
USENIX Association

Proceedings of the
12th USENIX Security Symposium

Washington, D.C., USA
August 4–8, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

12th USENIX Security Symposium USENIX Association 295

Establishing the Genuinity of Remote Computer Systems

Rick Kennell & Leah H. Jamieson
Purdue University School of Electrical and Computer Engineering

{kennell,lhj}@purdue.edu

Abstract

A fundamental problem in distributed computing envi-

ronments involves determining whether a remote com-

puter system can be trusted to autonomously access se-

cure resources via a network. In this paper, we describe

a means by which a remote computer system can be

challenged to demonstrate that it is genuine and trust-

worthy. Upon passing a test, it can be granted access to

distributed resources and can serve as a general-purpose

host for distributed computation so long as it remains

in contact with some certifying authority. The test we

describe is applicable to consumer-grade computer sys-

tems with a conventional network interface and requires

no additional hardware. The results of the test can be

conveyed over an unsecured network; no trusted human

intermediary is needed to relay the results. We examine

potential attacks and weaknesses of the system and show

how they can be avoided. Finally, we describe an imple-

mentation of a genuinity test for a representative set of

computer systems.

1 Introduction

For most types of valuable real-world objects, there are

generally accepted methods of assessing their genuin-

ity in a non-destructive fashion. Archimedes determined

that King Heiron’s crown was not made of pure gold by

noticing that the mass and volume of the crown did not

match the known density of gold. We can discern real

diamonds from imitations by examining their electrical

characteristics and their indices of refraction. We can de-

termine that money is not counterfeit by carefully study-

ing its watermarks and other identifying features.

Unfortunately, we have few such measures for computer

systems. When answering the question of whether a

computer system is real, we can only verify that it looks

like a computer and acts like a computer. Unfortunately

the dynamic nature of a programmable computer means

that it may not always behave the same in the future.

Furthermore, when that computer system is moved from

our immediate presence, we have few guarantees that it

has not been physically modified or reprogrammed.

We introduce the need for a remote system genuinity test

with a motivating example: Suppose Alice is the consci-

entious administrator of a network of computer systems

that rely on a central NFS [42] server. Only trusted sys-

tems are allowed to act as NFS clients. Bob and Mal-

lory use the systems in the network for large distributed

applications that manipulate data on the file server. In

addition to accomplishing normal work, Mallory would

like to either steal or corrupt Bob’s data by subverting an

NFS client. Mallory has a deadline to perform an espe-

cially large computation and has made an arrangement

with a distant colleague to borrow several hundred new

computers to join the computer network temporarily in

order to assist with the work. This necessarily means

that they must also be able to access his data on the NFS

server.

How can Alice determine which systems should be given

access to the NFS server? She could travel to the loca-

tion of each of the new systems in order to configure and

physically secure them, but this might take more time

than she is able to commit. Allowing Mallory to specify

the systems eligible to be NFS clients would give him

an opportunity to deliberately misconfigure a system in

order to allow him to access Bob’s data. Knowing the

identity of the remote systems gives Alice no assurance

of how the systems will behave.

What Alice really wants is an automated way of deter-

mining that a remote system has been properly config-

ured before it is granted access to the NFS server. For the

specific case of NFS, “properly configured” means that

only Alice has administrative control over the client. In

a broader sense, it means that the system’s hardware and

software will act in a deterministic fashion that corre-

sponds with Alice’s expectations. To measure this de-

terminism, it is necessary for Alice to be able to de-

cide whether the system’s hardware and software are

genuine. For instance, it is easy to see that the correct

system software running in the context of a simulator

can not always be trusted because it cannot be known

12th USENIX Security Symposium USENIX Association296

whether the simulator will always act the same as real

hardware. Moreover, anyone who controls the simula-

tor will be able to spy on or manipulate the data resident

in the simulated environment. The same lack of trust-

worthiness is more obviously apparent for compromised

software running on real hardware.

We demonstrate a method by which we can simultane-

ously measure the genuinity of a system’s hardware and

software, remotely, without the need for a trusted human

intermediary. This method can be used to decide on a

level of trust that can be imparted to the system in ques-

tion. Our mention of NFS (without special encryption or

credential support) in the previous example is deliberate.

In Section 5 we describe our implementation of a gen-

uinity test that allows us to trust a remote system for use

as an NFS client. Although attacks against our method

are possible, their risk may be acceptable in some envi-

ronments.

This paper is organized as follows. In Section 2 we ex-

amine the basic methods for determining the genuinity

of software, hardware and combinations thereof. In Sec-

tion 3 we show how the results of such a test can be

delivered through an insecure network to an observer.

Section 4 describes several forms of attack against the

system as well as our methods for reducing the risk of

those attacks. Section 5 shows various results of an im-

plementation of our system. We conclude our paper with

an overview of related work in Section 6 and a summary

of our results and future plans in Section 7.

2 Tests of Genuinity

In order for some secure authority to be able to trust that

a remote computer system will always act in a determin-

istic manner, it is necessary to verify two things:

• The computer must be a real computer—not a sim-

ulator or emulator. If the computer was not gen-

uine, as in the case of a simulator, the environment

would then be subject to potential manipulation by

the simulator’s controller, whereas a genuine sys-

tem would be governed only by the definition of

the machine’s instructions.

• The computer must be running exactly the software

that the secure authority expects. If the software

environment is known completely then the behav-

ior of the system can be known as well, but without

perfect knowledge of the running software, the ac-

tion of the system is potentially unpredictable.

We first examine the challenge of building a test for the

correct software while assuming that the hardware can

be trusted. We then integrate that test with a micropro-

cessor genuinity test. This combined test constitutes an

architecturally-sensitive execution fingerprint.

2.1 Software Genuinity

In order to introduce the approach to verifying the gen-

uinity of a system’s software, we consider a naı̈ve ex-

ample of some computational Entity running a program

that must check that its own instructions have not been

tampered with. (We assume throughout this paper that

the program to be verified is an OS kernel.) The intent

might be to demonstrate to an Authority elsewhere on a

network that the program is correct. If we can make a

closed-world assumption that the software to be tested

exists entirely in a known section of memory, we can ac-

complish this by including a subroutine in the program

that would compute a checksum of that memory space.

The subroutine can send the outcome to the Authority

so that it can be compared with a known-good result.

Any attempted forgeries are easily detected by using a

cryptographically-secure hash to compute the checksum

so that the likelihood of changing the instructions to pro-

duce a correct checksum is extremely small.

The possibility of a replay attack is reduced if the Au-

thority is allowed to challenge the Entity by specifying

one or more subregions of the program’s instruction ad-

dress space. Such a method has been used for several

collaborative network applications to verify the integrity

of the client software. For instance, the AOL Instant

Messenger service can discriminate against rogue clients

by requesting a cryptographic hash of a section of the

client program’s text segment [3, 38].

It is a more difficult problem to guarantee that the code

that was executed to compute the checksum was really

the subroutine in the program. For instance, consider

the possibility that the Entity contained the expected

program in its memory but executed a rogue program

from some other location. Detecting an attack of this

nature is equivalent to determining whether a piece of

code is presently executing at a specific location. A test

of this nature is an example of Software Tamperproofing
[12, 21]. Normally, this technique is useful for situations

where, for example, one wishes to ensure that a piece of

software cannot be illicitly duplicated in another appli-

cation. Here, we want to use it to ensure that the code

we are interested in has not been modified to run in any

place other than the one in which it was intended [13].

There are several architecturally-sensitive ways of con-

structing such tests using modern microprocessors, and

12th USENIX Security Symposium USENIX Association 297

we will address this thoroughly in Section 2.4.

A basic limitation of our closed-world assumption is

that we cannot incorporate dynamically-allocated data

or any other non-static information into the checksum

in a meaningful fashion. However, if we can determine

that the instructions of the software are correct (and that

these instructions are being executed) we may be able

to trust the software to further interrogate and verify the

integrity of its data. We will address this in further detail

in the context of our implementation in Section 5.1.

2.2 A Microprocessor Genuinity Test

In order to determine the genuinity of a system’s hard-

ware, we first make a limiting assumption that the pri-

mary item of importance is the microprocessor specif-

ically rather than trying to look at the entire system.

In order to determine a microprocessor’s genuinity, one

must exercise a representative subset of its functions to

check that it fully conforms to all of its specifications.

In conducting such a test, it is very easy to discrim-

inate between microprocessors that have different in-

struction set architectures, but it is considerably harder

to tell the difference between two implementations of

the same architecture. Nevertheless, we maintain that

there are always differences between implementations

that can be observed by software at some level even if the

instruction set is the same. For instance, in determining

the difference between two microprocessor implemen-

tations that differ only by their cache geometry, an in-

struction sequence with a particular memory reference

pattern would take longer to execute on one of the pro-

cessors. If the microprocessors had performance coun-

ters capable of measuring the number of cache misses or

if they had direct means of evaluating the cache contents,

a test could be constructed to discriminate between the

two implementations without resorting to timing analy-

sis.

Determining the difference between a real microproces-

sor and a simulator is an apparent contradiction to Tur-

ing’s thesis [45] that any computer is theoretically ca-

pable of any mechanical calculation—including simula-

tion of another computer. However, even modern high-

performance simulators are typically one or more orders

of magnitude slower than real computers [32]. If the Au-

thority establishes a time limit for the Entity’s response,

it will be able to ascertain whether the Entity was being

run in the context of a simulator. Furthermore, by con-

structing the checksum using operations that are most

difficult to simulate, the disparity in execution time be-

tween simulator and real computer is maximized. The

goal then is to establish a repertoire of tests that execute

much more slowly on a simulator than on the real com-

puter.

In general, any test to be used for the purpose of de-

termining genuinity will exercise a function of the CPU

that has the following ideal characteristics:

• The function will occur automatically as a side-

effect of instruction execution. This ensures that

a simulator will be forced to do multiple jobs at

once—execute instructions as well as accurately

model their lower-level architectural impact.

• The function must be deterministic and predictable.

The Authority must still be able to either obtain the

result of a genuinity test from a trusted reference

platform or (slowly) simulate and predict the result

on its own.

• The effects of the function can be easily measured.

This allows the genuinity test to run as efficiently

as possible on the real CPU.

• The function will have a good deal of implicit paral-

lelism. This minimizes the chance that a simulator

will be able to mimic it quickly.

Consider the previous example of a CPU that includes

hardware performance counters that can measure the oc-

currence of cache misses. For such a CPU, modifications

to the cache’s state will occur as a side-effect of all load

and store operations. In the case of a miss, there is some

implicitly parallel activity that occurs to determine the

cache line that should be replaced, and this parallelism

is largely hidden from the instruction set architecture.

If we understand the cache geometry and replacement

policy we can accurately predict, for a particular access

pattern, which cache lines will be replaced and when,

but doing so generally requires an effort proportional to

the associativity of the cache in question. At the conclu-

sion of a correctly-executed test that exercises this pat-

tern, the hardware counter should contain the number of

misses we predicted to occur, and the final state of the

cache should also be as we predicted.

The memory hierarchy makes an excellent device to sat-

isfy the characteristics of a good test since it has tradi-

tionally been found difficult to simulate precisely [7, 33],

and, when memory is modeled at its fullest detail, the

result is that the simulator runs at least an order of mag-

nitude slower [32, 49] than if it had a memory model

adequate only for simulation of the instruction set archi-

tecture. We expect this disparity in speed to only in-

crease in the future as CPU implementations continue to

12th USENIX Security Symposium USENIX Association298

use memory hierarchies with higher levels of associativ-

ity and more complicated replacement policies.

2.3 A Combined Software/Hardware Gen-
uinity Test

By incorporating instructions that characterize the sys-

tem’s execution into the checksum procedure, we can

build a mechanism that can check the integrity of its

own instructions while simultaneously ensuring that the

instructions are running on a real computer. Each load

that the checksum procedure performs has several side

effects: cache lines are evicted and refilled, translation

lookaside buffer (TLB) entries are evicted and refilled,

and bus transactions are performed. For each group of

instructions fetched, another TLB is consulted for vir-

tual memory mapping of the instruction space. Each

branch in the checksum procedure is predicted by the

CPU to be either taken or not taken. Many sources of

meta-information about the CPU’s execution exist; how-

ever, our selection criteria indicate that the best candi-

date function is the memory hierarchy. In particular, the

TLB is a good choice since, for most architectures, it has

a higher associativity than the caches. It also has a deter-

ministic replacement policy whose effects can be easily

measured on most platforms.

✄✄

✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻
TLB misses

Figure 1: Linear memory traversal

✞ �✎�☛✟
✛✘✛ ✘

☛✟
✛✘

☛✟☛✟✎�☛✟
 ✏✛ ✘✎�☛✟
✛✘✛ ✘

☛✟
✛✘

☛✟☛✟✎�☛✟
 ✏

✻✻ ✻ ✻ ✻✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻✻ ✻ ✻ ✻ ✻
TLB misses

Figure 2: Pseudorandom memory traversal

Virtual memory pages

Physical memory pages

❆
❆
❆
❆

❙
❙

❙
❙✇❄

❆
❆
❆
❆

✁
✁

✁
✁☛

✁
✁

✁
✁☛

✁
✁

✁
✁☛

✁
✁

✁
✁☛

✁
✁

✁
✁☛

...

Figure 3: Pseudorandom memory mapping

In addition to making the genuinity test difficult to simu-

late quickly, we also need to make sure that the architec-

tural sensitivity is inseparable from the memory check-

sum and that the results from one genuinity test give no

clues to an observer as to how a future test will be com-

puted. A checksum procedure that traverses memory in

a linear fashion would be unacceptable since it would

cause a data TLB (DTLB) replacement pattern that could

be predicted without simulating the DTLB. Figure 1

graphically depicts a linear access pattern across pages

of memory. Pages of memory are shown as blocks and

the access pattern is shown by the small arcs above. The

TLB misses predictably occur on the first access to each

page. We need to introduce as much run time complex-

ity as possible into the test; therefore, we construct the

checksum so that it traverses memory in a pseudoran-

dom fashion as in Figure 2. Doing so creates a greater

run time uncertainty about whether the page of the word

that is loaded is presently mapped by the DTLB. We fur-

ther complicate the test by aliasing the pages of the phys-

ical memory region we intend to check multiple times

through a much larger virtual region (Figure 3) rather

than using a one-to-one mapping from virtual space to

physical space as is customary. Doing so increases the

duration of the checksum and constitutes a better dis-

criminant against the possibility of a simulation attack.

By varying the pseudorandom walk and the mapping

from virtual to physical space for each new invocation

of the genuinity test, the checksum result will be differ-

ent each time and unrelated to other invocations.

❄
Σ

❄

❅
❅

?

✛

❄

Figure 4: Simple checksum representation

As the checksum procedure makes the pseudorandom

walk through the virtual region, it consults a hardware

performance counter to determine if the previous load

caused a hit or miss in the DTLB. This information is

incorporated into the checksum result, and the procedure

continues in this manner until the pseudorandom walk is

complete.

It is important that one or more sources of meta-

information about the procedure’s execution be incor-

porated continuously into the checksum result in order

to ensure that the checksum of the memory contents and

the test for genuinity of the execution environment can-

not be separated. This combination has a benefit of al-

12th USENIX Security Symposium USENIX Association 299

lowing us to relax the requirement of a cryptographi-

cally secure hash for computation of the memory check-

sum. Each word read from memory by the checksum

procedure can be added to the running result as long as

the DTLB hit/miss information is incorporated in a non-

additive manner. For instance, after each checksum ad-

dition the DTLB miss count could be XOR-ed into the

result. Since the memory checksum and the DTLB miss

count are not linearly related, the integrity of the mem-

ory checksum is enforced. Graphically, we can depict

this simple procedure as in Figure 4 where the check-

sum component might consist of

sum = sum + [PseudoRandomLocation]
sum = sum XOR TLB_MissCount

and the decision element simply determines whether the

last value in the pseudorandom sequence has been read.

❄
Σ1

❄

❅
❅?1

✛

❄
Σ2

❄

❅
❅?2

✛

✲ Σ3

❄

❅
❅?3

✛

❄
Σ4

❄

❅
❅?4

✛

❄

Figure 5: Complex checksum representation

Reducing the frequency of integration of the TLB miss

count would not reduce the burden of an attacking sim-

ulator to continually track the TLB contents. The pro-

cedure could be easily modified to incorporate the TLB

miss count into the checksum after every few iterations.

This would allow the genuinity test to run more effi-

ciently with only a minor risk of separability of archi-

tectural sensitivity from the checksum calculation, but it

would still require almost the same computational over-

head for an attacking simulator. Furthermore, if several

unrelated sources of meta-information were available,

each source could be incorporated into the checksum in

a round-robin fashion at various points in the genuin-

ity test. Adding more information sources would only

require an attacking simulator to continuously simulate

more functions that already occur automatically in the

real CPU. For instance, if the procedure were partitioned

into multiple code sections spread out over several pages

of memory as in Figure 5, the instruction TLB (ITLB)

would register a hit or miss each time a new code sec-

tion was invoked.

Further refinements to the checksum procedure shown

in Figure 5 can be made, such as making the decision

points dependent on the checksum (rather than only the

pseudorandom location pointer) or making each of the

checksum and decision points contain unique function-

ality.

The end result is a memory checksum of the running ap-

plication which has been perturbed by meta-information

about the execution of the procedure. The perturbation

is difficult to simulate in a timely manner due to the

typically large associativity of the TLBs. If either the

memory contents or the execution of the procedure is

not correct, the incorrect result will be computed. If the

procedure is evaluated by a simulator, it cannot be done

quickly enough to meet the Authority’s deadline. The

result will differ for each combination of pseudorandom

walk and virtual-to-physical memory mapping thereby

allowing an Authority to challenge each new Entity with

a unique test every time. Since the checksum procedure

cannot discern at run time whether the result is correct,

its result constitutes a zero-knowledge proof that the sys-

tem is a real computer executing the expected software.

The result can then be delivered to an Authority that can

compare it to a precomputed, known-good result to de-

termine the genuinity and, therefore, the trustworthiness

of the system.

2.4 Additional Requirements of the Gen-
uinity Test

There are several additional aspects of the genuinity test

that are important for the veracity of the test. In particu-

lar, some steps must be taken to ensure that the execution

environment is sufficiently isolated from outside influ-

ence. Since the mechanism presented relies on the fact

that only the memory references pertaining to the check-

sum are to be used to predict the behavior of the DTLB,

there can be no other memory references performed by

the procedure. Therefore, all temporary data needed by

the procedure must be held in CPU registers for the dura-

tion of the test. Furthermore, since any temporary diver-

sion from the procedure might cause extraneous memory

references, the checksum procedure must be run with all

external interrupts disabled. After the genuinity test has

been satisfied, interrupts are re-enabled, and the machine

is allowed to function as a normal execution host.

If the secure Authority and the Entity are located far

12th USENIX Security Symposium USENIX Association300

apart, there will be some (potentially unbounded) net-

work transport delay to issue the challenge to the En-

tity and return the results to the Authority. In theory, an

allowable delay should be no longer than the marginal

time difference between the checksum procedure run-

ning on the target CPU compared to the same procedure

running on the highest performing simulator. The longer

the test that we construct runs, the better this margin

becomes, so a long procedure is desirable. In practice,

however, we can assume that the network transport de-

lay is small and any pathological delays will simply be

treated as failures. Hopefully, such delays will be only

temporary, and a new genuinity test can be retried at a

later time.

The problem of determining whether the program being

verified is actually running is addressed by incorporat-

ing a suitable degree of introspection into the verifica-

tion procedure. The simplest way of doing so would

be to introduce a section of the verification procedure

that would incorporate the present value of the program

counter (PC) into the checksum value; however, the lo-

cation of the checksum code is known in advance, and

it does not require much program analysis to replace

each PC incorporation by a constant-valued expression

in a rogue program running elsewhere. Because soft-

ware running in a location other than its intended lo-

cation or running as a part of another application will

produce a different ITLB miss pattern than the expected

one, we can employ architecturally-sensitive techniques

to identify such an attack. In particular, on architectures

that support such operations, we can modify the genuin-

ity test to incrementally incorporate the contents of the

ITLB into the checksum. This not only ensures that the

code was run in the expected location but also improves

the certainty of the test by incorporating one more piece

of architectural meta-information into the checksum.

We can also rely on more complicated architectural state

in order to make such an attack possible only in the con-

text of a full microprocessor simulator. For instance:

• Some microprocessors write information to the vir-

tual memory page tables to indicate accessed or

dirty pages. For instance, an x86 CPU marks a page

table entry (PTE) as “accessed” when it is read or

executed. This progression of PTE modification for

a particular test is deterministic and predictable and

we can incorporate it into the checksum calculation

by including the page tables in the memory map-

ping. An attacker would certainly be forced to sim-

ulate the entire virtual memory subsystem in order

to keep track of this information.

• Some microprocessors allow privileged applica-

tions to directly examine the TLB’s Content-

Addressable Memory cell (CAM) contents. By

incorporating this information into the checksum

value, the outcome will only be correct if the ITLB

contains values corresponding to the correct execu-

tion location.

• Some microprocessors have hardware-based last-

called stacks that can be interrogated to obtain the

address of the last control-modifying instruction

(such as a JUMP or CALL instruction). Since our

checksum algorithm has pseudorandom control-

flow that is based on the contents of memory, this

information is not expressible as a constant. By

incorporating this information into the checksum

value, we force an attacker to either simulate this

hardware stack or fully simulate the instruction

stream.

If the checksum obtains the correct result, it will have

demonstrated that its own exit path is trustworthy. This

exit path will be responsible for invoking the code that

delivers the result to the Authority via the network and

for confirming that critical data values of the computer

system are intact (e.g., the call stack and interrupt vec-

tors) in order to prevent any code entry points that are

not already known to the OS kernel. The kernel that in-

vokes the checksum procedure is expected to remain in

operation until the end of the session in which it partici-

pates with the Authority.

3 Demonstrating Genuinity Via an
Insecure Network

In our work, we assume that the distance between the

Entity and Authority does not permit the establishment

of a secure communication link prior to the genuinity

test. Furthermore, we intend our system to be used with-

out the benefit of a trusted human who could serve as the

courier of a shared secret. In order to prevent an interpo-

sition attack by a malicious router, we can leverage the

genuinity of the Entity, as indicated by its valid check-

sum computation, to negotiate a public key exchange

with the Authority. To do so, we first ensure that the

public key of the Authority is embedded into the veri-

fied memory space of the Entity’s genuinity test; a prop-

erly computed checksum value will be an indication that

this is true. When the Entity sends the computed check-

sum to the Authority it can first encrypt the result, along

with an identifier chosen at random by the Entity, using

the public key of the Authority. Although it is critical

that the Entity deliver this information to the Authority

12th USENIX Security Symposium USENIX Association 301

in a timely manner, a single public key encryption does

not greatly delay the result. Thereafter, the Entity would

have an identity known only to itself and the Authority.

At some later point, the Entity will generate a new pub-

lic key and send it to the Authority, along with the ran-

dom identifier as an indication that the new key really

belongs to the authenticated system and not an interme-

diary. The knowledge of genuinity of the remote sys-

tem represents a convenient improvement to the prob-

lem of key exchange in the presence of an interlocutor

[8, 15, 16, 39].

The primary difficulty in such an exchange is obtain-

ing enough entropy to generate a random identifier that

cannot be easily guessed by an adversary. Although

the genuinity test must be deterministic, there are still

events present in the Entity that are random. In particu-

lar, we have found that periodic sampling of the time-

stamp counter during the course of the test will pro-

duce sufficient entropy (even for repeated invocations

of the same test code). The minor variations in mem-

ory and CPU pipeline timing force the CPU to sample

the free-running timestamp counter at unpredictable in-

tervals. Such a random number generator is similar in

some respects to the TrueRand function in CryptoLib

[29]. Experimental results for our random value gen-

erator are shown in Section 5.4.

Authority
Remote Entity

REQUEST for challenge

OFFER to challenge (initial memory map)

ACCEPT challenge

CHALLENGE signed(key and code for checksum)

RESPONSE encrypted(result, random value)

QUALIFICATION or REJECTION

Timer started

R
u
n
n
i
n
g

t
e
s
t

Timer stopped

K
e
y

g
e
n

encrypted(key, random value)

Figure 6: Network protocol

Figure 6 illustrates the following negotiation protocol

initiated by the Remote Entity.

1. The kernel running on the Entity sends a network

packet to the Authority containing (cleartext) infor-

mation about its microprocessor and requesting a

genuinity test.

2. The Authority generates a suitable test and sends

a cleartext message offering to challenge the En-

tity with a genuinity test. The message contains the

memory mapping to apply for the test.

3. The Entity sends a cleartext message to the Au-

thority accepting the offer and initializes the virtual

memory mapping.

4. The Authority sends a cleartext packet that contains

the code to be run and a public key for the response.

It also records the time at which it sends the packet.

5. The Entity receives the code and key, and loads

both into memory. It then transfers control to the

test code. When the checksum completes, it jumps

directly to a (now verified) function in the Entity’s

kernel that encrypts the checksum result and the

random quantity and sends them to the Authority.

This step is carefully designed to minimize the time

that the unencrypted values are resident in memory.

Most likely the unencrypted values will never be

visible on the external memory bus.

6. The Authority receives the reply, registers its time,

and decrypts it. If the reply contains the correct

checksum result and was received within an allow-

able time, it marks the Entity as a genuine host. It

sends a reply packet indicating the Entity’s qualifi-

cation.

7. The Entity generates a new session key, concat-

enates it with the previous random value, encrypts

them with the testcase public key and sends them to

the Authority. Here the random value acts as an au-

thenticator that the Authority can use to know that

the session key it is receiving is from the same sys-

tem that showed itself to be genuine. The session

key can then be used to establish a secure virtual

private network or some other kind of secure com-

munication channel.

Note that while the kernel on the Entity is waiting for

a challenge message it has no means of reliably deter-

mining the sender of a packet. Since the challenge con-

sists of runnable code that is to be inserted into the En-

tity’s kernel memory, it is important to first check the

message’s validity in order to avoid running code sent

by an attacker. The risk of such an attack can be re-

duced by generating a second key pair and embedding

the public key into the kernel that is loaded onto the En-

tity. The Authority can sign the messages that it sends,

and the Entity can then discriminate against bogus mes-

sages. Since the genuinity test negotiation protocol is

already sensitive to the exact type of kernel running, this

protocol addition poses no further complications to the

test other than the time needed to validate the challenge

signature.

12th USENIX Security Symposium USENIX Association302

4 Potential Attacks

It is necessary to elaborate on some potential attacks

against our genuinity test and ways of guarding against

them in our implementation. In particular, there are sev-

eral forms of simulation that could be attempted as well

as some methods of ensuring that they cannot be effec-

tive. Since a primary discriminant in our method is time

of execution, we are faced with the fact that there is a

definite lower bound on the type of target CPU that can

be verified. If a system that lies below that bound re-

quests a genuinity test, it must be rejected. Furthermore,

because the performance of new systems (on which a

simulator can be run) is constantly improving, the lower

bound on the target CPU is also increasing. Finally, as

the state of the art in simulator construction improves,

target CPUs that were once a safe bet for a genuinity test

are placed into question. In order to assess an appropri-

ate lower bound, we first need to examine the kinds of

simulators that are possible.

4.1 Algorithmic Simulators

A full simulation of the instruction execution and any

architectural side-effects would be too slow to pass the

test that we have created. There remains the possibility

that the simulator does not pretend to be a microproces-

sor but is custom-tailored to simulate only the checksum

procedure’s effect on the microprocessor. For instance,

if it is known that a remote system with particular TLB

characteristics is to be shown genuine, the effect of the

test on the target CPU can be efficiently simulated by a

specialized application running on a very fast machine.

We refer to this as an ideal simulator.

Here, again, it is necessary to assert that the checksum

code must be executed in order to obtain the correct re-

sult. To do so, it is necessary for the Authority to de-

liver the challenge to the Entity in the form of unique,

executable instructions in order to prevent the simple in-

terpretation by a dedicated algorithmic simulator. For

instance, instead of delivering values indicating the con-

figuration of the pseudorandom sequences in the chal-

lenge, the Authority must send the executable code to

perform the checksum. If the checksum procedure was

sufficiently intertwined with its containing application,

a malicious Entity would need to either do a great deal

of program analysis to quickly construct the simulation

algorithm or use full instruction simulator to initiate the

test. Such safeguards are another example in the study

of software tamperproofing [12, 21].

4.2 Virtualizing Simulators

Some modern system simulators [25, 30] are capable of

efficiently running an entire operating system within an

application by means of a technique called virtualiza-

tion. This involves running the simulated OS kernel at

an artificially low privilege level in such a way that ex-

ecution is trapped and simulated only when a privileged

operation is attempted. This allows the majority of in-

structions to execute natively on the CPU. However, the

checksum procedure running on a virtualizing simula-

tor would fail after the first privilege trap since it would

be necessary to save some of the CPU state and doing

so would involve referencing memory. Referencing any

memory would alter the TLB miss patterns and invali-

date the checksum.

For many microprocessor architectures, it is also diffi-

cult to build a virtual machine monitor that does not leak

information about its supervisor [40]. Assuming that

such information can be obtained in an efficient manner,

it too can be incorporated into the checksum procedure

in order to discriminate against such a simulator.

An improvement to the idea of virtualization involves

dynamic translation of the privileged instructions into

subroutine calls that mimic their operation in the context

of the simulator. For purposes of an attack on a check-

sum procedure, this reduces the complexity of the prob-

lem to that of an ideal simulator. However, our results in

Section 5 indicate that even if the virtual simulator could

quickly converge on dynamically-generated native code

that efficiently simulated the multiple implicitly-parallel

architectural features, it could not execute it quickly

enough to succeed unless there was a very wide dispar-

ity between the speeds of the simulator’s host CPU and

target CPU.

4.3 Hardware Attacks

The ultimate attack on our genuinity test involves mod-

ifying the remote system in such a manner that it can

successfully compute the correct result for the check-

sum procedure but still allow a third party to physically

inspect and alter the system after the test has completed.

This can be accomplished by attaching hardware to the

coherent memory bus of a system or attaching an an-

alyzer to the microprocessor’s probe ports. For many

operating environments, the risk of such an attack is ac-

ceptable since undertaking it would require significant

skill and equipment.

Alternatively, one can imagine the same type of attack

occurring in a symmetric multiprocessor system where

12th USENIX Security Symposium USENIX Association 303

the primary CPU is unable to detect the presence of a

malicious secondary CPU. Since conventional CPUs can

do nothing to ensure or evaluate the security of their own

external interfaces, there can be no guarantee of security

in the presence of such an attack. This is an open prob-

lem in our work, and we continue to examine such a

possibility.

In order for any direct attack against the microproces-

sor to be successful, it must either be done transparently

while the machine remains in operation or done very

quickly while the machine is temporarily off-line. An

attacker might pause the CPU (for example: a notebook

computer’s suspend-to-disk operation) long enough to

interrogate the memory and determine the shared se-

crets for the secure network connections and then sub-

stitute them into another machine that he or she con-

trolled. To guard against this possibility, we require that

the remote machine remain in active contact with the

Authority with a period no longer than the time nec-

essary to pause the machine to obtain information. If

the contact time exceeds an appropriate timeout, the re-

mote machine is no longer considered trustworthy and

must go through another genuinity test before trust is re-

stored. Similarly, the trusted software running on the

remote machine should destroy its secrets if it falls out

of contact with the Authority.

There is also the possibility that the user has pre-

configured the Entity to allow a hotkey sequence to cause

a subversion of the system software. Ideally, there would

be no systems for which we could not disable a suspen-

sion request or some other type of subversion mecha-

nism. Because most systems implement user input using

interrupt-driven methods, we believe we can avoid most

problems by carefully checking the interrupt vectors and

the relevant I/O configuration for device drivers to make

sure that they are valid and safe. Section 5.1 describes

this process in greater detail.

5 Implementation

We created a trial implementation of our hard-

ware/software genuinity test using the Linux 2.5 kernel

as a host application. The kernel provided us with a con-

venient and portable environment for manipulating vir-

tual memory and network interfaces. We initially made

only minor modifications to the kernel in order to incor-

porate our test mechanism. In particular, we inserted a

few pages of empty space near the beginning of the text

segment to hold alternate page tables and added a set of

functions to perform the network test negotiation. The

test negotiation was set up to be invoked automatically

during kernel initialization—before a filesystem existed

or ’init’ was started. We implemented an in-kernel 128-

bit RSA algorithm to perform the public-key encryption

of the return result.

Our Authority consisted of the following components:

• A generator to build RSA-128 key-pairs. Each new

test used a unique public key.

• A testcase generator that randomly combined pre-

defined code chunks into a unified image. A cache

of tests were precomputed for different models of

x86 microprocessors.

• A network server that handled the negotiation of

genuinity challenges and selection of tests based on

microprocessor type. This server also maintained

an indication of the status of a remote host (e.g.

whether it had been recognized as genuine yet or

had been rejected).

Most specifications for our system were flexible and

chosen to best illustrate the validity of our approach. For

instance, a 128-bit RSA key would be too small in prac-

tice. We chose this size in order to minimize the time

needed by the Entity to perform the encryption. Our

RSA implementation was not optimized for speed and

a larger key size would be easily substituted assuming

some modest improvements to the code. We also made

the assumption that the Entity to be tested would op-

erate without non-volatile storage. The kernel was ini-

tially loaded via the network using GRUB [19] or Ether-

boot [36]. The key exchange at the conclusion of the

genuinity test was used to negotiate keys for an IPsec

[28] session. The Authority then allowed NFS exports

to the Entity. It may be desirable to allow the use of a

non-volatile storage device for swap space or local exe-

cutables. Various methods exist for ensuring that secrets

swapped to disk are not compromised by an attacker [37]

and that executables on a non-volatile file system can be

trusted [46]. By combining these elements, we can cre-

ate a trusted system that uses data served securely by the

Authority.

5.1 Securing the Non-Static Information

One disadvantage of using a Unix-like kernel as the host

application for a genuinity test is that it has a great deal

of non-static and allocated data that could be useful to

an attacker as a means of subverting the kernel after

a successful completion of the genuinity test. (Recall

that only the static or predictable contents of memory

12th USENIX Security Symposium USENIX Association304

are incorporated into the genuinity test.) For instance,

consider the possibility that an attacker loaded the ker-

nel, modified a pointer in an unchecked data region and

allowed the kernel to initiate the genuinity test. Later,

the attacker could invoke some behavior to exploit that

pointer.

The areas of the kernel in question are the non-constant

data segment, the initially-zero segment (or ’BSS’ in the

Unix vernacular), and the driver initialization text. In

addition, the kernel dynamically allocates virtual mem-

ory for its data structures. We use a layered approach to

ensure the integrity of this data.

First, much of the non-constant data segment is desig-

nated non-constant only as a convenience. For instance,

the syscall table is specified in an assembly language

.data section even though it is (hopefully) not modified

during regular kernel operation. By adding a section

identifier, it was moved to the read-only data section and

was subjected to the genuinity test.

When the genuinity test completes, it jumps back into a

verified section of code in the kernel that will restore in-

terrupt handling, encrypt the results and send them to the

Authority via the network interface. Before interrupts

are reenabled, this code is guaranteed to function deter-

ministically and can be entrusted to perform checks on

the data that could not be subjected to the genuinity test.

In order to maximize the time available to perform these

checks, the code encrypts the results and sends them

over the network and verifies data before re-enabling in-

terrupts. Items verified by this code include the interrupt

vectors and root virtual memory page table. In doing

so, we can verify that no malicious agents are present in

memory that were placed there before the invocation of

the genuinity test.

The Linux kernel moves much of the device driver ini-

tialization code into a segment of virtual memory that

is freed after use. In order to verify the integrity of this

code, we disabled the function that freed the space and

modified the linker script to move the text of the initial-

ization code into the kernel text section. Doing this also

allowed us to later use a known-genuine system to find

the result of a checksum computation for another sys-

tem.

We made an attempt to invoke the genuinity test as early

as possible in the kernel’s initialization stage to avoid

the proliferation of allocated data. Nevertheless, because

relaying of the test results requires a working Ethernet

adaptor as well as system bus and chipset functionality,

some data structures must be allocated to support access

to them. One way of eliminating this data would be to

restart the kernel initialization process at a point before

any memory was made allocatable.

5.2 Precomputation of Checksum Results

In order to be able to quickly certify a remote Entity, our

Authority must precompute checksum results for each

genuinity test. This can be done by using an off-line

simulator that is able to do an adequate job of emulating

the architectural features of the target microprocessor.

This may take a significant amount of time, but can be

amortized over the expected running time of the certified

remote hosts. The Authority need only maintain enough

results to handle an initial surge of requests for genuinity

tests.

In some cases, genuinity tests may exploit instruction

execution side-effects that are deterministic, but are un-

predictable. For instance, if the microprocessor has an

undocumented TLB replacement policy it may not be

possible to construct a simulator to use for result com-

putation. In such cases, the Authority can use an exist-

ing genuine system to compute the results for new tests.

When doing so, it is important that the exit path of the

checksum algorithm does not cause a re-initialization of

a known-genuine execution host, but we also do not want

to open the possibility for a non-genuine host to intercept

its checksum results and use them for an interposition at-

tack.

We solve this dilemma by adding a flag to the challenge

delivered by the Authority that indicates whether the

Entity should deliver the results over the network and

reinitialize itself in preparation for becoming a known-

genuine host. The exit path of the checksum algorithm

encrypts the checksum result and random identifier and

then checks this flag. If the flag is not set the system de-

stroys the value of the checksum result and random iden-

tifier but preserves the encrypted version and then re-

turns to its prior execution environment. The encrypted

version of the information is only useful to the Author-

ity, and the random identity serves as a nonce to prevent

reuse of the values. The Authority can use a secure chan-

nel to both initiate a new test and procure the result. The

only side effect on the remote host will involve a mo-

mentary pause of other activity while its interrupts are

disabled.

By allowing the existing base of genuine hosts to com-

pute the results of new tests, the Authority can generate

tests for new systems on a demand basis. It is also much

easier to use one CPU to compute results for another

equivalent CPU than it is to construct a suitable simula-

12th USENIX Security Symposium USENIX Association 305

tor. In practice, we precomputed most of our checksum

results in this manner.

5.3 Benchmarks

In order to establish a time limit for the response de-

lay for a correct checksum result we used simulators to

evaluate a particular genuinity test. It is relatively easy

to tell the difference between a fast CPU and a simu-

lator running on a similarly-fast host CPU. Therefore,

we chose a particularly conservative example where we

used a 133MHz Intel Pentium as a target CPU. We ran

our simulators on a 2.4GHz Intel Pentium 4 system. In

order to sustain an artificial performance advantage of

the real CPU over the simulators, we incorporated as

much architectural meta-information as possible. We

used the Authority software to generate the following

random genuinity test:

Virtual Space: 0xc0000000-0xc1000000

Static Kernel
Physical Space

Testcase Code Page

Alternate Page Tables

Kernel Page Tables

0x100000 - 0x30a000

Non-
Constant

Figure 7: Memory Map for Benchmark Testcase

• The static region of the kernel’s physical mem-

ory (roughly 0x00100000 – 0x0030a000) was

mapped into the 16MB region from 0xc0000000 –

0xc1000000 using the alternate page tables in the

beginning of the kernel text segment. This was a

pseudorandom mapping that favored the specific

page where the checksum code was loaded. On

average, most pages of the kernel were aliased by

three virtual pages. The code page was aliased by

2661 virtual pages. The kernel page tables, as well

as the alternate page tables were mapped in the

virtual memory space. Figure 7 depicts the map-

ping. Note that this 16MB region is the only mem-

ory accessible for the duration of the testcase. In-

structions, page tables and data are all visible in

this space. The self-contained nature of this region

makes it very difficult to subvert the genuinity test

by patching in malicious code since there is no ac-

cessible place that it can be hidden.

• The checksum code was constructed in nodes

spread over 22 of the code page mappings in vir-

tual memory. Each of the nodes branched to one of

two other nodes on the 22 pages. The sections of

code were offset so that they did not overlap in the

single physical code page that they were all aliased

to.

• The checksum code nodes were selected as follows:

– One node accessed the ITLB CAM cells to

determine whether an instruction fetch for a

selected target would be a hit or miss. In

the case of a hit, the physical page and re-

placement information were extracted from

the CAM cell. This information was incor-

porated into the checksum value.

– One node made a similar access to the DTLB

CAM cells.

– One node accessed the tag and replacement

information for the data cache and instruction

cache cells.

– One node read a performance counter that

counted branches and incorporated it into the

checksum value.

– One node read a performance counter that

counted instructions executed and incor-

porated it into the checksum value.

– One node sampled the timestamp counter

probabilistically one out of every 4096 times

it was invoked and incorporated it into the

generated 32-bit random identifier.

– The remaining sixteen nodes read a byte of

memory, added it to the 32-bit checksum

value and advanced the memory pointer. A

compact linear feedback shift register algo-

rithm was used to advance the pointer in a

pseudorandom pattern that was sure to cover

the entire 16MB virtual space.

To invoke the test we booted the appropriate kernel on

an Entity comprised of a 133MHz Pentium CPU with

32MB of RAM and an RTL-8139B 100Mb/sec NIC.

The system was on the same Ethernet segment as the

Authority in order to discount the effects of network la-

tency. When the kernel invoked the challenge negoti-

ation code, the Authority recorded that the Entity was

able to receive the test, compute the checksum value and

random identifier, encrypt the results and return them via

the network in 7.93 seconds. Repeated invocations of

the same test, either via reboot or via secure initiation

by the Authority, consistently produced the same check-

sum result (and a different random identifier). It is worth

12th USENIX Security Symposium USENIX Association306

noting here that the encryption step takes approximately

900000 CPU cycles, or about 0.007 seconds, so it does

not contribute significantly to the response delay.

In order to successfully masquerade as a Pentium 133,

an attacker would be required to simulate the testcase ex-

ecution flow, page tables, PTE update, ITLB and DTLB

CAMs, data and instruction caches, as well as keep track

of the count of different types of instructions executed.

As an initial test, we compared the native execution time

against an instruction simulator. We used Bochs 2.0

[31], a program that simulates an entire x86 system. It

also emulates a NE2000 network adaptor and encapsu-

lates traffic through its host. This conveniently allowed

us to use it as though it were a real system on the net-

work. As an initial test, we configured Bochs to ignore

the WRMSR and RDMSR instructions in the testcase.

The resulting test was executed by Bochs in 18.53 sec-

onds on the 2.4GHz host. Clearly, modifying Bochs to

support the hardware monitoring facilities necessary for

successfully running the real test to produce a correct re-

sult would increase its execution time by a considerable

amount.

We then built an ideal simulator that relied on the as-

sumption that it would have perfect a priori knowledge

of how the test code would act. This would be equivalent

to a virtualizing simulator that could instantly transform

the testcase into an accelerated form that could run na-

tively on the simulation host. To build such a simulator,

we took each of the 22 testcase nodes and manually en-

coded the precise effects of their execution on the ITLB,

the DTLB, caches and the two instruction counts. We

also built page table traversal and update routines that

worked with the TLBs. (We allowed the simulator the

advantage of not having to generate a random value.)

The simulator was run on a 2.4GHz Pentium 4 system

that also hosted the Authority software. The execution

time of the ideal simulator was 10.72 seconds. While

this is not significantly more than the execution time of

the native CPU, it is also based on a few unrealistically

optimistic assumptions. In particular, the simulator is

using a priori knowledge of the testcase to build a native

representation with no time penalty. A real simulator

would need additional time to analyze and convert the

instruction stream. Furthermore, our testcase also repre-

sents an intentionally-impaired test for which it was rel-

atively easy to construct an efficient simulator. Several

improvements for the Pentium genuinity test are possi-

ble such as using self-modifying code, reconfiguring the

performance counter registers on-the-fly to periodically

monitor other events and using CPU registers to inspect

partial information about its own instruction decoding.

Incorporating this information into the testcase would

require a corresponding simulator that was significantly

more difficult to build.

After finding the best-case execution time of a simula-

tor, we can use it as the maximum allowable time for

the genuinity test for real Entities. We conservatively

mandate that all Entities must respond within this time,

regardless of their CPU speed. Since we cannot predict

or measure the network delay, it is included in the to-

tal response time. This means that Entities that experi-

ence pathological network delays during test negotiation

will fail. If average network delay becomes a significant

component of the total turnaround time of the genuinity

tests, some modifications can be made to the test genera-

tor to compensate. For instance, if the size of the virtual

space mapped by the test is doubled, the execution time

for the test will approximately double as well, making

the network delay a smaller component of the total time.

Newer implementations of the x86 CPUs have advan-

tages not only in terms of speed but also architectural

complexity. For instance, a Pentium/MMX is signifi-

cantly harder to simulate than a Pentium running even at

the same speed because of much higher associativity of

its TLBs as well as data and instruction caches that are

double the size and associativity of its predecessor. Even

though most newer CPUs have TLBs and caches larger

than earlier models, this quality does not improve their

ability to masquerade as earlier models or more easily

support simulators that implement the earlier TLBs and

caches. As we consider higher-performance x86 micro-

processors, because there is a smaller margin between

their performance and that of the best available simula-

tion host, the feasibility of constructing a fast simulator

is diminished. This, in conjunction with the general dif-

ficulty of constructing a correct simulator (at any speed),

creates a reasonable certainty of the veracity of the gen-

uinity test.

Finally, although we can estimate how well a virtualiz-

ing simulator might perform, it is important to remember

that, presently, no such simulator exists. The certainty of

whether a Pentium 133 can be unambiguously verified as

genuine will depend on monitoring the state of the art in

simulators.

5.4 Effectiveness of Random Number
Generation

The random identifier generated during the genuinity

test must be reasonably unguessable by an attacker to

prevent replay attacks and interposition attacks against

the protocol. To assess the effectiveness of the random

12th USENIX Security Symposium USENIX Association 307

value generation, we ran a captive testcase on a single

machine repeatedly and collected and analyzed the re-

sults. (In each repetition, the same checksum result was

generated.) The particular testcase interrogated the time-

stamp counter (TSC) only 40 times. We further con-

strained the testcase to clear the TSC at the beginning of

each repetition and limited the entropy gatherer to incor-

porate only the lower two bits of each of the 40 samples.

Each sample was incorporated into the random value by

rotating the random value by one bit and XORing the

lower two least-significant bits of the TSC. This meant

that each bit of the resulting 32-bit random value was the

result of either one or two samples of the TSC.

We collected 99778 consecutive random values. In

the entire set, there were only two 32-bit values dupli-

cated. This roughly corresponds to the expected colli-

sions in a linear distribution (i.e. 2/99778 = 0.000020

and 99778/232
= 0.000023). Furthermore, a two-

dimensional visual analysis of the generated values did

not reveal any apparent clustering.

Because the random value is not correlated to the check-

sum result and does not even reveal clues about the likely

outcome of the next repetition of the contrived testcase,

we believe it is reasonably unguessable. In normal test-

cases, the random value generation is much less con-

strained and provides an even greater degree of unpre-

dictability.

Some systems provide hardware-based random number

generators on the motherboard chipset. For instance, the

Intel i810 and AMD 768 chipsets use sampled thermal

data and constrained electrical noise to generate “truly-

random” numbers. Interestingly, use of these devices

is not widespread [22]. One particular disadvantage of

chipset-based random number generators is that an at-

tacker could conceivably watch bus transactions to read

the random number in transit from the chipset to the

CPU. Our genuinity test keeps generated random values

only in CPU registers and is immune to such a poten-

tial attack. Recently, a microprocessor vendor has added

support for random number generation on the CPU itself

[22, 24].

6 Related Work

Our work is the first to deal specifically with the problem

of determining whether a remote computer is a real com-

puter. Nevertheless, there are several related projects

that propose alternative methods for creating trusted re-

mote systems.

6.1 Execution Verification

We are not the first to leverage the time delay inher-

ent in the computational complexity of a problem to

prove characteristics of an operating environment. Much

work has been done in constructing programs that can

check their work to ensure their integrity [9, 47] as well

as making sure that they have not taken shortcuts in

their execution [10, 20]. In particular, Jakobsson and

Juels characterized and articulated the concept of a proof
of work [27] that is similar to the rationale by which

our checksum works. In their taxonomy, the result of

our memory checksum during directed exercising of the

CPU constitutes a bread pudding protocol—a way of

reusing a hard-to-compute result for another purpose.

Monrose, Wyckoff and Rubin illustrate a system similar

to ours that verified the correct execution of code on a

remote Java Virtual Machine [34] to detect the possibil-

ity that the JVM had cheated on a calculation. An im-

portant distinction between their work and ours is that

a JVM, being a simulator, is always susceptible to po-

tential eavesdropping by its controller and its data could

be manipulated at any time. Execution verification must

be performed at all times for a JVM rather than once at

boot time in order to confirm determinism of computa-

tional results.

Hohl [23] presented a thorough overview of the prob-

lem of malicious hosts and potential ways of address-

ing it. This research recognized the apparent insolubil-

ity of the authenticity problem and concentrated on es-

tablishing an environment whereby work could be sent

to (possibly malicious) remote Entities in such a man-

ner that the integrity of computation could be proven.

Secrecy was maintained by using software obfuscation

techniques. This system was also sensitive to the execu-

tion time of the distributed computation in order to de-

tect potential cheating. The cost of using malicious hosts

for computation was realized by the additional network

bandwidth and increased execution time.

6.2 Secure Coprocessors

Several projects in industry [17, 44, 48] and academia

[50] have focused on the development and use of se-
cure coprocessors that guarantee their trustworthiness

in a hostile environment by employing physical tamper-

proofing measures as well as incorporating mechanisms

that guard against loading untrusted software. Any at-

tempt at unauthorized access to the system would de-

stroy its contents, so as long as it still held a usable se-

cret, it could be assumed to be secure. Such a system

could then authenticate itself to another remote system

12th USENIX Security Symposium USENIX Association308

by means of public-key cryptography based on an in-

ternal secret. Here, the system demonstrates its genuin-

ity not by proving that it is a genuine computer but by

proving its identity. That identity must be known in ad-

vance to other systems for the secure coprocessor’s se-

curity to be meaningful to a remote party. In contrast,

our work allows previously unknown systems to authen-

ticate themselves to a central authority.

6.3 Secure Bootloaders

Several projects have been dedicated to the development

of secure bootloaders that allow a computer system to

authenticate the software that it loads [6, 11, 26, 50] by

using a cryptographic secret stored in a secure coproces-

sor or on a smartcard. These systems require the integra-

tion of a secure BIOS or special loader to guarantee that

no hostile code becomes operational on the machine in

question. By comparison, our work requires no firmware

modifications. It is also not sensitive to the means by

which the loaded kernel became operational. As long as

the genuinity test can verify that the kernel is running

and in control of the system, a secure bootloader for the

kernel offers no additional benefit.

6.4 TCPA, Palladium and LaGrande

Recently, a great deal of media attention has been fo-

cussed on the Trusted Computing Platform Alliance

(TCPA) [1], Microsoft’s Palladium Initiative [14], and

Intel’s LaGrande [35]. Nevertheless, it is not always

clear how the respective systems work or what they are

intended for. Many publications have been made avail-

able in an attempt to correct these misunderstandings

[2, 4, 5, 18, 41, 43], and we encourage the curious reader

to survey them carefully. We can point out two primary

differences between these systems and our work:

• None of these systems appear to provide a means

of demonstrating an anonymous system’s genuinity

to a central authority in the way our method does.

Instead, they specifically aid in the generation and

manipulation of cryptographic secrets for the pur-

pose of identity management and access control.

• Each of the aforementioned systems require the ad-

dition of some form of hardware to a participating

computer in order to manipulate and hide crypto-

graphic secrets. We are not, at this time, advocating

the addition of any security or cryptography hard-

ware to the system, nor do we rely on any static

secrets that must be integrated into the computer’s

firmware to support evidence of its identity.

What remains to be seen is whether these technologies

will provide a useful mechanism for increasing our abil-

ity to resolve the genuinity of computer systems.

7 Summary

We have implemented a method by which a remote com-

puter system can demonstrate the genuinity of its hard-

ware and running software to a certifying authority with-

out the need for a trusted human intermediary. We be-

lieve such a method will be useful for enabling the agg-

regation of arbitrary and, potentially, anonymous sys-

tems into distributed computational clusters. To revisit

our introductory example, Alice could employ such a

method to allow Mallory to add trusted hosts to her net-

work environment with an acceptably low risk of Mal-

lory gaining unauthorized access to resources. In ad-

dition, this could be done with no other demands on Al-

ice’s time other than the initial configuration and deploy-

ment of the certifying authority.

Our implementation shows a reasonable safety margin

against potential simulation attacks even when using a

very slow target microprocessor. Other more direct at-

tacks are possible, but the complexity of their under-

taking may allow our implementation to be acceptable

in a number of environments. We continue to develop

our implementation to broaden the number of applic-

able microprocessors by improving the types of meta-

information that can be incorporated into the checksum

algorithm. To our knowledge, all high-performance mi-

croprocessors presently in production have enough mea-

surable side-effects to support a genuinity test. Lower-

performance embedded CPUs may also be valid tar-

gets of our technique—especially if their instruction sets

are not common to higher-performing CPUs since this

would certainly force a potential attacker to use an in-

struction simulator.

Acknowledgments

We thank Mike Franzen for the numerous lengthy con-

versations that greatly influenced the early versions of

this research. Mike Shuey also provided timely criticism

in the development of the network protocol and timely

loan of test machines. We thank the anonymous review-

ers for their many detailed and helpful remarks.

12th USENIX Security Symposium USENIX Association 309

References

[1] Trusted Computing Platform Aliance. TCPA main

specification. http://www.trustedcomputing.org/.

[2] Ross Anderson. TCPA / Palla-

dium Frequently Asked Questions.

http://www.cl.cam.ac.uk/users/rja14/tcpa-

faq.html.

[3] AOL. The America Online Instant Messenger Ap-

plication. http://www.aol.com/, 2002.

[4] William A. Arbaugh. Improving the TCPA. IEEE
Computer, 35:77–79, August 2002.

[5] William A. Arbaugh. The TCPA; what’s

wrong; what’s right and what to do about

it. http://www.cs.umd.edu/˜waa/TCPA/TCPA-

goodnbad.pdf, July 2002.

[6] William A. Arbaugh, David J. Farber, and

Jonathan M. Smith. A Secure and Reliable Boot-

strap Architecture. In IEEE Symposium on Security
and Privacy, pages 65–71, May 1997.

[7] R. Bedichek. Some efficient architecture simula-

tion techniques. In Proceedings of the USENIX
Winter 1990 Technical Conference, pages 53–64,

Berkeley, CA, 1990. USENIX Association.

[8] S. M. Bellovin and M. Merritt. An attack on

the interlock protocol when used for authentica-

tion. IEEE Transactions on Information Theory,

40(1):273–275, January 1994.

[9] Manuel Blum and Sampath Kannan. Designing

programs that check their work. In ACM Sympo-
sium on Theory of Computing, pages 86–97, 1989.

[10] Jin-Yi Cai, Richard J. Lipton, Robert Sedgewick,

and Andrew Chi-Chih Yao. Towards uncheatable

benchmarks. In Structure in Complexity Theory
Conference, pages 2–11, 1993.

[11] Paul C. Clark and Lance J. Hoffman. Bits: A

smartcard protected operating system. Commu-
nications of the ACM, 37(11):66–94, November

1994.

[12] Christian Collberg and Clark Thomborson. On the

limits of software watermarking. Technical Report

164, University of Auckland Dept. of Computer

Science, August 1998.

[13] Christian Collberg and Clark Thomborson. Water-

marking, tamper-proofing, and obfuscation—tools

for software protection. Technical Report 170,

University of Auckland Dept. of Computer Sci-

ence, February 2000.

[14] Microsoft Corporation. Microsoft

“Palladium”: A business overview.

http://www.microsoft.com/presspass/features/

2002/jul02/0724palladiumwp.asp.

[15] Donald W. Davies and Wyn L. Price. Security for
Computer Networks, second ed. John Wiley &

Sons, second edition, 1989.

[16] Whitfield Diffie and Martin E. Hellman. New

directions in cryptography. IEEE Transactions
on Information Theory, IT-11:644–654, November

1976.

[17] Joan G. Dyer, Mark Lindemann, Ronald Perez,

Reiner Sailer, Leendert van Doorn, Sean Smith,

and Steve Weingart. Building the IBM 4758 se-

cure coprocessor. IEEE Computer, 34(10):57–66,

October 2001.

[18] Paul England and Marcus Peinado. Authenticated

operation of open computing devices. In Pro-
ceedings of the 7th Australasian Conference on In-
formation Security and Privacy, pages 346–361.

Springer-Verlag, 2002.

[19] Free Software Foundation. GNU GRUB.

http://www.gnu.org/software/grub/grub.html,

2003.

[20] Philippe Golle and Ilya Mironov. Uncheatable dis-

tributed computations. In CT-RSA, pages 425–440,

2001.

[21] D. Grover. The protection of computer soft-

ware: Its technology and applications. In The
British Computer Society Monographs in Infor-
matics, chapter Program Identification. Cambridge

University Press, second edition, 1992.

[22] Mark Hachman. Via adds crypto

to “Nehemiah”, plans mobile launch.

http://www.extremetech.com/article2/

0,3973,838362,00.asp, 2003.

[23] Fritz Hohl. Time limited blackbox security: Pro-

tecting mobile agents from malicious hosts. Lec-
ture Notes in Computer Science, 1419:92–113,

1998.

[24] VIA Technologies Inc. The VIA Padlock Data En-

cryption Engine. http://www.via.com.tw/en/viac3/

padlock.jsp, 2003.

[25] VMware, Inc. The VMware workstation simulator.

http://www.vmware.com/, 2002.

12th USENIX Security Symposium USENIX Association310

[26] N. Itoi, W. A. Arbaugh, J. McHugh, and W. L.

Fithen. Personal secure booting. In Proceedings
of the Sixth Australian Conference on Information
Security and Privacy, pages 130–144, July 2001.

[27] Markus Jakobsson and Ari Juels. Proofs of work

and bread pudding protocols. In IFIP TC6 and
TC11 Joint Working Conference on Communica-
tions and Multimedia Security (CMS ’99), Leuven,
Belgium. Kluwer, September 1999.

[28] Steven Kent and Randall Atkinson. Security archi-

tecture for the internet protocol. IETF RFC 2401,

November 1998.

[29] John B. Lacy, Donald P. Mitchell, and William M.

Schell. CryptoLib: Cryptography in Software.

In UNIX Security Symposium IV Proceedings.

USENIX Association, 1993.

[30] Kevin Lawton. The Plex86 simulator.

http://plex86.org/, 2002.

[31] Kevin Lawton. Bochs: The Open Source IA-32

Emulation Project. http://bochs.sourceforge.net/,

2003.

[32] Peter S. Magnusson, Magnus Christensson, Jesper

Eskilson, Daniel Forsgren, Gustav Hållberg, Johan

Högberg, Fredrik Larsson, Adreas Moestedt, and

Bengt Werner. Simics: A full system simulation

platform. IEEE Computer, 35(2):50–58, February

2002.

[33] Peter S. Magnusson and Bengt Werner. Some ef-

ficient techniques for simulating memory. Techni-

cal Report R94-16, Swedish Institute of Computer

Science, August 1994.

[34] Fabian Monrose, Peter Wyckoff, and Aviel D. Ru-

bin. Distributed execution with remote audit. In

ISOC Network and Distributed System Security
Symposium, pages 103–113, 1999.

[35] Paul Otellini. Intel developer fo-

rum, fall 2002, keynote speech.

http://www.intel.com/pressroom/archive/

speeches/otellini20020909.htm.

[36] Etherboot Project. Etherboot.

http://www.etherboot.org/, 2003.

[37] Niels Provos. Encrypted virtual memory. In Pro-
ceedings of the 9th USENIX Security Symposium.

USENIX Association, 2000.

[38] PyxisSystemsTechnologies. AIM/oscar protocol

specification: Section 3: Connection manage-

ment. http://aimdoc.sourceforge.net/faim/protocol/

section3.html, 2002.

[39] Ronald L. Rivest and Adi Shamir. How to expose

an eavesdropper. Communications of the ACM,

27(4):393–395, April 1984.

[40] John Scott Robin and Cynthia E Irvine. Analysis

of the Intel Pentium’s Ability to Support a Secure

Virtual Machine Monitor. In Proceedings of the
9th USENIX Security Symposium. USENIX Asso-

ciation, 2000.

[41] David Safford. The need for TCPA.

http://www.research.ibm.com/gsal/tcpa/

why tcpa.pdf, October 2002.

[42] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,

and B. Lyon. Design and implementation of

the Sun Network Filesystem. In Summer 1985
USENIX Conference, 1985.

[43] Seth Schoen. Palladium details.

http://www.activewin.com/articles/2002/pd.shtml.

[44] Sean W. Smith, Elaine R. Palmer, and Steve Wein-

gart. Using a high-performance, programmable

secure coprocessor. In Financial Cryptography,

pages 73–89, 1998.

[45] A.M Turing. On computable numbers: With an

application to the entscheidungsproblem. Proceed-
ings of the London Mathematical Society, 42:230–

265, 1936.

[46] L. van Doorn, G. Ballintijn, and W. A. Arbaugh.

Design and implementation of signed executables

for linux. Technical Report HPL-2001-227, Uni-

versity of Maryland, College Park, June 2001.

[47] Hal Wasserman and Manuel Blum. Software relia-

bility via run-time result-checking. Journal of the
ACM, 44(6):826–849, 1997.

[48] Steve R. White and Liam Comerford. ABYSS:

A trusted architecture for software protection. In

IEEE Symposium on Security and Privacy, pages

38–51, 1987.

[49] Emmett Witchel and Mendel Rosenblum. Embra:

Fast and flexible machine simulation. In Measure-
ment and Modeling of Computer Systems, pages

68–79, 1996.

[50] Bennet Yee. Using Secure Coprocessors. PhD the-

sis, Carnegie Mellon University, May 1994.

