication with applications,
thus allowing attacks to be more
concentrated. Additionally, this will
increase the total amount of traffic
on HTTP, which will make content
filtering infeasible.

Economics have dictated a shift
toward data. Corporate IT spend-
ing on data storage has been
increasing every year, from 4% in
1999 to 17% in 2003. The total vol-
ume of data has been doubling
every 30 months. Because of this,
the focus of security will shift
toward protecting the data. Viruses,
spam, and online theft (whether it
be identity or economic) have
greatly increased. Users respond
with complaints, and legislators
respond with an increase in laws
governing online security and pri-
vacy. But much of the response is
ill-conceived; HIPAA attempted to
account for technology change, but
resulted in a law that was totally
unreadable.

On the national scale, there are
many considerations for mitigating
risk. We create unique assets to
decrease ambiguity; for example,

there is only one DNS system, since
having multiple ones will defeat the
purpose. But this creates a huge
risk in that it offers a single target.
The best counter to this is replica-
tion, creating multiple homoge-
neous nodes that all work together.
On the other hand, replication can
result in cascade failure; nodes can
be used to propagate attacks. Creat-
ing this monoculture has a direct
effect on exploits, since only one is
needed to take out entire networks
of machines. Additionally, the ama-
teur attackers create smokescreens
for the professional attackers.

Currently, the best solution we
have for online attacks is field
repairs. Software is patched when

a vulnerability is found. This has
many implications, the first of
which is liability. Software is sold
“as is,” and thus the user agrees not
to hold the manufacturer liable for
any problems if the product up-
dates are not applied. Automatic
updating of software has been man-
dated in many license agreements
for this same reason. At the same
time, applying patches is not with-
out risk. As Fred Brooks described,
fixing flaws in old software invari-
ably introduces new ones.

Geer predicts that within the next
10 years, advances in traffic analy-
sis will greatly increase, just as
advances in cryptography have
increased over the last 10 years.
Additionally, increasing threats will
result in decreasing security perim-
eters. Currently firewalls are used
to secure a corporate network; this
will shift toward mechanisms to
protect individual data. Security
and privacy are currently being
treated similarly; this will also
change in the future.

Geer discussed further challenges
in the next 10 years. Among those
were eliminating large-scale epi-
demics and minimizing the amount
of skill needed to be safe. He pro-
poses creating commercially avail-
able tools for creating certifiable
systems. Finally, he believes that
information security needs to be as

;LOGIN: DECEMBER 2004

good as or better than financial
security. But to accomplish this,
better metrics are needed to answer
specific assessment questions.

Because of the immediacy of this
need, there is no time to create a
system from scratch. We must steal
models from other fields such as
public health, insurance, financial
management, and even physics.
These models must take into
account information sharing and
must place values on the informa-
tion. This amounts to calculating
both replacement and future val-
ues. Currently the basis for these
are the black market values: email
address, chat screen names, and
pirated software are all sold. In lieu
of measuring security, we can sim-
ply assign risk in much the same
way that credit card companies do
(i.e., $50 liability on fraudulent
purchases). These metrics are not
free, however. There is always the
tendency for government or other
entities to impose strict controls.

In conclusion, Geer stressed that,
rather than using words to describe
problems, we need to do quantita-
tive analysis. Unknown vulnerabili-
ties are secret weapons of the
attackers. The absence of a major
incident says nothing about a
decrease in risk. All of this is fur-
ther ensuring that tradeoffs will be
made between safety and freedom.

THE HUMAN INTERFACE
Summarized by Nick Smith

Graphical Dictionaries and the
Memorable Space of Graphical
Passwords

Julie Thorpe and Paul van Oorschot,
Carleton University

Graphical passwords can be a more
secure authentication mechanism
than traditional text passwords,
because they offer a wider set and
could possibly effect a positive
change on the percentage of the
password set that a typical user will
choose. It may also be easier for

users to memorize an image than a
text password.

The idea proposed is to have a user
draw an image on a grid (larger or
smaller to increase or decrease size
of the password set) and to track
the start and end position of each
pen stroke to create an image defi-
nition. In this way, identical images
could possibly be drawn in several
different ways, which further
expands the password set. The idea
does suffer from the same problem
as text passwords, though, which is
that users are more likely to draw
certain patterns (e.g., symmetric
images along center axes, common
images, low number of pen strokes,
similar drawing sequences).

Regardless of drawbacks, which are
unavoidable in any solution, graph-
ical passwords are shown by
Thorpe and Oorschot to be poten-
tially more useful and secure than
text passwords.

On User Choice in Graphical
Password Schemes

Darren Davis and Fabian Monrose,
Johns Hopkins University; Michael
K. Reiter; Carnegie Mellon University

Recognition of images, specifically,
of human faces, can be used to
replace text passwords for authenti-
cation. Humans are especially good
at pinpointing minute and detailed
characteristics in the human face,
especially in those of a person’s
native culture.

There are two proposed schemes:
the “Face” scheme, in which a user
chooses a variable number of faces
from a single provided set; the
“Story” scheme, where a user
chooses one picture (not all of
which are faces) from each of sev-
eral provided sets (recorded in
sequence). In a small, 154-student
study done within the university, it
was found that the “Story” scheme
proved much more secure (i.e.,
more difficult to guess) than the
“Face” scheme.

One drawback to these schemes is
that certain races/cultures/genders

13TH USENIX SECURITY SYMPOSIUM 73

74

tend to choose the same type of
pictures in a set (supermodels, cute
animals, etc.). Also, although the
“Story” scheme proved superior to
the “Face” scheme, some students
found it hard to remember the
sequence of pictures even though
they could identify all of the correct
images.

Design of the EROS Trusted
Window System

Jonathan S. Shapiro, John Vander-
burgh, and Eric Northup, Johns
Hopkins University; David
Chizmadia, Promia, Inc.

The goal of this system is to impose
MLS information flow controls into
the X Window System. The idea is
that each window’s information
should not be available to all other
windows, but only to trusted win-
dows (such as those within the
same process). For example, com-
mon features such as cut&paste
and drag&drop currently use bi-
directional communication
between windows, which violates
the security measures of the sys-
tem. Workarounds were developed
to make the communication unidi-
rectional. Also, the storage buffers
used for each window must now be
managed by the client rather than
the window server (in this case, X).
Future work anticipates the porting
of current GUI toolkits.

Exploiting Software
Gary McGraw, Cigital
Summarized by Chad Mano

Gary McGraw presented an eye-
opening view into the world of
software security. Traditionally,
security is thought of as an infra-
structure problem, not a software
problem. Also, many believe that
cryptography is the key to provid-
ing security. However, as McGraw
puts it, there is no such thing as
“magic crypto dust.”

The security issue that needs to be
addressed concerns the software,
not the infrastructure. McGraw
described the “Trinity of Trouble”:
connectivity, complexity, and ex-

;LOGIN: VOL. 29, NO. 6

tensibility, which are the underly-
ing reasons why developing secure
software is a difficult task.

Connectivity: The Internet is every-
where, and most software is on it.

Complexity: As the size of the code
increases, so do the number of vul-
nerabilities.

Extensibility: Systems evolve in
unexpected ways.

Two things that make software vul-
nerable to attacks: bugs and flaws.
Bugs are the simple, easy-to-find
mistakes in the code. Flaws are
more complex problems that can be
the result of mistakes in code and
design. We traditionally work on
fixing bugs, whereas attackers don’t
care whether it's a bug or a flaw that
allows them to exploit software.

Educating new software developers
is one of the keys to improving
security. Traditional software engi-
neering classes are boring, but that
does not have to be the case. Stu-
dents should be taught how to
break software the way hackers do
so they will better understand how
to build secure software. Breaking
stuff is fun and makes for a more
invigorating class, as well as pro-
viding a valuable learning experi-
ence.

Functional testing and security
testing are not the same thing.
Functional testing looks at a pro-
gram as a black box and tries to
determine whether the output is
correct. Security testing needs to
get inside the code. Hackers use
tools such as decompilers and dis-
assemblers to understand the con-
trol flow of a program. Security
testing cannot be used to build
security into a program. Security
must be built into the design of the
program, so that security is truly
inside the code.

See McGraw’s book, co-authored
with Greg Hoglund, Exploiting Soft-
ware: How to Break Code, for more
information on this topic.

PANEL: PATCH MANAGEMENT

Crispin Cowan, Immunix; Marcus
Ranum, Bellwether Farm; Eric
Schultz; Abe Singer; SDSC; Tina Bird,
InfoExpress

Summarized by Eric Cronin

Crispin Cowan began the presenta-
tions by looking at the tradeoff
between safety and stability inher-
ent in patching. Patching too late
leads to getting hacked; patching
too soon can lead to problems from
buggy patches. For a given vulnera-
bility these two trends move in
opposite directions as time passes
(bugs decrease, compromises
increase), so there should be some
optimal point, where these two
curves cross, at which to apply the
patch. Unfortunately, from study-
ing historical information, Cowan
found that on average it takes 10
days after being released for the
final stable revision of a patch to
arrive—up to 30 days in some
cases. Attacks, on the other hand,
are beginning within hours of a
vulnerability being published. In
reality, the two curves never inter-
sect, so from a security standpoint
patch management is a doomed
cause. Cowan instead suggested
that patching be looked at as a
maintenance activity and alterna-
tive strategies be used for security.
The first alternative proposed was
to only run perfect software, which
has some problems in practice. The
second alternative was to rely on
intrusion detection and intrusion
prevention technologies, such as
the fine products sold by Immunix.

Tina Bird related some of her expe-
riences as system administrator at
Stanford during the MS Blaster
attack. On July 16 the vulnerability
exploited by Blaster was announced.
On July 18, proof-of-concept attack
code became available. A month
later, on August 18, Blaster hit the
Internet. Despite this month-long
window during which users could
have patched, 8,100 Windows
machines at Stanford were compro-
mised. Many users had not patched

because they did not want to break
working systems. The CVE (Com-
mon Vulnerabilities and Expo-
sures) reports announcing patches
make it very difficult for users to
gauge the criticality of a patch.
From her experience, Bird thought
the best solution in an environment
like Stanford’s was to remove free
will from the users and use auto-
mated update systems to force
patching. Bird also noted that by
their nature, the most dangerous
vulnerabilities are those against
network services that are remotely
accessible, that are on by default,
and that do not require authentica-
tion. These same properties also
make it very easy for administra-
tors to scan their networks periodi-
cally and locate unpatched hosts.

Eric Schultz provided some insight
on the view of patch management
from “the other side.” While at
Microsoft he had a part in every
service pack and security patch
released. One strategy used by
Microsoft was to remove all refer-
ences from service pack release
notes for fixes to previously undoc-
umented/unannounced security
fixes, in order to lessen the risks

to those not applying the service
pack. Microsoft usually saw a flurry
of activity immediately after a
patch was announced, and then lit-
tle activity until right after a worm
hit, at which time there was a spike
in purchases of patch management
solutions.

Abe Singer briefly talked about a
major security attack suffered by
SDSC last spring. Of note, none of
the machines involved in the attack
was running Windows; the vulner-
abilities were all against *NIX
hosts. A contributing factor to the
vulnerability was that Sun’s patch
system indicated that kernel
patches had been applied but the
machines had not been rebooted to
use the new kernel. Without accu-
rate reporting it is very difficult to
determine what the vulnerability
status of hosts actually is.

;LOGIN: DECEMBER 2004

The final presenter was Marcus
Ranum, who concurred with
Cowan’s observation that patch
management was the wrong strat-
egy for security. He went one step
further, however, and insisted that
patching was a fundamentally stu-
pid thing to do. Production Sys-
tems 101, he stated, is “If it’s work-
ing, don’t f— with it.” He never
patches his own systems, and he
never changes his passwords (sev-
eral of his passwords were then
provided to the audience). Instead,
he solved his security problem by
configuring his network so that he
doesn’t have to care about new vul-
nerabilities. Corporations want the
conflicting features of cheap and
good software as well as unsegre-
gated Internet-facing hosts and
security. His solution is to run soft-
ware that is less questionable than
the rest of the herd and to run even
that software within sandboxes and
with extra protection. He con-
cluded by stating that securing sys-
tems is engineering, while patching
systems is anti-engineering.

In the Q&A, Steve Bellovin asked
Ranum whether it was reasonable
to expect every user to write her
own “better than the herd” Web
browser, for example. The panel
answered that when you need to
run commodity software such as a
browser, you shouldn’t run it on a
machine that you care anything
about; the techniques the panel had
presented were suitable for servers.
Another audience member pointed
out that by properly isolating
servers with chroot and systrace it
is possible to run after a vulnerabil-
ity without patching and still be
secure. Another point raised was
that most machines on a network
are desktops and not servers, and
that these machines are rarely pro-
fessionally managed. When these
machines are attacked, the collat-
eral damage can impact the net-
work and even the most hardened
server. The panel agreed with this
observation, and also noted that it
is often wise to treat these unman-

aged desktops (and laptops) as
being just as dangerous as remote
hosts on the Internet, and placing
them outside the innermost firewall
surrounding critical servers.

Military Strategy in Cyberspace
Stuart Staniford, Nevis Networks
Summarized by Marc Dougherty

Stuart Staniford presented his pre-
dictions for a hypothetical cyber-
warfare scenario. There has not yet
been a real cyberwar, but Staniford
believes the tactics and technolo-
gies necessary will develop rapidly
in the wake of real cyberwar. Stani-
ford describes a scenario in which
China invades Taiwan. The US dis-
patches a few carrier groups to
assist the Taiwanese, causing sub-
stantial damage to the Chinese
invasion force. In order to elimi-
nate US involvement, China opens
the North American theater with a
cyberattack.

Staniford theorizes that in order to
have sufficient results, the Chinese
must disable two critical infrastruc-
tures. Staniford believes the num-
ber of targets necessary to disable
an infrastructure is on the order of
one hundred. The attacker not only
must compromise the security of
internal corporate networks, but
must then gain access to the
SCADA control systems in order to
disable the target. Staniford esti-
mates that a single attacking battal-
ion could range from 150 to 1000
attackers.

Only a nation-state could muster
the extensive resources necessary
to create such a tremendous force.
The attacking force is likely to be
extremely disciplined and well
trained. Because of this, Staniford
believes that defensive forces must
be organized and trained like a mil-
itary regime, especially in the case
of critical infrastructures.

13TH USENIX SECURITY SYMPOSIUM 75

76

SECURITY ENGINEERING
Summarized by Marc Dougherty

Copilot — A Coprocessor-Based
Kernel Runtime Integrity Monitor

Nick L. Petroni, Jr., Timothy Fraser
Jesus Molina, and William A.
Arbaugh, University of Maryland

Nick Petroni described a Kernel
Integrity Monitor known as Copi-
lot, which resides on a PCI card.
The goals of Copilot are to create a
system that is compatible with
commodity hardware, effective in
detection as well as performance,
and isolated from the host, and that
cannot be tampered with in the
event of a compromise. The current
system functions on commodity
x86 Linux systems without modifi-
cation.

Copilot monitors a number of data
points, including the list of loaded
kernel modules and a hash of the
Linux kernel text. The results of
these checks are compared to a
known good state, and in the event
of a change, it is reported to the
administrative system, to which the
Copilot PCI card connects directly.

In an experimental test of Copilot’s
capabilities, it was able to detect all
13 of the rootkits attempted. The
performance penalties of using
Copilot are also relatively minor.
When checking every 30 seconds,
there is only a 1% performance
penalty. Continuous checking,
however, showed a 14% penalty,
which is believed to be caused by
bus contention.

Further work for the Copilot team
includes predicting memory foot-
print based on a binary, and insti-
tuting further checks on kernel
data such as the process table and
open file descriptors. Copilot can
also currently be extended to sup-
port dynamic data.

Fixing Races for Fun and Profit:
How to Use access(2)

Drew Dean, SRI International; Alan
J. Hu, University of British Columbia

;LOGIN: VOL. 29, NO. 6

Drew Dean presented a probabilis-
tic solution to the age-old problem
of race conditions. Dean’s solution
deals particularly with the problem
of setuid programs using the access
rights of the real user. The access()
system call was created for this pur-
pose, but due to the non-atomic
nature of the call, it is still vulnera-
ble to a TOCTOU attack (time-of-
check to time-of-use).

Dean’s approach involves applying
“hardness amplification,” a tech-
nique commonly used in the cryp-
tography realm, to make winning
this type of race more difficult. The
system described uses a coefficient
K to determine the strength of the
system. When opening a file,
access() is called, and the file is
opened. Instead of using that file
descriptor, the following steps are
performed K times.

Random delay
Call access()
Random delay
Re-open the file

Verify that the device, inode, and
fstat() results match

Close the re-opened file

This process relies on access() pro-
ducing no side effects, open() being
idempotent, and fstat() not being
vulnerable to a race condition. The
result of this procedure is that an
attacker must win 2K + 1 races in
order to achieve his goal. Dean rec-
ommends a K of 7 for single-
processor machines, and a K of 10
for a reasonable level of security.

Network-in-a-Box: How to Set Up a
Secure Wireless Network in Under
a Minute

Dirk Balfanz, Glenn Durfee, Rebecca
E. Grinter, Diana K. Smetters, and
Paul Stewart, PARC

Diana Smetters presented a PKI-
based wireless security solution
modeled on the 802.1x EAP. The
barrier preventing widespread use
of EAP is the configuration, which
involves typing large hexadecimal
strings into the clients and the APs.

The goal of NiaB is to create a
smarter access point that handles
the generation of certificates and
exchange this new authentication
information through a second com-
munication channel. By using a
short-range method such as IR for
this second channel, wireless secu-
rity becomes a matter of physical
security.

The NiaB architecture is divided
into four parts:

Wireless Access Point
Enrollment Station
Certificate Authority
Authentication Server

When joining a network, the user
interacts with the Enrollment Sta-
tion portion of the system, which
talks to the CA to autocreate client
keys. Once the keys have been ex-
changed, the user can safely com-
municate with the Authentication
Server element over TLS, since the
public key digest is also exchanged
via the secondary communication
channel. This communication is
done using a custom protocol
called EAP-PTLS.

Smetters also noted that for enter-
prise use, the architecture can be
separated to allow a centralized
Enrollment Station, CA, and Auth-
entication Server. Experimental
results show that users can connect
to a NiaB network in under one
minute, demonstrating that wire-
less networking can be usable as
well as secure.

Design and Implementation of a
TCG-Based Integrity Measurement
Architecture

Reiner Sailer; Xiaolan Zhang, Trent
Jaeger;, and Leendert van Doorn, IBM
T.J. Watson Research Center

Reiner Sailer presented an integrity
detection system based on the work
of the Trusted Computing Group.
The TCG system relies on a special
chip that stores information about
the boot process. The system pre-
sented by Sailer uses this same
TPM chip to detect tampering with

important system files. TPM chips
are already installed in most IBM
laptops.

This system uses the TPM chip to
store SHA1 checksums of impor-
tant system files. These checksums
are then digitally signed by the
chip. The checksums are also avail-
able to the kernel of the host OS.

The software portion of the current
implementation consists of a kernel
module which performs the above
checksumming before opening
each file. Experiential results show
that a clean hit takes only .1 mil-
lisecond, and the opening of a new
file takes only 5 milliseconds plus
the time required to perform the
SHA1 checksum.

This work is included in the TCG
Linux project. More information is
available at http://www.research
.ibm.com/secure_systems_
department/projects/tcglinux/.

What Biology Can (and Can’t)
Teach Us About Security

David Evans, University of Virginia
Summarized by Alvin AuYoung

Note: Slides from the talk are avail-
able at http://www.cs.virginia.eduw/
~evans/usenix04.

Nature provides a fascinating
example of how to design com-
puter systems. David Evans pre-
sented analogies between nature
and computer systems, highlight-
ing both the potential and the limi-
tations of using nature to guide the
design of secure computer systems.

Approximately 99.9% of species in
nature become extinct. Evans
emphasized the slim odds of sur-
vival faced by nature’s species, who
must adapt in order to survive their
predators and other attacks in
nature. He drew a parallel between
attacks faced by these species and
well-known attacks faced by today’s
computer systems. For example, a
lion chasing down a gazelle might
be similar to a “brute force attack,”
where an attack is conducted by
sheer force. A Bolas spider attract-
ing male moths by emitting chemi-

;LOGIN: DECEMBER 2004

cals that mimic pheromones of
female moths is similar to a com-
munication integrity attack.

Species that are able to survive
against predators in nature and var-
ious ecological phenomena are
examples of secure and robust bio-
logical systems. Understanding
how these species have evolved can
help us design secure and robust
computer systems.

Biological systems are too complex
to understand analytically. Instead,
Evans suggests that we should
learn from the qualities of existing
species in nature that have survived
over time. There are four common
traits observed in such systems:
expressiveness, redundancy, aware-
ness of surroundings, and localized
organization. If we were to mimic
these characteristics, could we also
build programs that survive both
its adversaries and the test of time?

Amorphous computing, swarm
programming, and autonomic com-
puting are examples of research
that attempts to use these charac-
teristics to design computer sys-
tems. In particular, Evans discussed
the amorphous computing project
from the lab of Radhika Nagpal,
where the goal is to design a system
in which a potentially large number
of simple and possibly unreliable
pieces can cooperate to create a sys-
tem with complex and well defined
behavior. An example of this is
Nagpal’s work with origami mathe-
matics. In this work, a set of identi-
cally programmed cells forms a
sheet of (virtual) paper, and the
goal is to have these cells cooperate
using only local interactions to
form a complex structure such as
an origami shape (e.g., half of the
cells will “move” to one side to
simulate a fold in the paper). Al-
though this is an example of how
to design a robust system that cap-
tures some of the qualities of
nature’s systems, there is still a long
way to go before we understand
how to use these qualities to design
secure systems for real-world appli-
cations.

Another place where the principles
of nature’s systems can be applied
to computer systems is computer
immunology. Identifying intrusion
and removing viruses in computer
systems is similar to how our
immune system wards off attacks.
In nature, diversity of receptors
within species allows them to sur-
vive strains of specific pathogens.
As a result, a large number of the
members of a species can survive.
In computer systems there has been
a push toward providing system
diversity. A commonly cited exam-
ple is in operating systems, where
over 90% of the machines in the
world use Microsoft Windows.
Largely as a result of this, computer
worms, using a single vulnerability
in Windows, have been able to
infect a large number of computer
systems connected to the Internet.
The fact that so many machines on
the Internet share vulnerabilities
has allowed Internet worms to pro-
liferate and has caused many peo-
ple to push for diversifying the
operating systems market. Evans
argues that diversifying an operat-
ing system isn’t the complete
answer. For example, vulnerabili-
ties in widespread network proto-
cols like TCP/IP, applications like
the BlackICE firewall, and common
libraries like libpng also contribute
to this problem. The lesson here is
that diversity must be present at
several levels of abstraction in
order to be effective. Evans cites
existing work such as instruction-
set randomization and protection
of special registers in an address
space as examples of diversity tech-
niques in computer systems.

There are limits to the lessons to
learn from nature. In particular,
Evans notes that computer systems
are human-engineered and there-
fore don’t naturally “evolve.” In
other words, the process of evolu-
tion is smarter than we (humans)
can be in redesigning our systems,
so we shouldn’t count on a few iter-
ations of software to evolve into
secure software. There are also

13TH USENIX SECURITY SYMPOSIUM 77

78

many instances where nature fails,
such as mass extinction of species
due to environmental changes and
the ability of viral epidemics to
wipe out large portions of a species’
population. Evans also notes the
success of humans in engineering
mass destruction in nature, such as
vaccines to wipe out smallpox. He
uses these points to establish that
nature can succumb to “out-of-
band” attacks (environmental
changes, humans).

In conclusion, Evans says that
while there is still much we can
learn from biological systems, we
have to do much better than nature
in designing computer systems,
because the attacks that our sys-
tems face can also include “out-of-
band” attacks that nature often can-
not defeat.

FORENSICS AND RESPONSE
Summarized by Zhenkai Liang

Privacy-Preserving Sharing and
Correlation of Security Alerts

Patrick Lincoln, Phillip Porras, and
Vitaly Shmatikov, SRI

The prevalence of computer viruses
and worms drives the need for
Internet-scale threat-analysis cen-
ters. These centers are data reposi-
tories to which pools of volunteer
networks contribute security alerts,
such as firewall logs or intrusion
alerts. However, the possibility of
leaking private information in the
contributed data prevents people
from providing alert-sharing data
for those centers. Vitaly Shmatikov
presented a practical scheme to
provide strong privacy guarantees
to those who contribute alerts to
these threat-analysis centers.

The authors’ solution is an alert-
sharing infrastructure, the core of
which is a set of repositories where
alerts are stored and accessed. In
preventing sensitive information
(e.g., IP addresses, captured and
infected data, system configuration
information, defense coverage)
from being revealed, several tech-

;LOGIN: VOL. 29, NO. 6

niques to be used in combination
are proposed, including scrubbing
sensitive fields, hashing IP address,
re-keying by repository, using ran-
domized host list thresholds, and
delaying alert publication. To pre-
vent single point of failure, they use
multiple alert repositories and ran-
domized alert routing. The alert
sanitization techniques protect
information in raw alerts, as well as
allowing a wide variety of large-
scale and cross-organization analy-
ses to be performed. In the per-
formance evaluation, the authors
conclude that the cost of their
scheme is very low: “a small impact
on the performance of alert produc-
ers, and virtually no impact on the
performance of supported analy-
ses.” It is implemented as a Snort
plug-in for alert sanitization.

Q: How do you defend flooding of a
repository?

A: There’s no defense against flood-
ing currently. One possible solution
is to let the contributors of alerts
register with the system.

Static Disassembly of Obfuscated
Binaries

Christopher Kruegel, William
Robertson, Fredrik Valeur, and
Giovanni Vigna, University of
California, Santa Barbara

Christopher Kruegel introduced a
static binary analysis technique for
disassembling obfuscated binary
codes. Disassembly is the process
of recovering a symbolic represen-
tation of a program’s machine code
instructions from its binary repre-
sentations. Recently, a number of
techniques have been proposed to
make it difficult for a disassembler
to extract and comprehend the pro-
gram’s high-level structure while
preserving the program’s semantics
and functionality.

Without the requirement that the
code was generated by a well-
behaved compiler, their disassem-
bler performs static analysis on
Intel x86 binaries. The analysis
techniques can be divided into two
classes: general techniques and

tool-specific techniques. General
techniques do not rely on any
knowledge of how a particular
obfuscator transforms the binary.
These techniques first divide the
binary into functions. Then they
attempt to reconstruct the func-
tions’ intra-procedural control flow
graph, which is a major challenge
of their approach. Finally, a gap
completion step improves the
result of the previous step. In their
tool-specific techniques, the gen-
eral techniques are modified to deal
with binaries transformed with
Linn and Debray’s obfuscator.

The authors’ techniques were eval-
uated on eight obfuscated SPECint
95 applications. The authors
claimed that their disassembler
provides a significant improvement
over the best disassembler used in
the evaluation by Linn and Debray.
With the tool-specific techniques,
they said that the binary was disas-
sembled almost completely (97%
on average). The authors also per-
formed experiments to find the
ratio between the number of valid
instructions identified by the con-
trol flow graph and the number of
valid instructions identified by the
gap completion phase. In their
observation, the control transfer
instructions and the resulting con-
trol flow graph constitute the skele-
ton of an analyzed function.

Q: Can you comment how your
tool works on encrypted or
encoded binaries?

A: The tool is currently a static
analysis tool, which cannot help in
this situation. It can be extended
with dynamic disassembling.

Autograph: Toward Automated,
Distributed Worm Signature
Detection

Hyang-Ah Kim, Carnegie Mellon
University; Brad Karp, Intel
Research and Carnegie Mellon Uni-
versity

Hyang-Ah Kim described Auto-
graph, a system that automatically
generates signatures for novel
Internet worms that propagate

using TCP transport. The paper
answers the question, “How should
one obtain worm content signa-
tures for use in content-based filter-
ing?” The authors noted that all
current content-based filtering sys-
tems use databases of worm signa-
tures that are manually generated.
On detecting a virus, network oper-
ators communicate with one
another, manually study packet
traces to produce a worm signature,
and publish the signature to worm
signature databases. This process of
signature generation is slow in the
face of today’s fast-propagating
worms.

Autograph takes all traffic crossing
an edge network’s DMZ as the
input, and outputs a list of worm
signatures. A single Autograph
monitor’s analysis of traffic is
divided into two main stages. First,
a suspicious flow selection stage
uses heuristics to classify inbound
TCP flows as either suspicious or
non-suspicious. Then Autograph
selects the most frequently occur-
ring byte sequences across the
malicious flows as signatures. To do
so, it divides each suspicious flow
into smaller content blocks using
content-based payload partitioning
(COPP) and counts the number of
suspicious flows in which each
content block occurs. The authors
also created an extension to Auto-
graph, tattler, for distributed gath-
ering of suspected IP addresses
using multiple monitors.

In the evaluation of local signature
detection, the authors conclude
that, as content-block size de-
creases, the likelihood that Auto-
graph will detect commonality
across suspicious flows increases,
so it generates progressively more
sensitive but less specific signa-
tures. In the evaluation of distrib-
uted signature detection, the
authors conclude that multiple
independent Autograph monitors
clearly detect worm signatures
faster.

;LOGIN: DECEMBER 2004

Q: Do all possible common signa-
tures fall into a single-block con-
tent signature?

A: There is a possibility that we
miss signatures contained in multi-
ple packets.

Q: Do you look at multiple content
blocks for signatures?

A: We are exploring this.

Q: How do you deal with the situa-
tion where someone is trying to
overload (flood) the monitors?

A: It can happen. The solution is to
use distributed monitors to verify
signatures.

Nuclear Weapons, Permissive
Action Links, and the History of
Public Key Cryptography

Steve Bellovin, AT&T Labs—
Research

Summarized by Tara Whalen

Steve Bellovin gave the audience an
entertaining and informative trip
through nuclear weapons technol-
ogy, Cold War politics, and military
history, with a side trip to visit Dr.
Strangelove. He provided a thor-
ough discussion of permissive
action links (PALs), which were
designed to prevent unauthorized
use of nuclear weapons. Appropri-
ately enough for a security forum,
he proposed an intriguing theory
that public key cryptography may
have been developed initially as a
necessary component of nuclear
weapon security.

Historically, permissive action links
were required to protect nuclear
bombs, not from unauthorized use
by enemies or rogue US troops, but
to keep them from being misused
by US allies. In the 1950s the US
was concerned that the Soviet
Union was going to invade Western
Europe. Keeping a large number of
US troops in Europe was not
acceptable. The alternative was
chosen to create NATO and provide
nuclear weapons for NATO allies.
However, because of political insta-
bility in some European countries

and fear that the US could not
tightly control deployment of these
remote weapons, PALs were added
to provide some measure of secu-
rity.

Out of intellectual interest, Bellovin
began independent research into
how PALs worked; the documents
he obtained from government
agencies gave some hints but no
conclusive information. The safety
features of nuclear bombs were rea-
sonably well documented. These
features included a strong link/
weak link pair: the strong link pro-
vided electrical isolation, while the
weak link was designed to fail
under stress (such as in an acci-
dent). One component of the
strong link was the unique-signal
generator, a safety system designed
to produce a 24-bit signal that was
highly unlikely to occur by acci-
dent (meant to indicate human
intention to deploy). The unique-
signal discriminator is designed to
lock up if it receives a single erro-
neous bit.

The PALs themselves were origi-
nally electromechanical controls
which required two cooperating
parties to unlock the weapon. PALs
respond to a variety of codes
(recently, 6- or 12-digit codes); the
weapon is designed to deactivate if
too many incorrect codes are
entered. Bellovin speculated on
design principles that may have
been used for PALs. One hypotheti-
cal design involves encrypted sig-
nal paths: PALs use switches to
control the voltage path to the det-
onators. The original designs used
rotors, similar to WWII-era encryp-
tion machines, but more recent
models use a microprocessor to
control the switches; possibly this
works by providing an encryption
key for the weapon’s environmental
sensors, with the signal being
decrypted by the strong links.
Another hypothetical design
involves encrypted code, in this
way: It is highly likely that the

internal control and sequencing

13TH USENIX SECURITY SYMPOSIUM

79

80

requirements are complex; this tim-
ing information, or perhaps the
code paths, is encrypted. The pub-
lic interface could be used for re-
keying plus decryption.

Bellovin brought the discussion
back to cryptographic history, stat-
ing that he found no requirement
for the use of public key crypto in
PALs (or any indication it was used
there, except in one prototype).
The PAL sequences are short,
which indicates that no secure pub-
lic key cryptosystem could have
been supported. However, consider
that by law US nuclear weapons
can only be deployed by order of
the President; to support this
requirement for authenticating the
arming code, it is possible that the
NSA invented digital signatures.
(Added Bellovin wryly, “Including
an X.509 naming format for bomb
certificates.”) In addition, codes
need to be put into the PAL: How is
this done securely? Since this infor-
mation should not be passed in the
clear, this requirement may have
led to the NSA’s development of
public key cryptography. (This the-
ory is not well documented, but
makes for interesting speculation.)

What lessons can security profes-
sionals learn from nuclear weapons
safety and security designs? One
important lesson is to understand
exactly what problem you’re solv-
ing: The weapons designers got it
right because they knew precisely
what the real problem was. For
access control, you want to find the
One True Path that everything
must pass through, and block that.

For more information on this topic,
see Steve Bellovin’s PAL Web page
at http://www.research.att.com/
~smb/nsam-160/pal.html.

;LOGIN: VOL. 29, NO. 6

DATA PRIVACY

Summarized by Rachel
Greenstadt

Fairplay—A Secure Two-Party
Computation System

Awarded Best Student Paper!

Dahlia Malkhi, Noam Nisan, and
Yaron Sella, Hebrew University;
Benny Pinkas, HP Labs

Yaron Sella presented an imple-
mentation of Secure Function Eval-
uation (SFE), a theoretical con-
struct studied in the cryptography
community for 20 years. The clas-
sic example of SFE is the million-
aire’s problem. Two millionaires
want to know who is richer. One
has $X million and one has $Y mil-
lion, and they don't trust each
other. They need either a trusted
third party or SFE. In this case the
function is > = <, but it could be
any function. The goal of the
research was to see whether two-
party SFE was practical and to bet-
ter understand where the bottle-
necks were, in computation or
communication. They wanted to
push this protocol from the theo-
retician’s realm to the practical
arena.

They defined two languages, Secure
Function Definition Language
(SFDL) for specifying the function
to be evaluated, and Secure Hard-
ware Definition Language (SHDL)
for turning the program into a cir-
cuit. Thus if Alice and Bob want to
evaluate a circuit, Bob takes the cir-
cuit and garbles it m times and
sends these to Alice. Alice chooses
one and tells Bob which. Bob then
reveals the secrets of all the non-
chosen ones and Alice verifies that
they are okay. This is the com-
monly used cut-and-choose
method of indirect randomized ver-
ification. Bob types in his input and
sends the garbled version and Alice
types her input. They engage in
oblivious transfer where Bob is the
sender and Alice is the chooser.
Alice evaluates, sends to Bob, and
they both print the results.

Yaron then gave the audience a live
demo of Fairplay. He first showed
examples of SFDL and SHDL (the
millionaire’s problem) and created
circuits. He then showed examples
of running the billionaire’s problem
(bigger numbers). There was a
short delay as the circuits were
sent; Bob had 100000, Alice
100001. So Bob received 0 and
Alice 1. The code was written in
Java, using its crypto-libraries and
SHAL. They tried several functions:
AND, billionaire’s problem, keyed
database search, and finding the
median of unified arrays. The main
bottlenecks were in the communi-
cation of the circuits and the oblivi-
ous transfer. You can play with the
system at http://www.cs.huji.ac.il/
danss/Fairplay. An audience mem-
ber suggested that the delay experi-
enced on the LAN might be
reduced by turning off nagling.

Tor: The Second-Generation Onion
Router

Roger Dingledine and Nick Mathew-
son, The Free Haven Project; Paul
Syverson, Naval Research Lab

Roger Dingledine began by
explaining that TOR (The Onion
Routing) was similar to Zero
Knowledge’s Freedom networks,
except with some improvements
and free. It aims to provide
anonymity by protecting packets
from traffic analysis. The research
is funded by the government (they
want to look at Web sites without
revealing their .gov and .mil
addresses and to protect their net-
works from insider attack), but
anonymity is also useful for indi-
viduals, corporations, and even law
enforcement. People are worried
about criminals, but they already
have anonymity (Nick Weaver can
tell you more about this). The idea
behind the network is to distribute
trust among several nodes and that
not all of them will collude and do
traffic analysis on the users. The
system provides location
anonymity, not data anonymity. You
should use something on top of it
to scrub your cookies and whatnot.

Onion Routing is an overlay net-
work of anonymizing proxies using
TLS between each pair of links.
Alice, the client, connects to the
first hop, negotiates a key, then tun-
nels to the second hop, and then to
the third hop. Each node only
knows its predecessor and succes-
sor. Once built, you can multiplex
TCP streams over these circuits,
which are rotated periodically. To
connect, you contact the directory
servers (more trusted nodes) and
they tell you about who’ in the net-
work, keys, exit policies, etc.
There’s a human in the loop to pre-
vent Sybil attacks. They have 50
servers. TOR is 26,000 lines of C
code that runs in user-space. The
client looks like a socks proxy, so
they don’t need to build an applica-
tion for each protocol they want to
support. There are flexible exit
policies to deal with abuse and
legal issues. The system works with
only a couple of seconds of latency.
The system also supports location-
hidden services, so Bob can run an
Apache without revealing his IP. At
http://freehaven.net/tor there are
specifications, a second implemen-
tation of the TOR client, a design
paper (this one), and code.

People asked about abuse issues,
and Roger answered that there
haven’t been any, but they are a
research network and they block
SMTP. Someone asked whether
someone could follow the packets
by comparing their sizes. Roger
answered that they already give up
if the adversary can see both sides
of the connection; their goal is to
prevent all attacks that are easier
than that. Someone wondered
whether you should send the host-
name or the IP address through
TOR. The answer is, the hostname;
the resolve has to be done at the
end or DNS (since it is UDP) will
break anonymity.

;LOGIN: DECEMBER 2004

Understanding Data Lifetime via
Whole System Simulation

Awarded Best Paper!

Jim Chow, Ben Pfaff, Tal Garfinkel,
Kevin Christopher, and Mendel
Rosenblum, Stanford University

Jim Chow began by laying out a
common scenario: a user at a pass-
word prompt. The question was,
after you type your password, what
happens to this sensitive data?
Under the assumption that the soft-
ware was written with security in
mind, it will read the password into
a buffer locked in memory, use
encrypted software, and erase the
password once it’s done with it.

If your computer is broken into at a
later date, that sensitive informa-
tion is assumed by most people to
be gone, but this paper showed that
not to be the case. Even if the appli-
cation has been careful, many extra
copies of the data often exist in the
tty buffer, the X server, gtk+
buffers, etc. The problem with data
lifetime issues is that you can only
erase the copies you know about;
the others may get written to disk.

To address this problem, they wrote
TaintBochs, a program to do whole
system simulation and track sensi-
tive data as it flows through soft-
ware. However, just figuring out
what was a copy was nontrivial;
where this was the case, the pro-
gram erred on the side of caution.

They learned that there were usu-
ally several copies of data stored in
the kernel, and although kernel
memory isn’t paged, there are
plenty of ways to dump it to disk,
from hibernating laptops to
crashes. Since indirection is so pop-
ular, it's impossible to avoid mid-
dlemen processes, so you get a lot
of copies there, too. Fixing things is
usually easy, though: Zeroing and
string destructors destroy most
taints, and TaintBochs can help
with that.

During Q&A, Jim pointed out that
there are possibly false negatives in
the experiments, since TaintBochs

can only prove the existence of
taints, not prove you don’t have
problems. Someone else brought
up the point that sometimes the
compiler doesn’t obey the memset
command, but there are lots of
ways to get around that problem.

My Dad’s Computer, Microsoft,
and the Future of Internet Security

Bill Cheswick, Lumeta Corp.
Summarized by Serge Egelman

The biggest threat to Internet secu-
rity is not large corporate comput-
ers that are specifically targeted by
intruders, but individual home
machines that are simply config-
ured poorly. Bill Cheswick elabo-
rated on this by using his father as
the typical user. He’s an 80-year-old
veteran who runs Windows XP. He
uses the computer to trade stocks,
check email with Microsoft Out-
look, and chat with family and
friends via AOL Instant Messenger.
He has been “skinny dipping” for
years, by which Cheswick means
that his father does not have a fire-
wall or any spyware protection, and
he never updates his anti-virus def-
initions. Pop-ups appear on the
screen every three minutes or so,
but his father simply dismisses
them without giving any thought to
it. In fact, a computer repair person
came over to take a look at the
machine and discovered a variety of
spyware programs, redirections to
obscene Web sites, and viruses that
he had never heard of before.

The question is, why should he
care? He found a way of getting
around all of these distractions so
that he could still be productive,
and he did not want a system
administrator changing any of his
personal settings. Since malicious
attacks are very rare, he did not see
any real reason to bother changing
any of his habits. On the other
hand, his machine had become a
slave that could be used in propa-
gating spam or denial of service
attacks across the Internet, thus
disrupting other people’s work.
Cheswick described it as a “toxic

13TH USENIX SECURITY SYMPOSIUM 81

82

waste dump spewing blue smoke
across the Internet.” It is in every-
one’s best interest that these
machines are secured.

Computer security has become an
arms race. Originally anti-virus
software worked by looking for
specific signatures in the virus
code, but this was later thwarted by
viruses that would encrypt or
recompile themselves. So the detec-
tors started running simulations to
see how the virus would act on the
program, but now newer viruses
can detect these simulations.
Trusted computing offers a solution
to this problem, but it is only a
matter of time before the virus
writers regain control. Similar arms
races can be seen in password sniff-
ing, password cracking, hardware
vulnerabilities, and even software
upgrades. In an homage to The
Karate Kid, Cheswick quotes Mr.
Miyagi: “The best block is not to be
there.” That is, the key is to stay
out of the game altogether.

;LOGIN: VOL. 29, NO. 6

In order to keep Dad out of the
game, better client security is
needed. Windows ME has eight
ports open by default, and Win-
dows 2000 and XP have increas-
ingly more. A similar machine run-
ning FreeBSD will have one open
for SSH, if any. It is obvious that
these ports should not be open by
default. Personal firewalls try to
solve this problem, but additional
software really is not needed here;
the problems are caused by all the
programs that are not used.

Cheswick has a solution, though:
Windows OK. This could be a new
end-user-oriented operating system
that functions as a thin client. No
firewall or anti-virus software will
be necessary, since no ports will be
open by default. Additionally, all
programs will be signed by trusted
parties, and all security settings will
be located in one central location.
Additionally, macros will not func-
tion in Word or PowerPoint and

can only be used for arithmetic in
Excel.

Such a system would be immune to
the vast majority of security threats
on the Internet. Cheswick believes
that we may never win the malware
detection arms race, so instead we
must win the protection game.
Unfortunately, most users simply
do not see the problem; a fully
hosed computer may still seem
functional to them. What the user
does not know is that his system is
affecting other people. By creating a
usable system with tight security by
default, we can keep the average
user out of the security game alto-
gether.

For WiPs and Posters, please see
http.:.//www.usenix.org/events/
sec04/tech/wips/.

For audio files of some sessions,
see http.://www.usenix.org/publica-
tions/library/proceedings/sec04/
tech/mp3/.

