
USENIX Association

Proceedings of the
12th USENIX Security Symposium

Washington, D.C., USA
August 4–8, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



12th USENIX Security Symposium USENIX Association 153

Detecting Malicious Java Code Using Virtual Machine Auditing

Sunil Soman Chandra Krintz Giovanni Vigna

Computer Science Department
University of California, Santa Barbara

{sunils,ckrintz,vigna}@cs.ucsb.edu

Abstract

The Java Virtual Machine (JVM) is evolving as an
infrastructure for the efficient execution of large-scale,
network-based applications. To enable secure execu-
tion in this environment, industrial and academic efforts
have implemented extensive support for verification of
type-safety, authentication, and access control. However,
JVMs continue to lack intrinsic support for intrusion de-
tection.
Existing operating system auditing facilities and host-
based intrusion detection systems operate at the process
level, with the assumption that one application is mapped
onto one process. However, in many cases, multiple Java
applications are executed concurrently as threads within
a single JVM process. As such, it is difficult to analyze
the behavior of Java applications using the correspond-
ing OS-level audit trail. In addition, the malicious ac-
tions of a single Java application may trigger a response
that disables an entire execution environment. To over-
come these limitations, we have developed a thread-level
auditing facility for the Java Virtual Machine and an in-
trusion detection tool that uses audit data generated by
this facility to detect attacks by malicious Java code. This
paper describes the JVM auditing mechanisms, the in-
trusion detection tool, and the quantitative evaluation of
their performance.

1 Introduction

Java technology [18] was initially used by web page de-

signers to embed active content. As a result of the wide-

spread success and popularity of Java, developers now

use the language for implementation of a wide range

of large-scale systems, e.g., robust, mobile code sys-

tems [36, 19, 33] and complex server systems [43, 32].

In these systems, multiple applications and code compo-

nents are uploaded by multiple (possibly untrusted) users

for concurrent execution within a single Java Virtual Ma-

chine (JVM) [38]. The portability, flexibility, and secu-

rity features of Java make it an ideal technology for the

implementation of systems that support the execution of

mobile code.

The use of Java enables portability because programs are

encoded using an architecture-independent transfer for-

mat that can be executed without modification on any

platform for which a JVM has been developed. Java

supports flexibility by allowing applications to be up-

graded and extended at run time through the use of dy-

namic code loading. In addition, the Java type system

and verification mechanisms provide protection against

some programming errors and malicious attacks.

The key areas that must be improved to enable continued

wide-spread use of Java for Internet-scale server appli-

cations are performance and security. Recent advances

in Just-In-Time (JIT) compilation and optimization tech-

niques [35, 6, 8] offer significant improvements in Java

program performance. Currently, to support security in

server applications, Java provides mechanisms for au-

thentication and access control [17, 2]. However, ad-

ditional mechanisms are required to detect attacks that

circumvent (or attempt to circumvent) the existing pro-

tections or abuse legitimate access.

Host-based Intrusion Detection Systems (HIDSs) pro-

vide a suitable solution to this problem [3, 12]. Ex-

isting HIDSs use process-level execution events, col-

lected by an auditing facility in the operating system,



12th USENIX Security Symposium USENIX Association154

to identify and respond to security threats and viola-

tions [13, 26, 52].

Unfortunately, since a JVM executes as a single, multi-

threaded user process, we must presume that all suspi-

cious activity reported by the auditing facility for the

JVM process ID, is caused by the JVM itself. However,

the culprit may be one of the many applications running

within the JVM process. As users increasingly demand

higher availability and reliability from the servers exe-

cuting their applications, an intrusion response mecha-

nism that simply terminates the JVM process that is ex-

ecuting malicious code becomes unacceptable. There-

fore, novel auditing and intrusion detection techniques

are needed, to provide finer-grained threat identification

and response.

To this end, we have developed a JVM auditing facil-

ity and an intrusion detection system that detects attacks

that are initiated by malicious Java code. To implement

our system, We leveraged two existing technologies: a

high-performance, open-source, Java Virtual Machine,

called JikesRVM [1]; and an intrusion detection frame-

work, called STAT, that we developed in prior work [50].

In this paper, we describe the JVM auditing mechanisms

and the intrusion detection tool that we implemented, and

provide a quantitative evaluation of the performance of

our system.

In the next section, we place our work in the context of

existing approaches to intrusion detection. In Section 3,

we present an overview of our approach. In Section 4, we

describe the JVM auditing system. Then, in Section 5,

we present the intrusion detection system. Section 6 dis-

cusses the experimental evaluation of our system. Sec-

tion 7 presents related work on Java security. Finally,

Section 8 draws conclusions and outlines future work.

2 Extant Approaches
to Intrusion Detection

Intrusion detection is performed by identifying the man-

ifestation of a security violation in an input event stream.

In host-based intrusion detection systems, the input event

stream is usually represented by the audit records pro-

duced by the auditing facility of an operating system,

such as the Solaris Basic Security Module [47]. Other

possible input streams are system call traces and UNIX

syslog messages.

The detection process can be performed according to dif-

ferent techniques. For example, it is possible to use sta-

tistical measures to characterize the normal behavior of

users and applications [13, 23, 29]. Deviations from the

established profiles are assumed to be evidence of an at-

tack. The problem with these approaches is the difficulty

to create a reliable model of the application behavior.

An imprecise model may lead to both missed detections

(called false negatives) and false alarms (called false pos-

itives).

Other approaches rely on the formal specification of the

acceptable behavior of an application [34, 54, 52]. An

execution history that does not conform to this behav-

ior is considered malicious. The advantage of this ap-

proach is that the generation of false positives is greatly

reduced. On the other hand, the generation of the specifi-

cation requires access to the application source code and

considerable effort, even when supported by tools. For

this reason, these techniques are not in wide-spread use.

The most commonly used approach relies on models of

attacks to analyze the input event stream. Systems based

on this approach [20, 26, 39] are equipped with a num-

ber of attack signatures. These signatures are matched

against the stream of audit data to identify the manifesta-

tion of an attack. The advantage of this approach is that it

supports very effective intrusion detection and produces

few false positives. In addition, signatures are not limited

to modeling attacks against an application. For example,

it is possible to describe attacks that represent abuses of

legitimate access to the system. The disadvantage is that

the signature set must be updated continuously as new

ways of attacking a system are found.

In the work we present herein, we describe the design

and implementation of a signature-based intrusion de-

tection system. The system is an extension of previous

work [49] in which we developed an auditing facility and

an intrusion detection system for a mobile agent system,

called Aglets [36]. This prior system detects malicious

agent activity through the monitoring of the Aglets exe-

cution environment. In that case, the Java server applica-

tion that was responsible for transferring and executing

the mobile agents was instrumented to produce agent-

related information.

The development of this agent monitoring system sug-

gested a far more general approach in which the JVM

itself is extended to produce the necessary informa-

tion. Therefore, we developed a mechanism that collects



12th USENIX Security Symposium USENIX Association 155

�������
��	
����

��
��������

���������
������

�����������
�	����

��������

��
��	�

��������
������

�
���
�	�
���	

������
�����	���

��������
����������

 ��	������������

�����
!��

��

Figure 1: Architecture of the Java Virtual Machine auditing system and the STAT-based intrusion detection system

events that give information about the activity of threads

within a JVM. The resulting auditing system can moni-

tor the activity of any Java application, including various

technologies supporting mobile code. We also developed

an intrusion detection system that takes advantage of the

finer-grained information produced by the JVM audit-

ing system to detect attacks coming from malicious Java

code.

To the best of our knowledge, no existing system per-

forms auditing and threat detection at the Java thread

level.

3 System Overview

Figure 1 shows a high-level overview of our intrusion

detection architecture. The auditing system monitors

executing Java threads (possibly associated with multi-

ple, independent applications) and produces an audit log

composed of records related to thread activity. The log is

converted to an event stream by an event provider. The

event stream is subsequently analyzed by an intrusion

detection system for possible security threats or attacks.

More precisely, the intrusion system compares patterns

in the event stream against known attack scenarios. A

match indicates that an intrusion or threat is in progress

and that a response should be initiated. To do so, the

intrusion detection system contacts the JVM which im-

mediately terminates all offending threads. The JVM au-

diting system maps authenticated user IDs to threads so

that malicious users can be identified and their threads

selectively terminated.

Our system implementation couples and extends two ex-

isting frameworks: the JikesRVM, a high-performance

Java virtual machine [30, 1], and STAT [51, 14], a gen-

eral platform for the creation of intrusion detection sen-

sors that we developed as part of prior work. The grayed

boxes in the figure identify our extensions to these sys-

tems. In the sections that follow, we describe each of

these components.

4 An Auditing System
For A Java Virtual Machine

We implemented an auditing facility for the JikesRVM.

The JikesRVM was designed with the goal of enabling

high-performance Java server applications. As such, it

represents the next generation of JVM technologies. The

JikesRVM compiles Java bytecode programs into binary

code (x86 or Power PC) at run time. The system oper-

ates at the method level and employs aggressive program



12th USENIX Security Symposium USENIX Association156

optimization. The JikesRVM implements extensive run-

time services including, garbage collection (GC), thread

scheduling, synchronization, name-space separation, and

class file verification. We implemented the latter two

features ourselves as part of other projects [55]. Cur-

rently, the JikesRVM enables over 25% reduction in ex-

ecution time over the Sun HotSpot JVM version 1.3.1

for x86/Linux (This value refers to a number of standard

benchmark programs that we also used in Section 6 of

this paper to evaluate the overhead introduced by our au-

diting facility).

All Java threads in the JikesRVM derive from a virtual
machine thread (VM Thread), which is the basic unit of

program execution. These threads are multiplexed onto a

virtual processor (VM Processor), which is the abstrac-

tion of an underlying operating system thread. This im-

plementation enables the JikesRVM to perform thread

scheduling, independent to that performed by the oper-

ating system.

To monitor any suspicious activity performed by applica-

tions running in the JikesRVM, we extended the virtual

machine with an event logging system. Each time an

application or code component is uploaded into the exe-

cuting JVM, a thread is created to execute the code. The

thread is assigned a unique system identifier (SID) and

a user identifier (UID). The SID enables the JikesRVM

auditing system to identify a specific thread when log-

ging execution events. UIDs associate users with individ-

ual threads. Both SIDs and UIDs are inherited by every

thread created by the initial thread. Strong authentica-

tion mechanisms can be used to assign UIDs to threads,

however, authentication and identification are not imple-

mented natively by the JikesRVM (we are investigating

such mechanisms as part of our current research).

In this first prototype, we simply map IP addresses to

user IDs; this implementation is sufficient to effectively

identify malicious threads. Since each application thread

that executes in the system has an associated user ID, the

threads of a user can be killed without affecting other

user applications or the execution environment.

Figure 2 provides a graphic description of the JVM au-

diting facility. The auditing facility consists of an event

driver, an event queue, and an event logger. The event

driver adds thread-level execution events to the event

queue. The logger processes events that are contained

in the queue and writes them to an external log. We next

describe the event driver. The implementation of the log-

�����

������

�����

	
����
�����

�����

	
�

�����������

����������������

���������������

Figure 2: The JikesRVM auditing system.

ger component is described in Section 4.2.

4.1 Event Driver

The event driver provides an interface for inserting

events in the event queue. The security-relevant opera-

tions in the JikesRVM are instrumented with calls to the

event driver interface. For example, system calls invoked

by the executing programs are instrumented in this way.

We currently instrument operations that are of interest

from a security perspective. However, any dynamic be-

havior can be instrumented using our system. The events

we monitor in our prototype are: class events, system call

events, JNI events, and thread interaction events.

4.1.1 Class Events

A class event occurs each time a thread loads a class. We

instrumented the JikesRVM class loading code to record

these events during execution. If a class is loaded from

the network, the IP address of the code source is logged

as part of the event.

We also record events associated with the creation of

user-defined class loaders [37] and the classes that they

load. User-defined class loaders are a powerful feature

of the Java language that allows programs to define dy-

namically the way in which a class can be loaded and

created. However, this functionality might also allow

malicious applications to load classes from untrusted lo-

cations [41]. To record these events, we instrument the

class loading code in user components that extend the

Java ClassLoader library class [28].



12th USENIX Security Symposium USENIX Association 157

4.1.2 System Call Events

System calls provide an interface through which an exe-

cuting program can access operating system resources.

For example, network communication, file I/O, and

memory allocation are all accessed via system calls. By

intercepting system calls, we are able to monitor and con-

trol such access.

The JikesRVM provides an abstraction of system calls

via the VM system class. The system call routines in this

class invoke the corresponding routines in the “Magic”

(VM Magic) class. The Magic class provides all the

architecture-dependent, low-level functionality required

by applications, e.g., raw memory access and calls to the

operating system interface.

Methods in the Magic class are recognized and imple-

mented as special system methods by both the baseline

and optimizing compilers. These methods cannot be im-

plemented by user application code. When the compiler

encounters a call to a Magic method, it inlines code for

the method into the caller routine. The Magic code for

system calls consists of a number of calls to “wrapper

routines” written in C. These routines perform the actual

operating system call. To record system call events, we

insert calls to the event driver interface at the VM ab-

straction layer (the VM system class) in the JikesRVM.

4.1.3 JNI Events

The JikesRVM implements most of the Java Native Inter-

face (JNI) specification. The use of JNI is inherently “un-

safe” since it allows user programs to call native meth-

ods, which can directly manipulate the host’s file system,

the process memory, and other resources. Therefore, the

JNI might be used to bypass the security mechanisms of

the JVM. However, the JNI offers greater control of sys-

tem resources, e.g., for administration, resource account-

ing, and low-level device manipulation. In addition, the

JNI offers the potential for improved execution perfor-

mance since the code that is executed can be aggres-

sively optimized and specialized statically for the under-

lying architecture, i.e., it does not require dynamic com-

pilation. For such purposes, server systems may choose

to support the use of the JNI functionality for a small,

trusted subset of its users.

To monitor native method invocation, we instrument the

JikesRVM JNI Compiler. The JNI compiler generates

“glue code” that handles setting up the caller native

method’s frame for the transition from Java to C. There-

fore, we inline a call to the event driver interface routine

into this glue code.

4.1.4 Thread Interaction Events

In Java, an application thread can adversely affect an-

other application thread by first obtaining a reference to

the thread and then invoking one of the thread meth-

ods that could cause harmful thread-interaction, i.e., sus-
pend, interrupt, stop and kill. In more recent versions

of the Java language specification, these methods have

been deprecated and it is recommended that thread inter-

action occur via shared variables only. However, many

JVMs, including the JikesRVM, implement the direct ac-

cess methods to maintain backward compatibility with

legacy applications.

In Java, a thread could obtain illegal access to another

thread directly, by ascending to the root thread group and

recursively descending through the threads and thread

groups below; or, indirectly, through the use of JNI meth-

ods that can access raw memory. Prevention of the for-

mer is straight-forward; however, the latter requires the

monitoring of JNI events.

As described in the previous section, access to the JNI is

granted to authorized users only. However, if the iden-

tity of a privileged user is stolen, the JNI can be used by

an attacker to adversely interfere with other applications

that are executing in the system. Therefore, we instru-

ment all method invocations on thread objects that might

cause interference in thread execution, including those

that have been deprecated.

To record thread interaction, an instrumented method

generates an event whenever the object on which it is

invoked is of type Thread (java.lang.Thread). We modi-

fied the JikesRVM baseline and optimizing compilers so

that a call to the event driver is inlined into each call of

any thread method listed above, which might cause un-

wanted thread-interaction. In Java, an instance method is

invoked as an ”invokevirtual” call on an object reference.

A reference to the instance resides on the stack when

such a method is invoked. In our case, the object ref-

erence is a reference to the target application thread, i.e.,

the object on which the thread interaction method was

invoked. To identify the source thread, i.e., the calling

thread, we inline a call to the JikesRVM system method



12th USENIX Security Symposium USENIX Association158

VM Thread.getCurrentThread, which gives us a refer-

ence to the thread in whose context the method call was

made.

4.2 Event Logger

The event logger component runs as a JikesRVM sys-

tem thread. The logger consumes events from an event

queue, which the event driver interface populates. This

design has the following advantages:

1. Implementing a separate event-logging thread al-

lows us to identify and filter out events that are gen-

erated by the event logger itself (for example, sys-

tem calls made by the event logger for disk I/O), by

using the thread identifier.

2. Applications incur minimal delay since they do not

need to wait for the disk I/O associated with the log-

ging to complete. The application thread continues

to run while the logger is processing events on the

event queue.

We experienced a difficulty while instrumenting system

calls. As described above, system calls are instrumented

by inserting invocations to event driver interface rou-

tines, at the VM abstraction layer. The JikesRVM imple-

mentation requires that the routines in the VM class be

uninterruptible. This is because an operating system call

routine might directly modify the Java heap (e.g., using

memcpy). Some system calls are not garbage-collection-

safe (GC-safe), since they might modify the Java heap

without the garbage collector’s knowledge. The current

JikesRVM implementation defines all system calls to be

un-interruptible operations, whether or not they modify

the heap. The VM stalls until the system call native code

returns [25]. Hence, our event driver’s event logging rou-

tines, which are called from the system call routines, can-

not allocate memory to create event objects, as this might

result in a garbage collection.

To solve this problem, we perform an initial static allo-

cation of the event queue and associated event objects.

Since the logger is decoupled from the driver, it can per-

form system calls that cause memory allocation. There-

fore, the logger monitors the number of event objects in

the queue, and, when a threshold is exceeded, it increases

the size of the queue.

There are three drawbacks to this mechanism: (1) mem-

ory is wasted when the initial queue size is too large;

(2) frequent reallocation can degrade performance if the

queue size is too small; and (3) events will be missed if

the queue fills before the logger thread has an opportu-

nity to execute (and hence, increase the queue size). In

our prototype, both the initial queue size and the queue

allocation increment are application-dependent and can

be set by the users of our system. Through empirical

evaluation, using a large number of Java programs and

different inputs, we determined that the queue should be

doubled upon each increase and that a size of 16,000

events is sufficient to ensure that no event is ever lost.

We use these values in our prototype for which we report

results in Section 6.

The logger sleeps until the queue is sufficiently full.

Then, the driver code wakes the logger. As with the ini-

tial queue size, this “wakeup” factor must be carefully

chosen. If it is too small, the logger will be scheduled to

run frequently, adversely affecting application through-

put. If this factor is too large, the event driver might find

the queue full and the event logger would miss events.

Our empirical results for a wide range of programs and

inputs indicate that this threshold should be 5/6 of queue

capacity to ensure that no events are lost. The logger,

when awakened, records all events that have been in-

serted into the queue since it was last put to sleep. It

then clears the queue and goes back to sleep. Note that

the event driver can continue to add events to the event

queue as they are being processed by the logger. Thus,

there are no extensive program interruptions due to the

execution of the logger .

4.2.1 XML Encoding of Auditing Events

We encode the events that the logger consumes using an

XML-based format. Encoding the events in XML sup-

ports inter-operability with other systems that may use

the event stream generated by the auditing facility.

We developed a schema to encode all JikesRVM events,

each of which consists of the event source, the action

taken, and the result produced. Actual examples of

our XML encoding are shown in Figure 3 for three

JikesRVM events. The first encoding is an example of

a thread interaction event in which a thread with ID 7

owned by a user with ID 23 kills a thread with ID 4

owned by the user with ID 10. The second encoding



12th USENIX Security Symposium USENIX Association 159

<event timestamp=”Wed Oct 16
17:17:14 2002”>

<source>
<thread id=”7” uid=”23” />

</source>
<action type=”THREAD KILL”/>

<target>
<thread id=”4” uid=”10” />

</target>
</action>
<result status=”SUCCESS” />
</result>

</event>

<event timestamp=”Mon Nov 25
15:30:27 2002”>

<source>
<thread id=”2” uid=”17” />

</source>
<action type=”SYSCALL sysOpen” >

<target>
<file name=”/etc/passwd”

mode=”WRITE” />
</target>

</action>
<result returncode=”-1”

status=”FAILED” />
</result>

</event>

<event timestamp=”Mon Nov 25
15:31:02 2002”>

<source>
<thread id=”8” uid=”11” />

</source>
<action type=”NET CONNECT”>

<target>
<server remoteaddress=”128.111.68.170”

port=”25640” />
</target>

</action>
<result returncode=”ECONNREFUSED”

status=”FAILED”/>
</result>

</event>

Figure 3: XML Encoding of example JikesRVM events.

is an example of a system call event in which a thread

with ID 2, owned by a user with ID 17 attempts to open

the /etc/passwd file for writing and fails. The fi-

nal example in the figure shows the encoding of a net-

work event in which a thread, owned by user with ID 11,

tries to establish a connection to a host having IP address

128.111.68.170 on port 25640 and the connection is re-

fused.

The source element describes the thread (and hence,

user) that initiates the operation; the thread ID (attribute

id) and the user ID (attribute uid) are both attributes of

the thread element. The action element describes

the operation performed by the source. The type at-

tribute of this action element describes the action be-

ing recorded (for example, “JNI” to denote that a native

method was invoked). The target element describes

the target to which the action is being applied. The tar-

get of an operation can be a file, a server, a method, or

a thread. Of these, the latter is described by the id at-

tribute; others are described using the name attribute.

The result element specifies the outcome of the opera-

tion. This element has two attributes, returncode and

status, which are used to record return values, e.g.,

from system calls, and status values, e.g., errno values.

5 Detecting Malicious Java Code

The event stream produced by the JikesRVM event log-

ger thread is used by an intrusion detection system to

identify possible threats and attacks. The intrusion detec-

tion system was developed leveraging the STAT frame-

work [26, 50]. The STAT framework provides a generic

signature-based intrusion detection engine that can be

extended to match a specific environment through a well-

defined process.

The first step of the extension process includes the defi-

nition of a language extension module. This module ex-

tends STATL [14], the domain-independent attack mod-

eling language provided by the framework, with the

event types that are specific of a particular target do-

main. Therefore, we developed a language extension

module that defines the event types that are produced by

the JikesRVM auditing facility (e.g., the JEvent type).

By doing this, it was possible to use the JVM-specific

events when writing STATL scenarios. These scenarios

represent state-transition models of attacks.

An example of a scenario is shown in Figure 4. The sce-

nario models a two-step attack in which a malicious ap-

plication uses the JNI to obtain a reference to another

application’s thread, and then calls the “kill” method on

that reference in an attempt to terminate the thread. This

attack is detected by checking for a JNI method invoca-

tion (transition 1), followed by an attempt of the

application to communicate with another user’s thread

(transition 2). This and other scenarios are pre-

sented in detail in Section 5.1.

The second step of the framework extension process is

the development of an event provider module. This mod-

ule is responsible for collecting events from the envi-

ronment and translating them in the format defined in

the language extension module. We developed an event

provider module that reads the events contained in the

audit log produced by the JikesRVM event logger and

generates events in the format specified by the language

extension described above. These events are matched by

the STAT analysis engine against the available attack sce-



12th USENIX Security Symposium USENIX Association160

scenario jikesRVM jnithread () {
transition transition 1 (s0 → s1) nonconsuming {

[JEvent m1]: m1.targetType == ”method” &&

m1.actionString == ”JNICALL”;

{
log(”JNI method %s invoked by thread %s”,

m1.target.name, m1.source.id);

}
}
transition transition 2 (s1 → s2) nonconsuming {

[JEvent m1]: m1.targetType == ”thread” &&

m1.actionString == ”THREAD KILL” &&

m1.source.uid == m1.target.uid;

m1.source.uid == m1.target.uid;

{

log(”THREAD KILL by user %s’s thread %s

to user %s’s thread %s”,

m1.source.id, m1.source.uid,

m1.target.id, m1.target.uid);

}
}
initial state s0 {}

state s1 {}

state s2 {
log(”Suspicious thread communication

after JNI method invocation!!”);

}
}

Figure 4: Example attack scenario.

narios.

The third and final step of the extension process is the

creation of a response module that can be used to react

to detected attacks in a specific environment. We devel-

oped a response module that initiates an appropriate re-

sponse action when an attack or threat coming from a

Java application is detected. The module sends to a ded-

icated thread in the JikesRVM a request for a particular

response action. Currently, it is possible to request the

termination of a particular thread or the termination of

every thread belonging to a specific user. However, the

system can be easily extended to implement other types

of response, such as the dynamic modification of security

restrictions. The communication between the response

module and the JikesRVM is secured using encryption.

In summary, by extending STAT’s generic analysis en-

gine with the modules that we developed specifically for

the JikesRVM, we obtained a complete signature-based

intrusion detection system that is able to detect and re-

spond to attacks coming from malicious Java applica-

tions. The following section describes the attack scenar-

ios that we developed for this system.

5.1 Attack Scenarios

To evaluate the efficacy with which our intrusion detec-

tion system can detect suspicious activity, we developed

mobile programs that exercise different attacks and the

corresponding STATL scenarios. Although we only de-

scribe four such scenarios for brevity, the system can

be extended easily to detect any number of different

attacks. Examples of such attacks include email forg-

ing [41] and denial of service due to continuous resource

allocation [7, 41], e.g., of heap memory, files, sockets.

The four scenarios that we developed implement a range

of suspicious activities including attempts to access sen-

sitive information, suspicious inter-thread communica-

tion, ping and port scans against hosts on an internal net-

work, and transfer of privileged information outside the

network. For these scenarios, we assume a server execu-

tion model in which users connect to the JVM server and

upload code that the JVM executes.

In addition, we assume that the Java type system and

class file verification together enable type-safe execu-

tion [38, 37]. Our auditing facility and intrusion detec-

tion system could be bypassed if type safety is somehow

violated by an attacker’s program, e.g., integers are con-

verted to references or the program counter is modified

to execute at an arbitrary memory location.

5.1.1 Unauthorized Access Detection

In this attack, an application attempts to access privi-

leged information from the host operating system, such

as the password file on a UNIX host. The attack is de-

tected by monitoring system calls that operate on file sys-

tem resources. The system intercepts and records all at-

tempts to access privileged resources. The record con-

tains the identity of the owner of the thread and the type

of access requested. Following is an example of such an



12th USENIX Security Symposium USENIX Association 161

alert from the intrusion detection tool. The alert repre-

sents the attempt of an application to write to the privi-

leged /etc/shadow file, which stores users’ password

hashes (on many UNIX systems).

TIME: 01/20/2003 13:44:04
ACTION: PRIVILEGED ACCESS
SOURCE UID: 0
SOURCE THREAD ID: 2
PRIVILEGED RESOURCE: /etc/shadow
ACCESS MODE: WRITE
MSG: Attempt to stat privileged file.
RESULT: FAILURE
SENSOR: jikesRVMstat@localhost

This scenario is an example of how the system can be

used to detect malicious behavior even when an attack

fails.

5.1.2 Harmful Inter-Thread Communication

A reasonably enterprising intruder might disrupt the

functioning of other application threads in the sys-

tem [41]. Consider the scenario in which an intruder

has forged a legitimate user’s identity, e.g., by stealing

her user id, and has uploaded code using the stolen iden-

tity. In addition, the legitimate user is authorized to in-

voke native methods via the Java Native Interface (JNI).

The intruder executes a native method that is designed to

give her access to a thread object of another user. She

then sends signals to that thread to terminate the thread.

The system detects this scenario by detecting that a JNI

invocation is performed followed by potentially harm-

ful cross-thread communication between threads owned

by two different users. The intrusion detection response

module can communicate this information to the Java

Virtual Machine, which can terminate the application up-

loaded by the intruder. Following is an example of such

a detection alert:

TIME: 01/20/2003 20:44:04
ACTION: THREAD STOP after JNI Call.
SOURCE UID: 0
SOURCE THREAD ID: 2
TARGET UID: 8
TARGET THREAD ID: 1
MSG: JNI method "print" invoked by thread 2 (uid 0).

Suspicious thread communication after
JNI method invocation!!

RESULT: SUCCESS
SENSOR: jikesRVMstat@localhost

This scenario shows that in some cases malicious behav-

ior can be detected only by using features that are internal

to the JVM. Alternately, the attacker might obtain ille-

gal access to an application thread by ascending to the

thread’s root thread group, and recursively descending

through threads and thread groups below [41]. The in-

truder can then call Thread.stop() on the victim’s thread.

This single-step attack and can be handled by monitoring

Thread.stop() calls.

5.1.3 Detecting Network Scans

With the next scenario, we show how the system can de-

tect “bounce” attacks [24, 41] on internal servers. Us-

ing these well-known attacks, a malicious program may

identify, manipulate, or discover vulnerabilities in hosts

on an internal network.

In this scenario, the Java socket library is used by an at-

tacker to perform network scans against hosts on a net-

work behind a firewall. We assume that the JVM server

system has access to these internal hosts. A malicious

user uploads code that performs ping scans against inter-

nal subnets in an attempt to identify hosts that are alive.

Similarly, the attacker can perform TCP and UDP scans

to identify hosts with potentially vulnerable network ser-

vices. To detect ping scans, we monitor the connection

attempts made by an application to a range of hosts, or

a range of ports on a host. Following is an example of

an alert from the intrusion detection system that detects

multiple connection attempts to a range of ports on host

128.111.68.170. The system identifies the thread and the

user who performed the scan.

TIME: 01/23/2003 17:56:04
ACTION: MULTIPLE CONNECTS
SOURCE UID: 0
SOURCE THREAD ID: 2
SOURCE ADDR: 128.111.68.169
TARGET ADDR: 128.111.68.170
MSG: Connect attempts (1058) to multiple ports.
RESULT: FAILURE
SENSOR: jikesRVMstat@localhost

This scenario shows that it is possible to precisely iden-

tify the malicious code performing the attack using JVM-

level audit data.

5.1.4 Detecting Transfer of Privileged Information

In the next scenario, we show how events that “leak” sen-

sitive server information to the outside world [7] can be

detected. The system is capable of detecting such events

since we record system calls and network events.



12th USENIX Security Symposium USENIX Association162

Static Execution

Program Description Classes Methods Time (sec)

compress Spec JVM98 compression utility 12 44 7.11

db Spec JVM98 database access program 3 34 16.22

jack Spec JVM98 Java parser generator based

on the Purdue Compiler Construction Tool set 56 315 4.40

java cup LALR parser generator: A parser is created

to parse simple mathematics expressions 36 385 0.38

javac Spec JVM98 Java to bytecode compiler 176 1190 6.28

jess Spec JVM98 expert system shell benchmark:

Computes solutions to rule based puzzles 151 690 2.76

mpeg Spec JVM98 audio file decompression tool

Conforms to ISO MPEG Layer-3 spec. 55 322 5.84

mtrt Spec JVM98 multi-threaded

ray tracing implementation 26 180 3.59

Table 1: Description of the benchmarks used. The final column shows the execution performance in seconds of each

benchmark executed using the JikesRVM.

An attempt to access server information, e.g., the

/etc/passwd file, may not in itself be malicious be-

havior. The /etc/passwd file is commonly world-

readable, since many UNIX utilities that run without

super-user privileges depend on accessing this file to

function correctly. In addition, most UNIX systems use

separate shadow password files that contain the hashes

of the actual passwords. However, the information con-

tained in the /etc/passwd file, such as account names

and user information (names and addresses), might pro-

vide hints to an outside attacker, e.g., to mount a pass-

word guessing attack. As such, it may not be desir-

able for such information to leak out. To detect such

an event, we implemented a two-step attack scenario in

which an intruder accesses server information and then

successfully connects to an external, untrusted machine.

The alert produced for such an attempt is shown below

(128.111.68.0 is our internal network) .

TIME: 01/23/2003 17:13:58
ACTION: PRIVILEGED TRANSFER
SOURCE UID: 0
SOURCE THREAD ID: 2
INTERNAL NETWORK: 128.111.68.0
REMOTE ADDR: 128.111.43.218
PRIVILEGED RESOURCE: /etc/passwd
ACCESS TYPE: READ
MSG: Attempt to open privileged file.

Possible transfer of privileged information
outside internal network!
File: /etc/passwd Host: 128.111.43.218

RESULT: SUCCESS
SENSOR: jikesRVMstat@localhost

This scenario shows how the intrusion detection system

can be used to associate two apparently legitimate (and

authorized) operations to produce evidence of suspicious

behavior.

6 Evaluation

We collected the results that we present in this section

by repeatedly executing benchmark applications on the

JikesRVM with and without the auditing and response

components. In both cases, the execution times include

the time for both dynamic (Just-In-Time) compilation of

the benchmark methods and their execution. We per-

formed the timings on an Intel Xeon 2.4GHz processor

(with Hyperthreading enabled) and a Seagate 15000 rpm

SCSI hard disk. The operating system is Redhat Linux

7.3, kernel version 2.4.18. The JikesRVM version we

used was 2.1.1, with the FastSemispace configuration.

FastSemispace implements a semispace copying garbage

collector and fully optimizes all methods Just-In-Time.

In addition, the entire optimizing compiler is part of the

JikesRVM image at startup, i.e., class files for this sub-

system have been loaded, compiled, and optimized.

The benchmark programs that we used for result gen-

eration are listed in Table 1. This set of programs is

commonly used for empirical evaluation of Java-based

systems and includes the Spec JVM98 [45] benchmark



12th USENIX Security Symposium USENIX Association 163

0

0.5

1

1.5

2

2.5

co
m

pre
ss db

jac
k

jav
a c

up
jav

ac jes
s

m
peg m

trt

Ave
ra

ge

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

full logging
partial logging

Figure 5: Execution times of our JikesRVM extension

relative to the JikesRVM without auditing and response

for a number of standard Java benchmarks. Full event

logging implies that all system call, thread interaction,

and JNI events are recorded. With partial event logging,

we only log network use, file I/O, thread interaction, and

JNI invocation events.

suite.

6.1 JikesRVM Auditing Overhead

To evaluate the efficacy of our system, we measured the

overhead that the system imposes on the execution of

programs for which no intrusions or threats are detected.

Figure 5 shows the relative slowdown for each bench-

mark. The base case to which we are comparing is the

JikesRVM without modification.

The delay experienced by the user application due to

event logging depends on the number of events. The

left-hand bar in the graph shows the impact of full log-

ging, i.e., when all system calls, thread interaction, and

JNI calls are logged. System call events generally dom-

inate all other kinds of events, and applications with a

large number of system calls incur in a substantial per-

formance penalty. The right-hand bar, gives the perfor-

mance of our system when partial logging is performed,

that is when we only log events that we use in the attack

scenarios presented in this paper, namely, network and

file I/O, thread interaction, and JNI access. By reducing

the number of events of interest, program performance

improves. A user can configure our system to record any

number of event types to manually adjust the trade-off

between system performance and events audited.

The graph indicates that our logging introduces very lit-

Average Events per Second

Program Total Logging Partial Logging

db 3995 956

compress 190 85

jack 12394 1894

java cup 420 209

javac 2442 400

jess 10075 3105

mpeg 1862 453

mtrt 474 240

Average 3982 918

Table 2: Event Rate (event count / execution time) for

each benchmark. The first and second columns of data

show the event rate for total logging and partial logging,

respectively.

tle overhead in most cases (with or without full logging).

For all but three benchmarks, the degradation is very

small: For all benchmarks except db, jack and jess, per-

formance is degraded by 5% with full logging and 2%

for partial logging, on average. When we include these

three benchmarks, performance is degraded by 44% for

full logging and 26% for partial logging, on average.

Db, jack and jess have significant performance degrada-

tion because these benchmarks perform a large amount

of file access operations, and consequently, produce a

large number of events. This is clear from the average

number of events per second shown in Table 2; data for

both full and partial logging is shown. The relative per-

formance degradation is greater for jack and jess than for

db since they execute for a much shorter time (the exe-

cution times without auditing are shown in column 5 of

Table 1).

Figure 6 shows the breakdown of the events generated

by partial logging (100% denotes the total). These

events are the number of JikesRVM system call inter-

face routines (“wrapper routines”) that are invoked by the

JikesRVM Magic class. These, in turn, map onto the cor-

responding operating system calls: sysStat maps to the

stat system call, sysOpen to open, sysReadByte and sys-
ReadBytes to read, and sysWriteByte and sysWriteBytes
to write. Other denotes all other non-system call events

and is the only solid-colored segment. For all of the

benchmarks, system call events clearly dominate other



12th USENIX Security Symposium USENIX Association164

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

co
m

pre
ss db

jac
k

jav
a c

up
jav

ac jes
s

m
peg

au
dio

m
trt

Other sysStat sysOpen
sysReadByte sysReadBytes sysWriteBytes

Figure 6: Breakdown of events for partial logging. These

events are only those that we use for the attack scenarios

that we present in this paper. Note that partial logging

implies that in case of system call events, only network

and file I/O events are recorded.

types of events. The number of system call events of each

type varies across the benchmarks. However, file reads

and writes are the most common in all cases. As part of

future work, we plan to aggregate read and write system

calls to reduce the overhead of instrumentation, so that

events are generated only when a threshold is reached.

7 Related Work

Our work is primarily related to and complements three

different areas of research. The first is extant intrusion

detection research which we describe and contrast to our

system in Section 2. Other related work includes al-

ternate approaches to ensuring safe execution of mobile

programs (including Java-based operating systems) and

thread termination techniques.

The goal of much of the prior related research has

been to develop operating systems and system manage-

ment components using the Java language to enable re-

source management and process protection through the

use of Java type-safety and load-time verification mech-

anisms [5, 31, 40, 22, 46, 48, 11, 21, 27, 4]. Other

related work has focused on mechanisms that ensure

that the execution of mobile code will not unintention-

ally or maliciously harm the underlying systems. Such

techniques include stack inspection [16], proof-carrying

code [42, 10, 9], software fault isolation [53], and code

replacement [7].

The system that we propose is not an alternative to these

existing approaches to program protection and system

security. Instead, it offers a complementary technique

(thread-level intrusion detection) that can be used to

identify suspicious events or activities that may not be

caught or detected by these existing approaches. For ex-

ample, our system can be used within secure execution

environments and Java-based operating systems to de-

tect threads that continuously allocate memory in an at-

tempt to cause the system to fail due to memory exhaus-

tion or threads that perform bounce attacks on internal

machines. In addition, our system is easily extensible

and as such, administrators can add event detection of

previously unforeseen attacks that arise but that are not

handled by the underlying system.

A second area of related work is thread termination [44,

15]. In [44], the authors provide a formal specifica-

tion and implementation of a technique for thread cessa-

tion called soft termination. Using this technique, a mo-

bile code system can asynchronously and safely destroy

the threads of a mobile program without termination of

the execution environment. In our system, the response

module receives messages from the STAT system when

thread activity warrants its termination. The response

module discontinues all threads in the system that were

initiated by the user that spawned the ill-behaved thread.

The module destroys non-running threads by removing

them from the thread scheduling queue.

We could have implemented soft termination within the

response module instead. Soft termination guarantees

correct thread termination in the presence of all program

and system activities, e.g., blocking system calls. As

such, it is more robust and complete than our termina-

tion process. Since the JikesRVM currently only sup-

ports non-blocking system calls, we selected our sim-

pler implementation for our initial prototype. As the

JikesRVM evolves to include blocking system calls, we

plan to consider the use of soft termination within our

response module as part of future work.

8 Conclusions and Future work

Auditing at the Java Virtual Machine (JVM) level allows

for fine-grained access to application execution events.



12th USENIX Security Symposium USENIX Association 165

This information is necessary to perform effective in-

trusion detection and response for next-generation JVM

server technologies in which multiple applications are

uploaded from multiple (possibly untrusted) sites and ex-

ecute concurrently within a single JVM. To this end, we

developed an auditing facility for the JikesRVM and a

host-based intrusion detection system that employs this

audit data. As a result, attacks that exploit features inter-

nal to the JVM, such as the JNI, can now be detected. To

our knowledge, this is the first system that performs au-

diting and intrusion detection at the thread-level within a

JVM.

We also evaluated both the effectiveness of the detec-

tion process and the performance of the auditing systems.

The results show that our approach introduces limited,

adjustable, overhead while enabling many different at-

tack scenarios to be detected.

Our future work will have two foci. First, we plan to

extend and optimize the auditing system to handle addi-

tional events and to reduce the overhead of instrumenta-

tion. The extensions we plan include a publish-subscribe

mechanism that allows intrusion detection systems to dy-

namically configure the auditing facility so that only the

events that actually are necessary to the detection pro-

cess are logged. In addition, we will use the experience

that we gained with the prototype described herein, to

reduce the overhead of instrumentation and audit collec-

tion within the JikesRVM.

As a second research direction, we plan to correlate

traces collected at different abstraction levels to per-

form more effective intrusion detection. In particular,

we plan to analyze the JVM-level traces with respect to

application-level and OS-level traces. This integrated,

multi-level approach will allow for more focused mali-

cious code detection and a clearer evaluation of the im-

pact of an attack on the underlying operating system.

Acknowledgments

We would like to thank the anonymous reviewers for pro-

viding extensive and useful comments on this paper.

Giovanni Vigna’s work was supported by the National

Science Foundation under grant CCR-0209065.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,

M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.

Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,

J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,

and J. Whaley. The Jalapeño Virtual Machine. IBM Sys-
tems Journal, 39(1):211–221, 2000.

[2] A. Anderson. Java Access Control Mechanisms. Techni-

cal report, Sun Microsystems, March 2002.

[3] J.P. Anderson. Computer Security Threat Monitoring and

Surveillance. James P. Anderson Co., Fort Washington,

April 1980.

[4] G. Back, P. Tullmann, L. Stoller, W. Hsieh, and J. Lep-

reau. Processes in KaffeOS: Isolation, Resource Manage-

ment, and Sharing in Java. In Proceedings of the Fourth
Symposium on Operating Systems Design and Implemen-
tation, pages 333–346, San Diego, CA, October 2000.

[5] G. Back, P. Tullmann, L. Stoller, W. Hsieh, and J. Lep-

reau. Techniques for the Design of Java Operating Sys-

tems. In Proceedings of the 2000 USENIX Annual Tech-
nical Conference, pages 197–210, San Diego, CA, June

2000.

[6] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,

M. Serrano, V. Shreedhar, H. Srinivasan, and J. Whaley.

The Jalapeño Dynamic Optimizing Compiler for Java.

In ACM Java Grande Conference, pages 129–141, June

1999.

[7] A. Chander, J. Mitchell, and I. Shin. Mobile Code Se-

curity by Java Bytecode Instrumentation. In Proceedings
of the 2001 DARPA Information Survivability Conference
& Exposition (DISCEX II), pages 1027–1040, Anaheim,

CA, June 2001.

[8] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO:

Java Under Dynamic Optimizations. In Proceedings of
the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, pages 13–26, June

2000.

[9] C. Colby, K. Crary, R. Harper, P. Lee, and F. Pfenning.

Automated Techniques for Provably Safe Mobile Code.

In Proceedings of the DARPA Information Survivability
Conference and Exposition, volume 1, pages 406–419,

Hilton Head, SC, January 2000. IEEE Computer Society

Press.

[10] C. Colby, P. Lee, G. Necula, F. Blan, M. Plesko, and

K. Cline. A Certifying Compiler for Java. In Proceed-
ings of the ACM SIGPLAN 2000 Conference on Program-



12th USENIX Security Symposium USENIX Association166

ming Language Design and Implementation, pages 95–

107, Vancouver, British Columbia, Canada, June 2000.

[11] G. Czajkowski and T. von Eicken. JRes: A Resource

Accounting Interface for Java. In ACM Conference
on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’98), pages 21–35, Vancou-

ver, Canada, October 1998.

[12] H. Debar, M. Dacier, and A. Wespi. Towards a Tax-

onomy of Intrusion Detection Systems. Computer Net-
works, 31(8):805–822, 1999.

[13] D.E. Denning. An Intrusion Detection Model. IEEE
Transactions on Software Engineering, 13(2):222–232,

February 1987.

[14] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL:

An Attack Language for State-based Intrusion Detection.

Journal of Computer Security, 10(1/2):71–104, 2002.

[15] M. Flatt, R. Findler, S Krishnamurthy, and M. Felleisen.

Programming Lanugages as Operating Systems (or Re-

venge of the Son of the Lisp Machine). In Proceed-
ings of the ACM International Conference on Functional
Programming (ICFP’99), pages 138–147, Paris, France,

September 1999.

[16] C. Fournet and A.D. Gordon. Stack Inspection: Theory

and Variants. In Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 307–318, Portland, Oregon, 2002. ACM

Press.

[17] L. Gong. Inside Java 2 Platform Security: Architecture,
API Design, and Implementation. Addison-Wesley, 1999.

[18] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[19] R.S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents:

Security in a Multiple-language, Mobile-agent System.

In G. Vigna, editor, Mobile Agents and Security, volume

1419 of Lecture Notes in Computer Science, pages 154–

187. Springer-Verlag, 1998.

[20] N. Habra, B. Le Charlier, A. Mounji, and I. Mathieu.

ASAX: Software Architecture and Rule-based Language

for Universal Audit Trail Analysis. In Proceedings of
European Symposium on Research in Computer Security
(ESORICS), pages 435–450, Toulouse, France, Novem-

ber 1992.

[21] C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu, and

T. von Eicken. Implementing Multiple Protection Do-

mains in Java. In Proceedings of the 1998 USENIX An-
nual Technical Conference, pages 259–270, New Orleans,

LA, June 1998.

[22] C. Hawblitzel and T. von Eicken. Luna: A Flexible Java

Protection System. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation,

Boston, MA, December 2002.

[23] P. Helman and G. Liepins. Statistical Foundations of Au-

dit Trail Analysis for the Detection of Computer Misuse.

In IEEE Transactions on Software Engineering, volume

Vol 19, No. 9, pages 886–901, 1993.

[24] Hobbit. The FTP Bounce Attack. Bugtraq,

July 1995. http://www.geocities.com/
SiliconValley/1947/Ftpbounc.htm.

[25] IBM Research. The Jikes Research Virtual Machine

User’s Guide. http://www-124.ibm.com/
developerworks/oss/jikesrvm/userguide/
HTML/userguide.html.

[26] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State Transi-

tion Analysis: A Rule-Based Intrusion Detection System.

IEEE Transactions on Software Engineering, 21(3):181–

199, March 1995.

[27] J. Hartman and L. Peterson and A. Bavier and P. Bigot

and P. Bridges and B. Montz and R. Piltz and T. Proeb-

sting and O. Spatscheckti. Experiences Building a

Communication-oriented JavaOS. Software – Practice
and Experience, 30(10), April 2000.

[28] Java 1.2 Library API. http://java.sun.
com/products/jdk/1.2/docs/api/
overview-summary.html.

[29] H. S. Javitz and A. Valdes. The NIDES Statistical Com-

ponent Description and Justification. Technical report,

SRI International, Menlo Park, CA, March 1994.

[30] JikesRVM. Project Home Page. http://www-124.
ibm.com/developerworks/oss/jikesrvm.

[31] JOS Developer Team. JOS: An Open, Portable, and

Extensible Java Object Operating System. http://
cjos.sourceforge.net/archive/.

[32] JRun. Project Home Page. http://www.
hallogram.com/jrun.

[33] Jumping Beans. Project home page. http://www.
jumpingbeans.com.

[34] C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitor-

ing of Security-Critical Programs in Distributed Systems:

A Specification-based Approach. In Proceedings of the
1997 IEEE Symposium on Security and Privacy, pages

175–187, Oakland, CA, May 1997.

[35] C. Krintz. Coupling On-Line and Off-Line Profile Infor-

mation to Improve Program Performance. In Proceedings
of the International Symposium on Code Generation and



12th USENIX Security Symposium USENIX Association 167

Optimization (CGO03), pages 69–78, San Francisco, CA,

March 2003.

[36] D.B. Lange and M. Oshima. Programming and Deploy-
ing Java Mobile Agents with Aglets. Addison-Wesley

Longman, 1998.

[37] S. Liang and G. Bracha. Dynamic Class Loading in the

Java Virtual Machine. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), pages 36–44, Vancouver, British

Columbia, Canada, 1998.

[38] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1997.

[39] U. Lindqvist and P.A. Porras. Detecting Computer and

Network Misuse with the Production-Based Expert Sys-

tem Toolset (P-BEST). In IEEE Symposium on Security
and Privacy, pages 146–161, Oakland, California, May

1999.

[40] M. Golm and M. Felser and C. Wawersich and J. Klein-

oder. The JX Operating System. In Proceedings of
the USENIX Annual Technical Conference, pages 45–58,

Monterey, CA, June 2002.

[41] G. McGraw and E.W. Felten. Securing Java: Getting
Down to Business with Mobile Code. John Wiley & Sons,

2nd edition, 1999.

[42] G. Necula. Proof-Carrying Code. In Proceedings of
the 24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL97), pages

106–119, Paris, France, January 1997.

[43] NonStop Server for Java Software. Project Home

Page. http://nonstop.compaq.com/view.
asp?IO=NSJAVAPD01.

[44] A. Rudys and D.S. Wallach. Termination in Language-

based Systems. ACM Transactions on Information and
System Security, 5(2):138–168, 2002.

[45] SpecJVM’98 Benchmarks. http://www.spec.
org/osg/jvm98.

[46] T. Stack, E. Eide, and J. Lepreau. Bees: A Se-

cure, Resource-Controlled, Java-Based Execution Envi-

ronment. In Proceedings of the IEEE Conference on Open
Architectures and Network Programming, pages 97–106,

San Francisco, CA, April 2003.

[47] Sun Microsystems, Inc. Installing, Administering, and
Using the Basic Security Module. 2550 Garcia Ave.,

Mountain View, CA 94043, December 1991.

[48] P. Tullmann and J. Lepreau. Nested Java Processes: OS

Structure for Mobile Code. In Proceedings of the Eighth

ACM SIGOPS European Workshop on Support for Com-
posing Distributed Applications, pages 111–117, Sintra,

Portugal, 1998.

[49] G. Vigna, B. Cassel, and D. Fayram. An Intrusion De-

tection System for Aglets. In Proceedings of the In-
ternational Conference on Mobile Agents, pages 64–77,

Barcelona, Spain, October 2002.

[50] G. Vigna, S. Eckmann, and R. Kemmerer. The STAT

Tool Suite. In Proceedings of DISCEX 2000, pages 1046–

1055, Hilton Head, South Carolina, January 2000. IEEE

Computer Society Press.

[51] G. Vigna, R.A. Kemmerer, and P. Blix. Designing a Web

of Highly-Configurable Intrusion Detection Sensors. In

W. Lee, L. Mè, and A. Wespi, editors, Proceedings of
the 4th International Symposiun on Recent Advances in
Intrusion Detection (RAID 2001), volume 2212 of LNCS,

pages 69–84, Davis, CA, October 2001. Springer-Verlag.

[52] D. Wagner and D. Dean. Intrusion Detection via Static

Analysis. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, pages 156–169, Oakland, CA, May

2001. IEEE Press.

[53] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Ef-

ficient Software-Based Fault Isolation. In Proceedings
of the 14th Symposium on Operating Systems Principles,

pages 203–216, New York, NY, USA, December 1993.

ACM Press.

[54] C. Warrender, S. Forrest, and B.A. Pearlmutter. Detecting

Intrusions using System Calls: Alternative Data Models.

In IEEE Symposium on Security and Privacy, pages 133–

145, 1999.

[55] L. Zhang and C. Krintz. An Investigation of Concurrent

Application Execution in the JikesRVM. Technical Re-

port TR2003-02, Dept. Computer Science, UCSB, 2003.


