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Abstract

Race conditions in filesystem accesses occur when se-
quences of filesystem operations are not carried out in
an isolated manner. Incorrect assumptions of filesystem
namespace access isolation allow attackers to elevate
their privileges without authorization by changing the
namespace bindings. To address this security issue, we
propose a mechanism for keeping track of all filesystem
operations and possible interferences that might arise. If
a filesystem operation is found to be interfering with an-
other operation, it is temporarily suspended allowing the
first process to access a file object to proceed, thereby
reducing the size of the time window when a race condi-
tion exists. The above mechanism is shown to be effec-
tive at stopping all realistic filesystem race condition at-
tacks known to us with minimal performance overhead.

1 Introduction

Dating back to the 1970’s, race conditions, otherwise
known as the Time Of Check To Time Of Use (TOCT-
TOU) bug, are one of the oldest known security flaws.
They are a class of local vulnerabilities that can be used
to elevate one’s privileges without authorization and oc-
cur when operations are not carried out atomically as
expected.

Race conditions have been found in a variety of sce-
narios ranging from tracing processes [9] to filesystem
accesses [13]. This paper focuses on a subset of race
conditions dealing with filesystem accesses. The threat
model is that of an adversary with unprivileged access to
a system who is trying to elevate his or her privileges by
exploiting a filesystem race condition vulnerability.

Some security vulnerabilities, such as buffer overflows,
receive a lot of attention and have a variety of solutions
to prevent them. Other vulnerabilities, such as race con-
ditions, receive far less attention and have no definite
solutions to stop them. In addition, race conditions can
be very hard to spot and eliminate at compile time, it
is thus beneficial to develop a dynamic and automated
protection against this type of flaws.

This paper presents an analysis of filesystem race con-
dition vulnerabilities and ways to prevent them. It also
describes a prototype system that detects and stops all
realistic filesystem race condition attacks known to us.
The proposed solution stops the attacks with minimum
performance overhead, while retaining application com-
patibility.

The rest of this paper is organized as follows. Sec-
tion 2 describes race conditions in filesystem accesses
and presents several sample vulnerabilities. The design
of the prototype system and the rationale behind it is
covered in Section 3. Section 4 details the implementa-
tion of the prototype system, as well as some of the de-
cisions made during the design phase incorporating the
security of the system and code portability. Section 5
reviews the attack scenarios used for the security testing
of the prototype system. Section 6 describes the com-
patibility testing and Section 7 covers the system perfor-
mance. Section 8 reviews related work, Section 9 pro-
poses future work and Section 10 provides the conclu-
sions.

2 Race Conditions in File Accesses

Race conditions in filesystem accesses occur when ap-
plications incorrectly assume that a sequence of filesys-
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                        err(1, fn);

               /* use the file */

               }

       if (access(fn, R_OK | W_OK) == 0) {

               {
               if (fd < 0)
               fd = open(fn, O_RDWR, 0644);

Figure 1: Race Condition in Access Operation

tem operations is atomic and the filesystem namespace
is otherwise static. In reality, attackers can modify the
filesystem namespace at any time by replacing files with
symbolic links or by renaming files and directories.

2.1 Access Operation

The code fragment in Figure 1 is taken from an inse-
cure setuid application that needs to check whether a
user running the program has the right to write to a file
(since the application is setuid root, it can write to any
file).

The source code incorrectly assumes that a file object
referenced by the filename “fn” does not change in be-
tween the access and open invocations. The assump-
tion is invalid since an attacker can replace the file ob-
ject “fn” with another file object (such as a symbolic link
to another file), tricking the program into accessing ar-
bitrary files. To avoid this race condition, an application
should change its effective id to that of a desired user and
then make the open system call directly or use fstat af-
ter the open instead of invoking access.

2.2 Directory Operations

Another subtle race condition was recently discovered in
the GNU file utilities package [13]. During the recursive
removal of a directory tree, an insecure chdir("..")
operation is performed, after removing the content of a
subdirectory, to get back to the upper directory. An at-
tacker, who is able to exploit this race condition, can
trick users into deleting arbitrary files and directories.
The bug is triggered when an attacker moves a subdi-
rectory, that the rm utility is processing, to a different
directory.

Figure 2 contains a slightly abbreviated system call trace

rmdir("/tmp/a")

chdir("b")
chdir("c")
unlink("*")
[attacker entrypoint: "mv /tmp/a/b/c /tmp"]
chdir("..")
rmdir("c")
unlink("*")
chdir("..")
rmdir("b")
unlink("*")

chdir("/tmp/a")

Figure 2: Race Condition in Directory Operations

of a recursive removal of the /tmp/a directory tree that
contains two nested subdirectories. Consider what hap-
pens when an attacker moves /tmp/a/b/c directory to
/tmp before the first chdir("..") call is invoked. After
removing the contents of the /tmp/a/b/c subdirectory
(now /tmp/c) and executing two chdir("..") calls, in-
stead of changing the directory to /tmp/a, the rm utility
would find itself in the root directory that it would con-
tinue to delete.

The race condition was fixed by adding additional
checks to verify that the inode of the directories did not
change before and after the chdir calls; in other words,
the directory tree namespace did not change during the
execution of the tool.

2.3 Setuid Shell Scripts

The secure execution of setuid shell scripts is a well-
known problem in the earlier Unix systems. To deter-
mine whether a file is a script and should be processed by
an interpreter, a Unix kernel checks the first two bytes of
a file for a special “#!” character sequence. If the char-
acter sequence is found, the rest of the line is treated as
the interpreter pathname (and its parameters) that should
be executed to process the script. Unfortunately, in some
kernels, the operation of opening and processing the first
line of a file and the subsequent execution of the inter-
preter that reopens the script is not atomic. This allows
attackers to trick the operating system into processing
one file while executing the interpreter with root privi-
leges on another file.

Various Unix systems deal with this problem in differ-
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                        err(1, fn);

                if (fd < 0)

                }

        if (stat(fn, &sb) == 0) {

                {

                /* use the file */

                fd = open(fn, O_CREAT | O_RDWR, 0);

Figure 3: Race Condition in Temporary File Accesses

ent ways. Earlier Linux systems simply disregarded
the setuid bits when executing the shell scripts. Some
SysV systems as well as BSD 4.4 kernels pass to the in-
terpreter a filename in a private, per-process filesystem
namespace representing the already opened descriptor to
the script (e.g. /dev/fd/3) in lieu of the original path-
name. Passing such a pathname closes down the race
condition vulnerability window since it is impossible for
an attacker to change the private per-process filesystem
namespace bindings.

2.4 Temporary File Accesses

Another type of race condition occurs in the handling of
temporary files. An unsafe way to create a temporary
file is to use the stat system call to check whether a
file exists and if the file does not exist, invoke open to
create one. The problem with this approach is that the
sequence of stat followed by open is not atomic (sim-
ilarly to the access and open system call sequence de-
scribed above). This allows an attacker to create a sym-
bolic link with the same filename after the stat reports
that the file does not exist. When the open system call
with the O_CREAT flag executes, it follows the attacker’s
link and overwrites the contents of the file to which the
link points. Figure 3 shows the vulnerable code.

The correct way to do the same thing would be to invoke
open with O_CREAT and O_EXCL flags set. The O_EXCL
flag causes the open to fail when the file already exists.

3 System Design

The examples in the previous section illustrated that race
conditions could occur under a wide variety of condi-
tions. The theme that is present in all of the examples
is that programmers erroneously assumed that their pro-

gram is the only program accessing the filesystem. In-
stead, an attacker can change the filesystem namespace
in the midst of a sequence of filesystem system calls and
exploit the race condition in the code. We call the se-
quence of filesystem system calls that programmers as-
sumed to be free from interference a pseudo-transaction.
To address the problem of race conditions, it would be
sufficient to provide the illusion of a filesystem names-
pace that behaves as if these pseudo-transactions were
executed in isolation and free from interference. To
achieve this, the system needs to be able to detect race
condition attacks and stop them.

3.1 Transactions

The goal of detecting and preventing race conditions
would be trivially achieved if executions of processes
(or process groups) were transactions that enjoyed the
ACID properties (Atomicity, Consistency, Isolation and
Durability). ACID transactions were designed to permit
concurrent database accesses while maintaining correct-
ness. These ideas can be readily translated to filesystem
accesses.

The atomicity property requires that a transaction com-
mits all the involved data or none at all.

The consistency property guarantees that a transaction
produces only consistent results; otherwise it aborts.
Therefore, filesystem operations belonging to a trans-
action always produce coherent results without external
interferences.

The isolation property requires that a running transaction
remains isolated from all other running transactions. In
the race protection system, this means that the filesystem
operations in one transaction cannot effect the results
of filesystem operations belonging to other transactions.
This is the main characteristic that the race protection
system tries to achieve.

Finally, durability requires that the results of the com-
pleted transactions must not be forgotten by the system.

The ideal operating system for the task would satisfy all
of the above properties. QuickSilver is an example of
one such system that provides built-in transaction primi-
tives [14]. Unfortunately, the mainstream operating sys-
tems have no built-in support for transaction processing.
In the absence of transaction processing, the race protec-
tion system has to at least guarantee the isolation prop-
erty which requires the system to be able to detect the
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race condition attacks before they take place. Further-
more, the system must be able to enforce the property
by preventing the race conditions from being exploited.

3.2 Detecting Race Conditions

Unfortunately, application programmers do not include
code that informs the kernel when a pseudo-transaction
begins or ends. We can, however, use heuristics to anal-
yse filesystem-related activities and attempt to identify
the pseudo-transactions. Below, we address how we
identify the start of pseudo-transactions and policies to
determine if a filesystem operation request would inter-
fere with an in-progress pseudo-transaction.

3.2.1 Scope of Pseudo-Transactions

By monitoring filesystem operations, the system tries
to distinguish between normal and potentially malicious
filesystem activities. First, the simple heuristics used for
this recognize system calls that potentially start pseudo-
transactions. Then, they prevent subsequent system calls
from interfering with the pseudo-transaction. Filesystem
calls that do not interfere are executed normally, while
those that do are handled as described in Section 3.3.
In our analysis of filesystem activities, we found that
pseudo-transactions that involve sequences of more than
two operations are not common. As a result, they are not
addressed by our implementation. This allows us to end
a potential pseudo-transaction at the next allowed system
call, which may in turn start a new pseudo-transaction.
We also allow a pseudo-transaction to end via a heuris-
tically determined time out value (see Section 4.3); this
ensures that misidentified pseudo-transactions will not
persist in the system for too long.

We assume that a process does not maliciously interfere
with its own filesystem accesses. Furthermore, fork’ed
child processes run the same process image and are as-
sumed to be trustworthy until an exec replaces their pro-
cess image. This means that the granularity of detection
is at the process level—all filesystem operations origi-
nating from a process will be treated as part of a single
pseudo-transaction, even if the process performs work
on behalf of multiple clients (e.g., a web server).

REMOVE = UNLINK | RMDIR | RENAME

DENY(ACCESS, REMOVE)
DENY(CHDIR, REMOVE)
DENY(EXEC, REMOVE)

Figure 4: Default Allow Policy

3.2.2 Policies

In order to detect potential race conditions, we propose
two different policies. One policy disallows operation
sequences that are prone to filesystem races, while the
second policy only allows the operation sequences that
are known to be safe. Both policies take into consid-
eration the current filesystem operation and the last op-
eration that dealt with the same file. If the operation
sequence is found to be legal by the chosen policy, the
current operation is allowed to proceed. Otherwise, the
policy returns an error that indicates that a potential race
condition is in progress.

Default Allow Policy As the name suggests, a default
allow policy permits all filesystem operations to pro-
ceed unless they match one of the deny rules. Deny
rules (listed in Figure 4) are constructed to address and
stop specific race condition attacks. For example, the
DENY(ACCESS,REMOVE) rule does not allow the access
operation to be followed by any of the remove operations
if they involve the same file object. All other filesystem
operations, however, are allowed to proceed.

The above mentioned rule prevents the attack described
in Section 2.1, the second deny rule addresses the race
condition described in Section 2.2 while the third rule
deals with the attack described in Section 2.3. Race con-
ditions in temporary file accesses are treated separately
as described in Section 4.2.

A default allow policy explicitly forbids sequences of
filesystem operations that are prone to race conditions.
As a result, the policy should detect all listed race con-
dition attacks without causing any false positives. How-
ever, it may miss new attacks if they involve operation
sequences not explicitly stated in the policy.

Default Deny Policy A default deny policy disal-
lows all filesystem operations to proceed unless they
match one of the permit rules. Permit rules (listed
in Figure 5) are constructed to describe all known
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PERMIT(UTIMES,                    OPEN_RW | ACCESS | CHMOD | CHOWN)

RENAME = RENAME_TO | RENAME_FROM

PERMIT(RENAME_FROM,     OPEN_RW | ACCESS | UNLINK | RENAME_FROM)

PERMIT(READLINK,               READLINK)

PERMIT(CHMOD | CHOWN,  OPEN_RW | ACCESS |  CHMOD | CHOWN)
PERMIT(RENAME_TO,           OPEN_RW)

PERMIT(EXEC,                         OPEN_READ | EXEC)

PERMIT(OPEN_CREAT,          OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC | RENAME_FROM)

PERMIT(OPEN_RW,                 OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC |

PERMIT(CHDIR,                       OPEN_READ | CHDIR | ACCESS | READLINK)

                                                     UNLINK | READLINK | CHMOD | CHOWN | RENAME)

PERMIT(ACCESS,                    OPEN_RW | ACCESS | UTIMES | CHDIR |EXEC)

OPEN_RW = OPEN_READ | OPEN_WRITE

Figure 5: Default Deny Policy

valid filesystem operation sequences that we have
observed in a normal system. For example, the
PERMIT(EXEC,OPEN_READ|EXEC) rule allows an exec
operation to be followed by another exec or by an open
operation. All other operations involving the same file
object will be flagged as race conditions.

The effectiveness and robustness of the race protection
system depends on the policy in place and the quality of
the rules in the chosen policy. A default deny approach
should prevent any existing race condition attacks and
possibly some of the new future attacks.

Future attacks are addressed by the existing rules that
deal with all filesystem operations and not just the ones
that are known to be susceptible to race conditions.
Since each rule is a simple C macro that expands to an
if statement, even a large number of rules should have
negligible effect on the overall system performance.

3.3 Preventing Race Conditions

Once a race condition is identified, an error message is
logged and a preventative measure must be taken. An er-
ror message should contain enough information to track
down who caused the race condition and how. The ap-
proach implemented in our system is described in Sec-
tion 3.3.5.

3.3.1 Transaction Rollback

One of the most sophisticated way to handle a race con-
dition is to restart or abort the involved transactions (pro-
vided a transaction-enabled system such as QuickSil-
ver [14] is used). Aborting the transactions should roll-
out any possible changes that the processes made up to
that point. This solution stops race conditions without
leaving the system in an inconsistent state.

3.3.2 User Confirmation

In the absence of a transaction-enabled system, the sys-
tem might ask a user what to do. Similar to a systrace
GUI [12], a pop-up dialog might query a user about a
possible action to be taken. This approach has the ad-
vantage of not being intrusive as it is up to the user to
decide whether to kill a process, suspend a process or
take some other action. However, interacting with users
is more suitable for desktop machines rather than servers
which might not have live personnel in front of them
24/7. In addition, an attacker might overwhelm a system
with a high number of alerts causing a user to ignore the
numerous dialog boxes.

3.3.3 Locking Out Processes

Another option that, at first glance, would seem to
work well is to preclude any other processes from being
scheduled during a sequence of critical (race-prone) ac-
cesses. Programs can be “wrapped” with a script which
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tells the scheduler to protect them from interfering ac-
cesses. This approach is analogous to having the process
place a single lock on the entire filesystem.

While this would work in theory, there are many draw-
backs that make this approach impractical. It is not clear
whether it is possible to determine all the vulnerable
critical sections correctly. As a data point, after ker-
nel support for setuid script execution was added to the
BSD kernel, about a decade passed before the race con-
dition was noticed. It is also not clear whether this ap-
proach might cause deadlocks or invite denial-of-service
attacks. Finally, since this locking system is very coarse
grained, the system performance would suffer greatly.

3.3.4 Killing Processes

Another way way to prevent a race condition is to kill the
involved processes. An alternative might be to silently
fail all the consecutive system calls belonging to the in-
volved processes and hope that the applications can cope
with this and gracefully shutdown. While these solu-
tions definitely prevent any possible abuse, they are too
crude and are subject to denial-of-service attacks where
an attacker might try to trick the system into killing “in-
nocent” victim processes.

3.3.5 Suspending Processes

A better solution would minimize the effect of false
positives—without killing the involved processes or oth-
erwise completely locking files and preventing forward
progress—and still prevent filesystem race attacks. Our
system achieves this by allowing only one process to go
on while temporarily suspending the other. In an attack
scenario, this approach allows the victim process (the
first to access a file object) to safely continue using the
file while suspending the activity of an attacker process.
Since a race condition is defined to exist only for brief
amounts of time, delaying an attacker process is an ef-
fective way to prevent race conditions. In the scenario
where two processes just happened to execute an unsafe
combination of filesystem operations, the proposed solu-
tion of suspending a process allows one process to con-
tinue while preventing the second process from causing
any unintentional damage. As both processes are even-
tually allowed to proceed, this scenario is equivalent to
that of a highly-loaded machine where processes can be
suspended or swapped out for extended periods of time
before being allowed to run.

When a process invokes a system call that initiates a
pseudo-transaction, it is marked as a “delay-lock owner”
for the file. Processes attempting to access delay-locked
files with interfering system calls are not completely
locked out, but are instead temporarily suspended to
try to prevent interference with the pseudo-transaction
filesystem sequence. Delay-lock owners of files are
never misidentified as interfering processes and thus de-
layed. Delay-lock ownership is inherited across fork’s
and is given up at exec’s. Therefore, a delay lock may
have many owners.

Note that we do not distinguish between parent and child
processes in determining which is the attacker and which
is the victim. Pseudo-transaction recognition is based
solely on the global stream of system calls. Although
the fork system call (see Section 4.4) is mediated, we
only use it to allow child processes to inherit delay-lock
ownership. Because we do not use per-process filename
caches nor the asymmetric cache clearing scheme used
by RaceGuard [6], an attack due to Casper Dik [7] is
impossible.

Suspending a process is an effective technique to prevent
race conditions, but it is not completely foolproof. If the
attacker process wakes up before the victim process gets
a chance to complete its operations, the race condition
will still be present. To address this issue, the delay is
calculated at runtime by taking into account the load av-
erage of a system. It would also be possible to allow a
user application to control the delay by providing a new
system call, but we did not implement this. While we
have chosen the delay to be long enough for a process
to be able to “close” its vulnerability time window, the
system does not in any way detect or enforce that this
actually holds.

4 Implementation

The prototype system was developed for the OpenBSD
operating system [10], which was chosen for its focus
on security. The system consists of a kernel module that
intercepts a number of system calls. Even though mod-
ifying the operating system kernel code directly would
provide a slightly faster solution, using kernel modules
saves time writing and debugging the kernel code. It
should be noted that mediating system calls introduces a
race condition whereby an attacker changes the filename
after it is processed by the mediated call but before it is
processed by the original system call [8]; an integrated
implementation that implements our technique directly
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in the kernel code would not leave this (small) timing
window open.

4.1 File System Calls Mediation

The system calls that the kernel module intercepts are
mainly the filesystem calls that accept pathnames as
their parameters. The mediated system calls perform
processing on the pathnames before returning the con-
trol to the original system calls. The pathname process-
ing starts with the conversion of a name to its inode by
means of the namei kernel function. The reason for deal-
ing with inodes rather than names is to properly han-
dle different pathnames that refer to the same file (e.g.
/etc/passwd vs /etc/../etc/passwd).

Once a pathname is resolved to an inode, the system
checks if any of the preceding operations affected the
same inode. If this is the case, further checks need to be
carried out to make sure no race conditions exist. Other-
wise, all the related operation information is saved and
the operation is allowed to proceed.

As mentioned above, there are two standpoints that can
be adopted to determine whether a race condition ex-
ists between the two filesystem operations involving the
same inode: default allow and default deny policies.
With either policy in place, the system first compares
the process ids of the involved processes. If they are
the same, a race condition cannot exist since both oper-
ations originated from the same process. If not, the two
operations are checked against the chosen ruleset. If the
operation sequence is found to be legal, the information
about the current operation is saved for later use. Other-
wise, an error code is returned and the appropriate action
to prevent the race condition is carried out (e.g., a pro-
cess is temporarily suspended). It should be noted that,
in the case of a false positive, the applications continue
to make forward progress, albeit at a slower rate.

4.2 Temporary File Race Condition Processing

Temporary file race condition processing differs from
the above described procedure. When the stat system
call is invoked on a non-existent file, there is no inode
value to process (since the file does not exist) and there-
fore the inode processing code fails to work. To address
this problem, a separate linked list is used to keep track
of all stat operations on the non-existent files (the same
technique is used by RaceGuard [6]). When an open

system call with an O_CREAT flag set (and no O_EXCL
flag) is invoked on an existing file, the filename passed
to the open is checked against the list of the non-existent
filenames on the stat list. If there is a match between
the names, an attack might be in progress and the system
aborts the open system call with the file-already-exists
error code (this is the O_CREAT|O_EXCL behavior).

As mentioned above, this approach deals with the file-
names rather than the inodes because no inode value ex-
ists initially. Dealing with filenames in this case is not a
problem since the filenames that are compared originate
from the same process and are trusted to be consistent.

4.3 Data Management

To keep track of all the filesystem operations, the opera-
tion related information (process id, current time, file op-
eration, inode and the corresponding pathname) is saved
in a hash indexed by the inode value. As mentioned be-
fore, a new entry is added whenever a filesystem oper-
ation executes. The operation entries are removed by
a cleaner routine that traverses the hash every second
and removes all stale operation entries. A stale entry
is defined to be an entry that originated more than 2 sec-
onds ago (or 15 seconds for a directory entry) plus the
current load average. For example, a load average of
1.58 causes the timeout to be 2+1.58=3.58 seconds or
15+1.58=16.58 seconds for a directory entry.

4.4 Other System Calls

Besides all the filesystem calls that are intercepted, there
are several non-filesystem related system calls that need
to be handled—fork, exec, and exit.

The fork system call creates a new process, and it needs
to be intercepted to allow for duplication of all the en-
tries associated with the current process. Duplicating the
entries with the new process id permits file sharing be-
tween the parent and the child process. For example, a
parent process might fork a child process that deletes
some temporary files created by the parent. Without du-
plication of the parent entries, the child process would
be found to be interfering with the parent process.

While fork spawns off processes that the race protec-
tion system deems to be trusted by the parent process,
the exec system call replaces the current process im-
age; this new process image should not, in general, be
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trusted. The mediated exec system call thus removes all
the entries associated with the exec’ing process. In ad-
dition, to be able to handle the setuid shell script attack
described in Section 2.3, the pathnames passed to the
exec system call are also inserted into the hash table.

Finally, the exit system call causes the process to ter-
minate and this allows us to remove all the hash entries
associated with the terminating process.

4.5 Portability

The code was carefully designed for maximum portabil-
ity. The system dependent calls are mostly hidden be-
hind macros that greatly simplify the porting process.
The parts of the code that are OS dependent are kernel
module details, system call hooking, pathname to inode
resolution and locking.

To simplify the porting process even further, the code
for the majority of the mediated file system calls is au-
tomatically generated by a perl script. The script auto-
matically generates all the function declarations, all the
necessary data structures as well as the function code it-
self. Thus the majority of the OS dependent code can be
ported by modifying a small perl script.

Finally, there is nothing inherent in the design of the race
protection system that prevents it from being ported to
non-UNIX operating systems such as Windows.

5 Security Testing

To test the effectiveness of the race protection system,
four attack scenarios were developed and carried out
with the race protection being disabled and then enabled.
All the attacks were successfully detected and stopped
(with both default allow and default deny policies).

All of the attacks, except for the temporary file vul-
nerability, involve the attacker process being suspended
whilst the victim process continues to run and closes the
vulnerability window. The temporary file race vulnera-
bility involves failing the open system call and forcing
the victim process to deal with the consequences.

This section illustrates the attack against a race condition
in using the access system call. The rest of the attacks
are described in [16].

Figure 6 illustrates a successful race condition attack
against a sample victim program which contains the vul-
nerable access code introduced in Section 2.1. The fig-
ure presents a time line with events on the left as seen by
the victim and events on the right as seen by the attacker.

In step 1, the victim program is executed and it prints out
the information message after calling the access system
call. The victim process then sleeps for several seconds
to simplify the timing attack. Step 2 illustrates the attack
taking place in between the access and open system
calls. Some time after the attack takes place, a victim
process wakes up, opens the /tmp/race file and prints
out its content which happens to be the /etc/passwd
file setup by the attacker. If the victim program wrote
to the file instead of reading it, the result might have
been a complete system compromise. The same attack
is effective against real world programs that exhibit this
flaw even without the artificial presence of sleep calls.

Figure 7 illustrates the same attack taking place with
the race protection system in place and the attack being
thwarted.

Similarly to the previous example, the same vulnerable
victim process is executed. This time though, the race
protection system does not allow the /tmp/race file to
be removed in step 2 since it would violate the filesystem
namespace integrity (in other words, the ruleset dictates
that an access operation is not allowed to be followed
by an unlink). Instead, the attacker initiated process is
suspended while a victim process gets a chance to fin-
ish its file operations without the attacker’s interference.
After five seconds (delay = base 2 seconds + the system
load average of 3 = 5), the attacker process is allowed to
proceed and the /tmp/race file is replaced with a sym-
bolic link without any consecutive security side-effects.

6 Compatibility Testing

In addition to the security tests described above, the race
protection system (with both default allow and default
deny policies) was used on several desktop and server
machines for a period of several weeks. After initial ad-
justments to the default deny policy, no false positives
or false negatives were experienced under realistic work
loads.

The race protection system was also stress tested by
running multiple OpenBSD kernel compile processes in
parallel with a locate.updatedb application that in-
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(1) # ./victim

victim

 t
 i
m
 e

calling access("/tmp/race")

attacker

calling open("/tmp/race")
read "root:*:0:0:" from /tmp/race file

                                          /tmp/race −> /etc/passwd

                                (2) $ rm /tmp/race && ln −s /etc/passwd /tmp/race

(3) $ ls −l /tmp/race*
lrwxr−xr−x  1 attacker  wheel  11 Oct 16 12:30

Figure 6: Successful Access Operation Attack

Suspending process 1645 (rm) for 5 seconds

victim

(1) # ./victim

attacker

 t
 i
m
 e

calling access("/tmp/race")

calling open("/tmp/race")
read ’this is /tmp/race’ from ’/tmp/race’ file

Oct 16 12:30:18 /bsd: Potentially dangerous

                                (2) $ rm /tmp/race && ln −s /etc/passwd /tmp/race

(3) $ ls −l /tmp/race*
lrwxr−xr−x  1 attacker  wheel  11 Oct 16 12:30

                                          /tmp/race −> /etc/passwd

                operation unlink(/tmp/race).

Figure 7: Unsuccessful Access Operation Attack

vokes stat on all the existing files. We observed no
false negatives under these high loads.

This compatibility testing showed that there are no ill
effects since false positives do not usually arise. Note,
however, that even if false positives did arise, the only
impact would be a delay in the execution of the process
that was erroneously identified as an attacker.

7 Performance

To measure the overhead of the race protection system,
several benchmarks were carried out on a system where
the race protection was switched on and off. The tests
were carried out on an OpenBSD 3.2 system running on
a 1 GHz AMD Athlon computer with 256 megabytes of
RAM and a 60Gig Western Digital hard drive with 8.9
ms access time.

7.1 Microbenchmarks

The first measured overhead is that of individual medi-
ated system calls. To measure the load, each system call
was called 10,000 times in a tight loop. Each test was
carried out 10 times and the numbers were averaged. Ta-
ble 1 shows the performance results.

As expected, the mediated system calls that need to per-
form path processing and check for any possible race
conditions have a high overhead. For the open system
call, the overhead of that processing amounts to over
100%. The stat system call does not perform any path
processing and has an overhead of only 3%. The fork
system call takes a long time to execute and needs to
do little race condition processing; it exhibits relatively
little overhead.

While 100% overhead of some mediated system calls
might seem like an unacceptable solution, the next sec-
tion illustrates that the overall application overhead is
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System Call open stat fork

Race Protection Off, microseconds 2.55 3.28 86.17
Race Protection On, microseconds 5.69 3.38 86.21

Total CPU Overhead (%) 123 3 0

Table 1: Microbenchmark Performance Results

Real Time User Time System Time

Race Protection Off (sec) 427 363 37
Race Protection On (sec) 436 363 43

Total Overhead (%) 2 0 16

Table 2: Macrobenchmark Performance Results

much lower.

7.2 Macrobenchmarks

To measure the overall overhead, the OpenBSD kernel
compile process was used as the benchmark. The com-
pile process is computationally expensive but it also in-
volves processing several thousand source and header
files as well as creating and destroying several thousand
processes. Therefore the benchmark represents a realis-
tic workload of a loaded server.

Table 2 presents the performance numbers. As expected,
the code executing in user mode shows no overhead. The
code executing in kernel mode incurs a 16 percent over-
head induced by the race protection system. The kernel
overhead, however, is amortized over the overall bench-
mark execution leading to a much lower total overhead
of 2 percent.

The total dynamic memory consumption initially peaks
at 400Kb when the make process touches a large num-
ber of files at the same time. After the initial peak, the
average memory consumption stays around 3 Kb for the
rest of the benchmark process.

8 Related Work

A great deal of TOCTTOU research to date has focused
on developing static tools and models for detecting race
conditions at compile time. While several runtime so-
lutions were proposed to resolve some of the problems

associated with static tools, they have their own limita-
tions.

8.1 Static Analysis

One of the first known static tools for detecting secu-
rity flaws at compile time was developed as a result of
the Protection Analysis project initiated at ISI by ARPA
IPTO in the mid-1970’s [3]. The goal of the project was
to understand application and operating system secu-
rity vulnerabilities and to identify “automatable pattern-
directed techniques” for detecting security vulnerabili-
ties. One of the flaws identified by the project was the
“improper change” (TOCTTOU) flaw which occurred as
a result of a parameter changing unexpectedly.

Another security project undertaken in the 1970’s was
RISOS (Research Into Secure Operating Systems) [1].
The RISOS project was a study of computer vulnerabili-
ties in operating systems. One of the identified flaws was
“inadequate serialization” which corresponds to a race
condition between the access and open system calls as
outlined in Figure 1.

Bishop and Dilger at UC Davis were one of the first to
focus on race conditions in filesystem accesses [5]. They
developed a static analysis tool for finding race condi-
tions in C code. Their tool does not perform alias anal-
ysis nor is it control-flow aware. As a result of this, the
tool can produce false negative and false positive results.

Another similar tool developed by Anguiano is based
on ASTLOG [2]. Other static tools for detecting se-
curity vulnerabilities, among them race conditions, are
ITS4 [17], Flawfinder [18] and RATS [15].
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While the static source code analysis of TOCTTOU bugs
is a valid approach, it suffers from several drawbacks.
First, static tools do not have access to the runtime in-
formation needed to resolve any possible ambiguities.
Filenames and environment information are not always
known at compile time and even alias analysis and other
proposed compiler techniques cannot solve this prob-
lem. Second, static tools are known to produce false
positive as well as some false negative results [5, 2].
The reason for this being imprecise code analysis tech-
niques as well as the absence of runtime information. Fi-
nally, the existing tools require access to the source code,
which is not always available. Even if the source code is
available, the time needed to run the code through one of
the static tools and manually analyze the results, makes
the static analysis approach less than satisfactory when
trying to secure modern day systems.

8.2 Dynamic Analysis

One of the first runtime solutions was proposed by
Bishop [4]. It requires applications to be modified to
call a new library function that determines if a file object
is safe to use. This approach is not transparent to appli-
cations and cannot be easily used to secure systems.

Another runtime solution, proposed by Solar Designer,
addresses the problem by limiting users from following
untrusted symbolic links created in certain directories
and by limiting users from creating hard links to files
they don’t have read and write access to [11]. While this
approach might be effective in stopping some race con-
dition attacks, it is too limited to stop other variations
of attacks. In addition, this approach breaks the applica-
tions that depend on the behavior restricted by the solu-
tion.

Similarly, RaceGuard focuses on race conditions that oc-
cur during the creation of temporary files [6]. While this
is a valid approach, it is limited to temporary file race
vulnerabilities.

9 Future Work

While we tried to address all known practical race con-
ditions, there are still some questions left unanswered.

First, our implementation does not strictly enforce the
correct behavior of allowing a victim process to proceed

first and close its race condition window. The heuris-
tics of dynamically calculating the delay performed well
in our lab tests but this is no guarantee that they will
work in all scenarios. Our delay formula and hash table
cleaning times were experimentally created using ad-hoc
methods. A proper justification of these, via an analysis
of programmer isolation expectations and process run-
times, remains to be provided. Future implementations
should address this issue more carefully.

Second, our implementation does not address the issue
of subdirectory locking. As described in Section 2.2,
attackers can move directories around thereby tricking
processes into accessing arbitrary files. Future imple-
mentations should analyze this threat better for all race
condition cases and not just the case described in Sec-
tion 2.2.

Third, our implementation does not address the follow-
ing race condition attack. Suppose an old style shell
program that does not implement test functionality as
a built-in function is used to interpret a script. (Al-
ternatively, a script could be written to explicitly use
/bin/test rather than the built-in function.) The shell
fork’s a subprocess which exec’s the test program.
The subprocess then invokes the system call stat and
communicates its result to the shell via the process exit
status. Since the subprocess has exited, the hash table
entries pertaining to the file will be deleted by the exit
system call mediation code. No hash entry would corre-
spond to the parent process, since the shell only handles
the file as a string. Based on the result of the stat, e.g.,
in a command such as /bin/test -r $file || foo
> $file, another subprocess uses the file. This is a sce-
nario that should be rare, but is nevertheless not detected
by our scheme. Note that the RaceGuard scheme [6] is
unable to protect against this as well. Better analysis
and improved heuristics are required to detect this kind
of pseudo-transaction.

Finally, our implementation only deals with timing
races—i.e., race conditions that exist for short periods of
time in between two file system call invocations. We do
not handle other types of race conditions such as storage
races. An example of a storage race condition is a pre-
dictable /tmp filename attack which involves an attacker
planting a malicious link in the /tmp directory. At a later
time, a victim process follows the link and clobbers an
arbitrary file. Future implementations should try to clas-
sify all existing race condition types and ways to deal
with them.
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10 Conclusions

Race conditions in filesystem accesses occur when ap-
plications incorrectly assume that a sequence of filesys-
tem operations is isolated and the filesystem namespace
is otherwise static. Even though the existence of the
TOCTTOU bugs dates back to almost 30 years, new race
conditions are still being discovered today.

To prevent race conditions, a system should provide an
illusion of an immutable namespace existing without ex-
ternal interferences. This goal resembles that of a trans-
action enabled system where the properties of atomicity,
consistency, isolation and durability have to be satisfied.
Since mainstream operating systems are not designed
to satisfy any of the ACID properties, the race protec-
tion system has to emulate certain features to achieve
the desired effect. A system that creates an illusion
of an immutable namespace should satisfy the isolation
property and should be effective in stopping race con-
ditions. An immutable namespace effect is achieved by
detecting and stopping race conditions. Race conditions
are detected by tracking all file-related system activity
and identifying any filesystem operation sequences that
could possibly result in a TOCTTOU condition. When
two filesystem operations are found to be interfering
with each other, the one to access a file object last is sus-
pended. This allows the first operation to proceed with-
out any interferences. This solution stops all file race
conditions attacks known to us and is also designed to
prevent future attacks. It does this with minimum per-
formance overhead while retaining application compati-
bility.
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