
USENIX Association

Proceedings of the
12th USENIX Security Symposium

Washington, D.C., USA
August 4–8, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



12th USENIX Security Symposium USENIX Association 285

Implementing and testing a virus throttle

Jamie Twycross
jamie@milieu3.net

Matthew M. Williamson
matthew.williamson@hp.com

Hewlett-Packard Labs, Bristol, U.K.

May 13, 2003

Abstract

In this paper we build on previous theoretical work
and describe the implementation and testing of a
virus throttle - a program, based on a new approach,
that is able to substantially reduce the spread of and
hence damage caused by mobile code such as worms
and viruses. Our approach is different from cur-
rent, signature-based anti-virus paradigms in that
it identifies potential viruses based on their network
behaviour and, instead of preventing such programs
from entering a system, seeks to prevent them from
leaving. The results presented here show that such
an approach is effective in stopping the spread of
a real worm, W32/Nimda-D, in under a second,
as well as several different configurations of a test
worm.

1 Introduction

CNET dubbed 2001 the “Year of the Worm” [14]
and 2002 has only seemed to confirm this, with high-
speed mobile code forming the majority of entries
in the top ten of most infectious programs. In-
deed, on the weekend this paper was being com-
pleted, the W32/SQLSlam-A worm [22] infected
what is currently estimated at 75,000 machines in
30 minutes [16] and caused major network disrup-
tion. Finding effective ways to prevent such activity
is a high priority.

The work we present here provides just that - an
extremely effective way of halting the propagation

of certain classes of worms. Our approach, virus
throttling [27], [30], is based on the observation that
under normal activity a machine will make fairly few
outgoing connections to new machines, but instead
is more likely to regularly connect to the same set
of machines. This is in contrast to the fundamen-
tal behaviour of a rapidly spreading worm, which
will attempt many outgoing connections to new ma-
chines. The idea behind the virus throttle is to put
a rate limit on connections to new machines such
that normal traffic remains unaffected but suspect
traffic is slowed, quickly detected and stopped.

Our approach is different from current approaches
in three key ways: it focuses on the network be-
haviour of the virus and prevents certain types of
behaviour, in our case the attempted creation of a
large number of outgoing connections per second.
It is also unique in that, instead of stopping mobile
code from entering a system, it restricts the code
from leaving. Lastly, because connections over the
allowed rate are delayed and not dropped, the sys-
tem is tolerant to false positives and is therefore
robust.

In this paper we give a detailed description of an
implementation of the virus throttle and our exper-
imental setup, and present the results of a number of
tests. These tests show that the virus throttle is able
to very quickly detect and prevent worms spreading
from an infected machine. For example, the throttle
is able to stop the W32/Nimda-D worm [21] in un-
der one second. Furthermore, since the throttle pre-
vents subsequent infection, the effect on the global
spread of the virus will depend on how widely it is
deployed. Our results also show that when 75% of
machines are installed with the throttle, the global



12th USENIX Security Symposium USENIX Association286

spread of both real and constructed worms is sub-
stantially reduced. Throttled machines do not con-
tribute any network traffic in spite of being infected,
significantly reducing the amount of network traffic
produced by a virus.

The next section, Section 2, paints the background
against which our work stands, briefly reviewing
what mobile code is and how it propagates and dis-
cussing current approaches to limiting this propaga-
tion. It then goes on to outline the foundations on
which our perspective is based, and briefly reviews
related work. Section 3 describes in detail the de-
sign and implementation of our virus throttle, the
performance of which, along with our experimental
setup, we describe in Section 4. Concluding remarks
are made in Section 5.

2 Background

In this section we offer a brief review of mobile code
and current approaches to limiting its spread. We
then go on to introduce the conceptual framework
upon which our work rests, and end the section with
a summary of related work.

2.1 Mobile code

We are interested in a class of software broadly
known as mobile code [10]. For our purposes we
define mobile code pragmatically as any program
that is able to transfer itself from system to system
with little or no human intervention. Many exam-
ples of such mobile code can be found in real life,
the most common of which are the many viruses and
worms that are becoming an increasingly prevalent
feature of the Internet [5, 14]. While mobile code
can propagate through different media, for exam-
ple, removable storage, since we are particularly in-
terested in propagation across networks, we will re-
strict our discussion to code that spreads across this
medium. Although technical difference do exist be-
tween virus and worms [6, 7], in what follows we will
use these terms and mobile code interchangeable.

An archetypal piece of mobile code can in general
be seen as repeating a cycle composed of several
distinct stages. The code will perform some form
of scan to attempt to locate target machines which

are vulnerable to infection, and will then attempt
to exploit any target machines found. If successful,
the exploit will allow the mobile code to transfer a
copy of itself to the target machine, which will itself
begin its own scan/exploit/transfer cycle.

2.2 Current approaches

Current approaches to virus protection involve pre-
venting a virus from entering a system, predom-
inantly through signature-based detection meth-
ods [8]. These methods concentrate on the physi-
cal characteristics of the virus i.e. its program code,
and use parts of this code to create a unique sig-
nature of the virus. Programs entering the sys-
tem are compared against this signature and dis-
carded if they match. In terms of the three-stage
scan/exploit/transfer cycle described above, current
approaches can be seen as focusing on the transfer
stage.

While this approach has up to now been fairly effec-
tive in protecting systems it has several limitations
which, as the number of virus samples increases,
decrease its effectiveness. It is fundamentally a re-
active and case-by-case approach in that a new sig-
nature needs to be developed for each new virus
or variant as it appears. Signature development is
usually performed by skilled humans who are only
able to produce a certain number of signatures in
a given time. As the number of viruses increases,
the time between initial detection and release of a
signature increases, allowing a virus to spread fur-
ther in the interim. Furthermore, comtemporary
viruses are using techniques such as polymorphism
and memory-residency to sidestep signature detec-
tion entirely.

2.3 Agents and complex systems

An alternative and fruitful approach can be gained
by viewing the mobile code as an autonomous
agent acting within a complex system [19]. Such
a paradigm shift leads to an emphasis on different
concepts and also allows a vast amount of literature
on complex and adaptive systems from fields con-
cerned with these entities to be drawn upon. For
example, when viewed as an agent the question of
how the agent behaves within the environment it
inhabits becomes as important as the purely mech-



12th USENIX Security Symposium USENIX Association 287

anistic details of its construction on which the cur-
rent approach described in the last section is based.

The distinction between mechanism and behaviour
can lead to some simple but potentially powerful
conclusions. While a virus is able to instantiate
an effective spreading mechanism in an extremely
large number of ways, each requiring a separate sig-
nature, the number of ways in which a virus can
behave to spread effectively is perhaps much more
limited. This is especially the case with the class
of high-speed worms which are becoming increas-
ingly prevalent and which, due to their high-speed
nature, need to scan a large number of hosts per sec-
ond. Behaviour is a much more powerful discrimina-
tor than that employed in current, mechanistically-
orientated signature-based methods, as it poten-
tially allows the automatic identification and hence
removal of an entire class of worms.

Considering behaviour also leads to some less obvi-
ous insights, one being that it could be more produc-
tive to focus on preventing viruses leaving a system,
as opposed to stopping them entering, the strategy
taken by current methods. While such a seemingly
altruistic approach may at first sight appear inef-
fective, recent work by Williamson and Leveille [29]
and other work discussed in the next section indi-
cates that it can be extremely effectual in preventing
the spread of viruses across networks.

2.4 Related work

Our approach is related to the “behaviour blocking”
of Messmer [15] which seeks to specify policies defin-
ing normal or acceptable behaviour for applications.
If an application breaches such a policy it is reported
to an administrator. The approach we take differs in
that it is able to automatically respond to abnormal
behaviour, taking the administrator out of the loop
in this respect. The benign facet of this response is
particularly important as it makes the throttle more
tolerant to false positives. Another example of a be-
nign response used in an intrusion detection applica-
tion is given by Somayaji and Forrest [20], although
their application implements this response in rela-
tion to abnormal sequences of syscalls. Bruschi and
Rosti [2] discuss various ways in which hosts can
be prevented from participating in network attacks
and describe a tool, AngeL [3], which can be used to
prevent systems from participating in such attacks.
AngeL, however, relies on a signature-based algo-

rithm to detect attacks, inspecting network packets
for predefined sequences of data, for example, shell-
code or unusual HTTP requests, in contrast to our
behaviour-based approach.

3 The virus throttle

After outlining the context of our work in the last
section, we now go on to give a detailed explana-
tion of the design and implementation of a virus
throttle, of which an initial description and proof-
of-concept based on theory and simulation was pre-
sented in [27]. The main focus of this section will
be on a TCP implemention of the virus throttle,
although we have also tested UDP, SMTP and Ex-
change throttles with similar designs.

3.1 Design

The virus throttle is a program that limits the rate
of outgoing connections to new machines that a host
is able to make in a given time interval. For the
purposes of simplicity in this section we will assume
that the host has one unique address - its source IP
address, although the implementation described be-
low allows for multiple source IP addresses. Connec-
tions to a remote machine are established through
what is known as a three-way-handshake in which
the initiator of the connection, the source machine,
sends a TCP SYN packet to the target machine,
identified by a destination IP address. The tar-
get machine then sends back a SYN-ACK packet,
which the source machine replies to with an ACK
packet [17]. By controlling the number of SYN pack-
ets transmitted from the source machine we can con-
trol the number of connections it is able to make.

A note should be made about the relationship be-
tween connection attempts and SYN packets. At
the application layer, a connection is usually initi-
ated by opening a socket [23]. This results in the
sending of an initial TCP SYN packet and, if no re-
sponse is received within a certain time, the sending
of further, identical, SYN packets. This continues
up to a maximum time, the socket timeout, when
the socket will give up and return control to the
application. Thus, in attempting to open a single
connection a machine may actually transmit sev-
eral SYN packets. In our implementation we make



12th USENIX Security Symposium USENIX Association288

no attempt to differentiate initial SYN packets from
retries, and count the retries as separate connection
attempts.

A machine will establish many such connections in
the course of normal usage, for example when re-
questing a web page or the delivery of email. Many
worms also use such connections when scanning in
order to establish the existence and configuration
of remote machines, with high-speed worms such as
W32/Nimda-D [21] or CodeRed [4] initiating large
numbers of connections to different targets per sec-
ond. The virus throttle rests on the observation that
the patterns of connections due to normal usage are
very different from the patterns of connections cre-
ated by such mobile code. Our research has sug-
gested that under normal usage often no more than
one connection to a target not recently connected
to is made per second, and that the majority of
connections are made to destination addresses that
have recently been connected to [27].

The virus throttle parses all outgoing packets from
a machine for TCP SYN packets. The destination
address of an intercepted SYN packet is then com-
pared against a list of destination addresses of ma-
chines to which connections have previously been
made, which we term the working set. The working
set can hold up to 5 such addresses. If the desti-
nation address is in this working set the connection
is allowed immediately. If the addresses is not in
the working set and the working set is not full i.e. it
holds less than 5 addresses, the destination address
is added to the working set and the connection is
once again allowed to proceed immediately. If none
of these two conditions are met, the SYN packet is
added to what we term the delay queue and is not
transmitted immediately.

Once every second the delay queue is processed
and the SYN packet at its head and any other
SYN packets with the same destination address are
popped and sent, allowing the establishment of the
requested connection. The destination address of
this packet is also added to the working set, the
oldest member of which is discarded if the working
set is full. If the delay queue is empty at processing
time and the working set is full, the oldest member
of working set is also discarded, allowing for the po-
tential establishment of one connection per second
to a target not recently connected to.

This design, summarised schematically in Figure 1,
allows hosts to create as many connections per sec-

ond as they want to the 5 most recently connected-
to machines. Any further connection attempts will
be delayed for at least a second, and then attempted.
Delaying connections rather than simply dropping
them is important as such a benign response [20] al-
lows the virus throttle a certain amount of leeway in
its conception of normal behaviour and a response
that, if incorrectly targeted at legitimate connection
attempts, will introduce an often imperceptible de-
lay in the connection, instead of prohibiting it en-
tirely.

rate limiter clock

process

Queue
length
detectorca b d e

h

f

g

delay
queue

request

update

not−new new
add

i

working set
n = 5

Figure 1: A schema of the control flow of the virus
throttle

In [27], it was argued that if the rate of connections
to new targets is high, as is the case with many
worms, the delay queue would rapidly grow result-
ing in attempted connections being severely delayed.
When implementing the throttle, we took this idea
further and introduced an upper limit to the size of
the delay queue which, once reached, will disallow
all further connection requests by the host. Thus
the throttle can be said to behave benignly within
certain limits. From observation of the normal be-
haviour of a range of users we saw that the delay
queue rarely grew bigger than a handful of packets
and concluded that the size of the delay queue could
offer an indication of the presence of a worm on the
host: large delay queue sizes would almost certainly
indicate an application behaving in a suspect man-
ner. In our throttle we set this upper limit on the
delay queue size to 100 packets.

Lastly, as mentioned previously, we have also im-
plemented UDP, SMTP and Exchange versions of
the throttle. The UDP throttle works in exactly
the same way as its TCP counterpart except that
instead of parsing outgoing network traffic for TCP
SYN packets, it looks for outgoing UDP packets,



12th USENIX Security Symposium USENIX Association 289

each of which is considered a separate connection at-
tempt. The email throttle is described fully in [28].

3.2 Implementation

In this section we describe how the virus throttle
was implemented, beginning with a short overview
of the structure of the Linux network stack. Neces-
sarily, this section is fairly technical, and the reader
is referred to more complete works such as [1, 18]
for further information.

The Linux network stack strictly consists of two
data structures, the ptype all linked list and the
ptype base hash table, containing pointers to packet
handler functions [13], but, at a conceptual level,
can simply be thought of as a list of packet han-
dler functions. Outgoing packets are placed onto
the list by a packet handler and traverse the list un-
til they reach its head, after which the packets are
passed to the hard start xmit function supplied by
the appropriate network device driver for transmis-
sion on the wire. The virus throttle works by replac-
ing the pointer to the hard start xmit function reg-
istered by the network device driver with a pointer
to a function of its own. This means that, since
the hard start xmit function is called every time a
packet has finished traversing the network stack and
is ready to be transmitted on the network interface,
we are able to intercept and control every packet
leaving the network device. In essence, the throt-
tle can be viewed at this level as an ethernet device
driver wrapper.

To accomplish this wrapping the virus throttle is im-
plemented as a Linux 2.4.18 kernel module which,
in its init module routine, fetches the pointer to the
net device structure registered by the current net-
work device driver. The net device structure con-
tains entries to pointers to the packet handling func-
tions registered by the network device driver, in-
cluding the hard start xmit function, whose pointer
we replace with a pointer to our own transmit func-
tion.

Our own transmit function is a simple packet parser
which looks for TCP SYN packets, the packets used
to establish stream-based connections between ap-
plications. If the packet being parsed is not a
TCP SYN packet, it is passed on to the original
hard start xmit function for transmission as usual.
If, however, it is a TCP SYN packet it is, as de-

scribed in the previous section, either allowed to
pass immediately, in which case it is handed off
to the original hard start xmit function and possi-
bly added to the working set or, if the working set
is full, is added to the delay queue for later trans-
mission. Both the working set and delay queue data
structures are instantiated as linked lists using the
linked list structure provided by the Linux kernel.
The working set list stores the destination address
of the packet, while the delay queue list stores the
source and destination addresses of the packet, a
copy of the sk buff data structure associated with
the packet, and the time it was enqueued. The limit
on the size of the delay queue is implemented by
monitoring the size of the delay queue in the packet
parser and setting a flag if this size increases be-
yond the specified upper limit. The packet parser
will never allow a connection attempt to commence
if this flag is set.

Processing of the delay queue is handled by a ker-
nel thread which wakes up a specified number of
times per second, in our case once per second. The
delay queue is then processed as described in the
previous section, with packets deemed suitable for
transmission dequeued and passed on to the origi-
nal hard start xmit function. Due to the fact that
the delay queue and working set are data structures
shared by the enqueueing packet parsing routines
and the dequeueing delay queue routines, these two
data structures are carefully protected by spinlocks.

In order to allow for the fact that one host may
have several different IP addresses or that the virus
throttle may be placed on some intermediate system
such as a bridge or gateway and hence see packets
transmitted with a number of different source IP
addresses, our implementation actually keeps an ar-
ray of working set and delay queue data structures.
Each entry in this array corresponds to a working
set and delay queue for a particular source IP ad-
dress.

4 Testing

Now that we have detailed the design and imple-
mentation of the throttle, in this section we move on
to describe how we evaluated its performance. Ini-
tially, we outline our experimental setup and then
go on to present the experiments we performed and
their results.



12th USENIX Security Symposium USENIX Association290

4.1 Experimental setup

In order to effectively test our throttle in a range
of different scenarios we first had to develop a se-
cure testbed on which the virus throttle could be
exposed to real and constructed mobile code. It is
this testbed that we now describe, more details of
which can be found in [25].

4.1.1 Testbed

The testbed consists of a rack mounted single-
chassis HP Blade Server bh7800 [12] providing the
physical infrastructure for 3 separate LANs and
housing what includes three 25-port 10/100 switches
and 16 bh1100 Server Blades. Each Blade has a
700MHz Pentium III processor with a 30GB hard-
disk, onboard graphics and 3 network interfaces.
One network interface is provided to the manage-
ment LAN by a remote management card (RMC)
daughterboard, while the other two provide connec-
tions to the remaining two LANs.

As well as being physically separate, the functional
roles of the three LANs have also been separated.
The management LAN provides access to the RMC
daughterboard on each Server Blade which can be
used for tasks such as power-cycling the Blade. The
second LAN is designated the administrative LAN
and is used to handle the installation and config-
uration of the Blades, and the coordination of ex-
periments and collation of data from these experi-
ments. The third LAN, the experimental LAN. is
the network on which the experiments are actually
performed. This setup is summarised in Figure 2.

In addition to the Blade Server, we are also employ-
ing four 1.8GHz Pentium 4 boxes, two of which act
as servers on the administrative and experimental
LANs respectively. The administrative LAN server,
as well as running services such as PXE, DHCP and
FTP necessary for the configuration of the Server
Blades also coordinates our experiments. A third
machine acts as our data collector and is in essence
a network sniffer. A monitoring port [11] has been
configured on the switch on the experimental LAN
and the sniffer machine, running tcpdump [24], lis-
tens on this port and keeps a copy of all traffic on
this LAN. The fourth machine is our infector which,
at the start of some of our experiments, we bring up
and use to inject a copy of the virus under study into

16

Sw
itc

h

Sw
itc

h
Sw

itc
h

Sniffer
M

an
ag

em
en

t L
A

N

E
xp

er
im

en
ta

l L
A

N

M
Blade

Blade
Blade
Blade
Blade

A
dm

in
is

tr
at

iv
e 

L
A

N

Admin Server

Expt Server

Injector

Figure 2: The configuration of the testbed

one of the machines on the experimental LAN. This
machine is then brought down and plays no further
role in the experiments. For coordination purposes,
the sniffer and infector machines have network con-
nections to both the experimental and administra-
tive LANs, and particular care has been taken to
ensure that no traffic from one of these LANs is
able to cross to the other LAN.

A slimmed-down Redhat 7.3 Linux installation with
a custom 2.4.18 kernel forms the operating system
on the Server Blades. As the experiments involve
a variety of operating systems and settings, to ease
configuration and save time we run VMware Work-
station 3.2 [26] on each Server Blade. VMware al-
lows the running of one operating system, the guest
operating system, inside another operating system,
the host operating system, in our case Linux. For
the experiments below we use a standard instal-
lation of Windows 2000 Professional as the guest
OS with VMware configured in bridged-only net-
working mode. Setting a VMware guest OS to use
bridged-only networking means that the guest will
largely use its own network stack, as opposed to
that of the host OS if host-only networking is con-
figured. This results in more realism in the network
behaviour of applications running under the guest



12th USENIX Security Symposium USENIX Association 291

OS but, since bridged-only networking employs a
proprietary VMware driver located fairly low down
in the Linux network stack, places constraints on the
implementation of the virus throttle not necessarily
present in a production version of the throttle.

This configuration of the testbed allows us to auto-
mate the process of running experiments to a large
extent, essential when it is necessary to repeat ex-
periments a number of times to reduce the noise
inherent in the random nature of the programs we
are studying. Obviously, when a network has ma-
chines known to be infected with viruses, the secu-
rity and isolation of this network is of prime im-
portance. As well as the measures described above
and careful configuration and testing of all software,
the testbed is housed in a secure laboratory phys-
ically preventing connections to all other networks
and strict policies concerning data transfer are im-
posed.

4.1.2 Test worm

In order to test the effectiveness of the virus throttle
at allaying the spread of worms which scan at differ-
ent rates a test worm was developed. The test worm
consists of a basic stream-socket server [23] which
listens for connections on a specified port. When
it receives a connection attempt the server starts a
scanner whose properties, such as scan rate and ad-
dress range, can also be specified. This scanner then
scans the IP address space by attempting to make
connections to addresses on the port the test worm
server is listening on. As the type of scanning used
is TCP connect scanning [9], if the scanner discov-
ers the IP address of a machine running a test worm
server it will trigger the server to start the scanner
on this machine. This scheme allows a fairly real-
istic simulation of the scan/exploit/transfer worm
lifecycle but, since no actual exploit or file transfer
is involved and since any machines infected by the
worm have, a priori, to already have been infected
with the worm, guarantees that the test worm will
never spread autonomously.

4.2 Results

Using the testbed setup described above we have
been able to securely observe a variety of different
viruses spreading across the experimental network

and have performed a number of different experi-
ments with the virus throttle, which we now go on
to detail.

4.2.1 Stopping speed

We were first interested in the time it would take
worms scanning at a number of different rates to
cause the delay queue to reach its upper limit, 100
packets in our implementation. Remembering that
once the delay queue has reached this limit we dis-
able all further connection attempts, this time is
effectively the time it takes the throttle to stop
a worm. The experimental LAN on the testbed
was configured with two machines, a gateway and a
Server Blade running a Windows 2000 Professional
guest OS. Table 1 records the time taken for the
delay queue to reach 100 and the number of con-
nection attempts made before this time when the
Blade Server is infected with the real W32/Nimda-
D virus [21] and the test worm configured to scan at
various rates. As this table shows, the virus throt-
tle takes only 0.25 seconds to stop Nimda, which
scans at a rate of around 200 connections per sec-
ond, from spreading, and under 5 seconds to stop
any application that scans at a rate of 20 connec-
tions or more per second. In the Nimda case, the
throttle only allows one packet out on to the wire
before networking is shut down, and a maximum of
5 packets for the test worm configured to scan at 20
connections per second. The stopping times for the
SQLSlammer worm [22] of a UDP implementation
of the throttle have also been included in Table 1
and show that the throttle is able to stop this worm
in 0.02 seconds.

4.2.2 Mobile code propagation

In order to test the effectiveness of the virus throt-
tle at reducing the propagation of a real worm,
the testbed was set up with one class C network
containing 16 Server Blades running a VMware-
encapsulated copy of Windows 2000 Professional
vulnerable to the W32/Nimda-D virus [21]. A ma-
chine which acted as the default gateway and DHCP
server for this network was also configured. One
of the Windows machines was then infected with
W32/Nimda-D and its progress through the net-
work observed by gathering data using the sniffer
configured as described above. This data was then
analysed and the time at which each system became



12th USENIX Security Symposium USENIX Association292

connections stopping allowed
per second time connections

Nimda
120 0.25s 1

Test Worm
20 5.44s 5
40 2.34s 2
60 1.37s 1
80 1.04s 1
100 0.91s 1
150 0.21s 0
200 0.02s 0

SQLSlammer
850 0.02s 0

Figure 3: Average time taken by the throttle to stop
real and test worms

infected with the Nimda virus determined. By vary-
ing the number of machines on the network which
had the throttle installed and by repeating each ex-
periment 10 times, we were able calculated the av-
erage time taken for a given number of machines
to be infected assuming that a certain percentage
of the machines on the network had virus throttles
installed. These results are shown in Figure 4.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

N
um

be
r 

of
 in

fe
ct

ed
 m

ac
hi

ne
s

0
4
8
12
16

Figure 4: Infection times for different numbers of
installed virus throttles (Nimda)

As Figure 4 shows, when no throttles are installed
on any of the 16 machines Nimda takes on aver-
age just over 20 minutes to spread to all 16 ma-
chines. This time is slightly reduced when 25% and
50% of machines have throttles installed. However,
when at least 75% of machines are installed with
the throttle, Nimda is only able to spread to on av-

erage around half the machines on the network in
the same amount of time, and has not spread to
all 16 machines even after over 70 minutes. This
represents both a decrease of 50% in the number
of machines infected and a substantial increase the
time taken for the worm to spread. When every
machine is installed with the throttle, the worm is
unable to spread at all.

Aside from the damage caused by the malicious pay-
loads of many high-speed worms, these worms often
cause denial-of-service attacks through the amount
of network traffic they generate. The Sapphire
worm caused network uplinks to become saturated
due to the sheer quantity of traffic infected machines
generated, whereas Nimda, while generating sub-
stantially less quantities of network traffic, caused
routers and firewalls to fall over due to their inabil-
ity to process the increased number of connection
requests generated by infected machines. Figure 5
shows, for the experiment described at the start of
this section, the traffic load over time on the test
network. Here, the effect of having a network pro-
tected by the throttle is even more marked, with an
approximately 25% reduction in viral traffic when
only 25% of the network in protected by the throt-
tle. When 50% of the machines are throttled the
traffic load is reduced by over half, and when 75%
are throttled to around 10% of its unthrottled aver-
age. Having all machines installed with the throttle
quickly reduces all viral traffic to zero. These results
show the ability of the virus throttle to substantially
reduce the amount of network traffic generated by
mobile code.

0 10 20 30 40 50 60 70

0

20

40

60

80

100

120

140

160

180

Time (minutes)

T
ra

ffi
c 

ge
ne

ra
te

d,
 k

B
/s

ec

0
4
8
12
16

Figure 5: Traffic loads for different numbers of in-
stalled virus throttles (Nimda)



12th USENIX Security Symposium USENIX Association 293

4.2.3 User trials

While the previous section shows that the virus
throttle is extremely effective in slowing and stop-
ping the spread of certain classes of worms, an
equally important aspect in determining its overall
utility is establishing its impact on the performance
of applications which legitimately establish connec-
tions in the course of normal user behaviour. If the
throttle, for example, prevents users from accessing
their emails, or slows this down to an unacceptable
speed, it will soon be uninstalled.

From preliminary tests in which the throttle was in-
stalled on a number of researchers’ machines, we re-
ceived no reports of impaired network performance.
We are currently involved in a series of much larger
user trials in which the throttle is installed on the
gateway used by a considerable number of users run-
ning a wide range of network-capable applications
under several different operating systems. Initial
results also point to no noticeable degradation in
network performance.

To further explore the interaction of the throttle
with legitimate network-aware applications, we have
also implemented a throttle simulator which takes
packet traces as input. To gather these packet traces
we configured a monitoring port on a 80-port switch
on HP’s internal network and ran a packet sniffer on
this port. This has allowed us to gather large quan-
tities of data over extended periods of time from
a range of different machines. Separating out these
traces on a machine-by-machine basis and then run-
ning them through the simulator allows us to rapidly
assess the applicability of the throttle to different
classes of machines running different services. Pre-
liminary results from the simulator show that the
majority of network traffic from a throttled machine
passes onto the network undelayed, and that none
of the large quantities of legitimate network traffic
we have gathered is mistaken for viral traffic. A
fuller discussion of the applicability of our approach
is given in [27].

5 Conclusion

In this paper we have, after presenting the necessary
background, described in detail the implementation
and testing of a virus throttle. From the tests de-

scribed above we have been able to show that the
virus throttle is highly effective in detecting, slowing
and stopping both real worms such as W32/Nimda-
D and a test worm configured to scan at different
rates. Our results also show that the virus throt-
tle can substantially reduce the global spread of a
worm, and hence the amount of network traffic pro-
duced.

In conclusion, this paper has demonstrated virus
throttling to be a powerful tool in the prevention
of high-speed worm propagation. We believe that
throttling, when combined with current signature-
based methods, will be an essential ingredient in any
multilayered anti-virus solution.

References

[1] D. P. Bovet and M. Cesati. Understanding the
Linux kernel. O’Reilly & Associates, 2002.

[2] D. Bruschi and E. Rosti. Disarming offense to
enable defense. In Proc. of the New Security
Paradigms Workshop 2000, pages 69–75, Ire-
land, 2000.

[3] D. Bruschi and E. Rosti. AngeL: A tool to
disarm computer systems. In Proc. of the 2001
Workshop on New Security Paradigms, 2001.

[4] CERT Advisory CA-2001-19. CERT Coordi-
nation Center.
http://www.cert.org/advisories/CA-2001-
19.html.

[5] D. Chess. The future of viruses on the Internet.
Presented at the Virus Bulletin International
Conference, October 1-3, 1997.

[6] F. Cohen. Computer viruses - theory and ex-
periments. In Proc. of the 7th Security Confer-
ence, pages 143–158, 1984.

[7] F. Cohen. A formal definition of computer
worms and some related results. Computers
and Security, 11(7):641–652, 1992.

[8] F. Cohen. A short course on computer viruses.
John Wiley & Sons, Inc., 1994.

[9] fyodor. The art of port scanning. Phrack Mag-
azine, Volume 7, Issue 51, 11 of 17, 1997.

[10] R. A. Grimes. Malicious mobile code. O’Reilly
& Associates, 2001.



12th USENIX Security Symposium USENIX Association294

[11] HP Procurve Series 2500 switches - manage-
ment and configuration guide. Hewlett-Packard
Company, 2000.

[12] HP Blade Server bh7800 service guide.
Hewlett-Packard Company, 2002.

[13] kossak and lifeline. Building into the Linux net-
work layer. Phrack Magazine, Volume 9, Issue
55, 12 of 16, 1999.

[14] R. Lemos. Year of the worm.
http://new.com.com/2102-1001-254061.html.

[15] E. Messmer. Behaviour blocking repels new
viruses.
http://www.nwfusion.com/news/2002/
0128antivirus.html.

[16] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. The spread of
the Sapphire/Slammer worm.
http://www.cs.berkeley.edu/ nweaver/sapphire/.

[17] J. Postel. Transmission control protocol. RFC
793, DARPA, 1981.

[18] A. Rubini and J. Corbet. Linux device drivers.
O’Reilly & Associates, 2001.

[19] H. G. Schuster. Complex Adaptive Systems.
Scator Verlag, 2001.

[20] A. Somayaji and S. Forrest. Automated re-
sponse using system-call delays. In Proc. of the
9th USENIX Security Symposium, pages 185–
197, 2000.

[21] W32/Nimda-D. Sophos Anti-Virus.
http://www.sophos.org/virusinfo/analysis/
w32nimdad.html.

[22] W32/SQLSlam-A. Sophos Anti-Virus.
http://www.sophos.org/virusinfo/analysis/
w32sqlslama.html.

[23] W. R. Stevens. UNIX network programming.
Prentice Hall, 1990.

[24] tcpdump. http://www.tcpdump.org.

[25] J. Twycross. Studying mobile code: an ex-
perimental setup. Technical report, Hewlett-
Packard Labs, 2002.

[26] VMware Workstation 3.2. VMware Inc.
http://www.vmware.com.

[27] M. M. Williamson. Throttling viruses: Re-
stricting propagation to defeat malicious mo-
bile code. In Proc. of the ACSAC Security Con-
ference, Las Vegas, Nevada, 2002.

[28] M. M.Williamson. The design, implementation
and testing of an email throttle. Submitted
to the Annual Computer Security Applications
Conference, Las Vegas, N.V., 2003.

[29] M. M. Williamson and J. Leveille. An epidemi-
ological model of virus spread. To appear in
the Proceedings of the Annual Virus Bulletin
Conference, 2003.

[30] M. M. Williamson, J. Twycross, J. Griffin, and
A. Norman. Virus throttling. In Virus Bulletin,
U.K., 2003.


