
USENIX Association

Proceedings of the
12th USENIX Security Symposium

Washington, D.C., USA
August 4–8, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



12th USENIX Security Symposium USENIX Association 187

SSL splitting: securely serving data from untrusted caches

Chris Lesniewski-Laas and M. Frans Kaashoek
{ctl,kaashoek}@mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

A popular technique for reducing the bandwidth load on
Web servers is to serve the content from proxies. Typ-
ically these hosts are trusted by the clients and server
not to modify the data that they proxy. SSL splitting is
a new technique for guaranteeing the integrity of data
served from proxies without requiring changes to Web
clients. Instead of relaying an insecure HTTP connec-
tion, an SSL splitting proxy simulates a normal Secure
Sockets Layer (SSL) [7] connection with the client by
merging authentication records from the server with data
records from a cache. This technique reduces the band-
width load on the server, while allowing an unmodified
Web browser to verify that the data served from proxies
is endorsed by the originating server.

SSL splitting is implemented as a patch to the
industry-standard OpenSSL library, with which the
server is linked. In experiments replaying two-hour
access.log traces taken from LCS Web sites over an
ADSL link, SSL splitting reduces bandwidth consump-
tion of the server by between 25% and 90% depending
on the warmth of the cache and the redundancy of the
trace. Uncached requests forwarded through the proxy
exhibit latencies within approximately 5% of those of
an unmodified SSL server.

1 Introduction

Caching Web proxies are a proven technique for reduc-
ing the load on centralized servers. For example, an In-
ternet user with a Web site behind an inexpensive DSL
line might ask a number of well-connected volunteers
to proxy the content of the Web site to provide higher
throughput. In today’s practice, these proxies must be

This research was partially supported by MIT Project Oxygen and the
IRIS project (http://project-iris.net/), funded by the Na-
tional Science Foundation under Cooperative Agreement No. ANI-
0225660.

trusted by both the client and the server to return the
data to the client’s queries, unmodified.

Previous content delivery systems that guarantee the in-
tegrity of the data served by proxies require changes to
the client software (e.g., to support SFSRO [8]), or use
application-specific solutions (e.g., RPM with PGP sig-
natures [25]). The former have not seen wide applica-
tion due to lack of any existing client base. The latter
are problematic due to PKI bootstrapping issues and due
to the large amount of manual intervention required for
their proper use.

Our goal is to guarantee the integrity of data served by
the proxy without requiring changes to clients. Our
approach is to exploit the existing, widely-deployed
browser support for the Secure Sockets Layer (SSL) pro-
tocol [7]. We modify the server end of the SSL connec-
tion by splitting it (see Figure 1): the central server sends
the SSL record authenticators, and the proxy merges
them with a stream of message payloads retrieved from
the proxy’s cache. The merged data stream that the
proxy sends to the client is indistinguishable from a nor-
mal SSL connection between the client and the server.
We call this technique of splitting the authenticator and
data records SSL splitting.

Payloads
CacheProxy

Server

Client

SSL Records

MACs

Figure 1: Data flow in SSL splitting.

SSL splitting cleanly separates the roles of the server and
the proxy: the server, as “author”, originates and signs
the correct data, and the proxy, as “distribution channel”,



12th USENIX Security Symposium USENIX Association188

serves the data to clients. SSL splitting cannot provide
confidentiality, since the proxy must have access to the
encryption keys shared between client and server to re-
encrypt the merged stream; thus, our technique is only
useful for distributing public data. SSL splitting also
doesn’t reduce the CPU load on the server, since the
server is still involved in establishing the SSL connec-
tion, which requires a public-key operation on the server.
The primary advantage of SSL splitting is that it reduces
the bandwidth load on the server.

Our primary application for SSL splitting is Barnrais-
ing, a cooperative Web cache. We anticipate that co-
operative content delivery will be useful to bandwidth-
hungry Web sites with limited central resources, such as
software distribution archives and media artists’ home
pages. Currently, such sites must be mirrored by people
known and trusted by the authors, since a malicious mir-
ror can sabotage the content; Barnraising would allow
such sites to harness the resources of arbitrary hosts on
the Internet, while still guaranteeing the integrity of the
data. Barnraising could also be used by ad hoc cooper-
atives of small, independent Web sites, to distribute the
impact of localized load spikes.

The contributions of this paper are: the design of the
SSL splitting technique, including the simple protocol
between server and proxy to support SSL splitting; an
implementation of SSL splitting based on the freely
available OpenSSL library; a new, grassroots content-
distribution system, Barnraising, which applies SSL
splitting to distribute bandwidth load; and experiments
that show that SSL splitting has CPU costs similar to
SSL, but saves server bandwidth, and improves down-
load times for large files.

2 Goals

Our main goal is to guarantee that public data served
by caching Web proxies is endorsed by the originating
server. Anybody with an inexpensive DSL line should
be able to author content and distribute it from his own
Web server. To allow this limited connection to support a
higher throughput, authors can leverage the resources of
well-connected volunteers acting as mirrors of the site’s
content. However, since the authors may not fully trust
the volunteers, we must provide an end-to-end authen-
ticity and freshness guarantee: the content accepted by a
client must be the latest version of the content published
by the author.

Our second goal is to provide the data integrity with min-
imal changes to the existing infrastructure. More specif-
ically, our goal is a solution that does not require any

client-side changes and minimal changes to a server. To
satisfy this goal, we exploit the existing support for SSL,
by splitting the server end of the connection.

Confidentiality is not a goal. The intended use is to
distribute public, popular data from bandwidth-limited
servers. Most of the content on the Web is not secret,
and moreover, most pages that require secrecy are dy-
namically generated and hence not cacheable. Lack of
perfect confidentiality is also an inevitable consequence
of caching, because any caching proxy must be able to
tell when two clients have downloaded the same file; this
requirement violates ciphertext indistinguishability.

SSL splitting does not provide all the benefits of tradi-
tional, insecure mirroring. While it improves the band-
width utilization of the central site, it incurs a CPU load
similar to a normal SSL server. In addition, it does not
improve the redundancy of the site, since the central
server must be available in order to authenticate data.
Redundant central servers must be employed to ensure
continued service in the face of server failure or network
partition.

3 Design of SSL splitting

The key idea behind SSL splitting is that a stream of
SSL records is separable into a data component and an
authenticator component. As long as the record stream
presented to the client has the correct format, the two
components can arrive at the proxy by different means.
In particular, a proxy can cache data components, avoid-
ing the need for the server to send the data in full for
every client.

While SSL splitting does not require changes to the
client software, it does require a specialized proxy and
modifications to the server software. The modified
server and proxy communicate using a new protocol that
encapsulates the regular SSL protocol message types
and adds two message types of its own.

3.1 SSL overview

The Secure Sockets Layer protocol provides end-to-end
mutual authentication and confidentiality at the transport
layer of stream-based protocols [7]. A typical SSL con-
nection begins with a handshake phase, in which the
server authenticates itself to the client and shared keys
are generated for the connection’s symmetric ciphers.
The symmetric keys generated for authentication are dis-
tinct from those generated for confidentiality, and the
keys generated for the server-to-client data stream are



12th USENIX Security Symposium USENIX Association 189

distinct from those generated from the client-to-server
stream.

After completing the handshake, the server and client ex-
change data asynchronously in both directions along the
connection. The data is split into records of 214 bytes
or less. For each record, the sender computes a Mes-
sage Authentication Code (MAC) using the symmetric
authentication keys; this enables the receiver to detect
any modification of the data in transit. SSL can provide
confidentiality as well as integrity: records may be en-
crypted using the shared symmetric encryption keys. Al-
though SSL generates the keys for both directions from
the same “master secret” during the handshake phase,
the two directions are subsequently independent: the
client or server’s outgoing cipher state depends only on
the previous records transmitted by that party.

3.2 Interposing a proxy

To access a site using SSL splitting, a Web browser
must connect to a proxy using HTTP over SSL/TLS
(HTTPS [18]). The server may have redirected the client
to the proxy via any mechanism of its choice, or the
proxy may have already been on the path between the
browser and the server.

The proxy relays the client’s connection setup messages
to the server, which in turn authenticates itself to the
client via the proxy. Once the SSL connection is set
up, the server starts sending application data: for each
record, it sends the message authentication code (MAC)
along with a short unique identifier for the payload. (See
Figure 2.) Using the identifier, the proxy looks up the
payload in its local cache, splices this payload into the
record in place of the identifier, and relays this recon-
structed record to the client. The client verifies the in-
tegrity of the received record stream, which is indistin-
guishable from the stream that would have been sent by
a normal SSL server.

Since SSL is resistant to man-in-the-middle attacks, and
the proxy is merely a man-in-the-middle with respect to
the SSL handshake, the SSL authentication keys are se-
cret from the proxy. Only the server and the client know
these keys, which enable them to generate and verify the
authentication codes protecting the connection’s end-to-
end integrity and freshness.

3.3 Proxy-server protocol extensions

When a client initiates an HTTPS connection to an SSL-
splitting proxy, the proxy immediately connects to the

SSL Records

MACs

Payloads

Figure 2: Decomposition of an SSL stream into authen-
ticators and payloads. The striped box represents the
SSL handshake, which is handled by the server. The
shaded boxes represent authenticators, while the white
boxes represent payloads.

server using the specialized proxy-server protocol. This
protocol defines three message types. The first type
of message, verbatim, is a regular SSL record, passed
transparently through the proxy from the client to the
server, or vice versa. The second type of message, stub,
is a compact representation of an SSL record: it con-
tains a MAC authenticator and a short unique identifier
for the payload. The third type of message, key-expose,
communicates an encryption key from the server to the
proxy.

When the proxy receives SSL records from the client,
it forwards them directly to the server using the verba-
tim message. The server, however, may choose to com-
press the data it sends by using the stub message format.
When the proxy receives such a message from the server,
it looks up the data block identified by the message in its
local cache. It then reconstructs a normal SSL record
by splicing the MAC authenticator from the stub record
together with the payload from the cache, and forwards
the resulting valid SSL record to the client.

3.4 Dropping the encryption layer

A proxy can properly forward stub messages only if it is
able to encode the resulting normal SSL records. If the
client and server use SSL with its end-to-end encryption
layer enabled, however, the proxy cannot send validly
encrypted messages. End-to-end encryption inherently
foils caching, because a proxy will not be able to de-
termine when the same data is downloaded by differ-
ent clients. Therefore, to achieve bandwidth compres-
sion, confidentiality—with respect to the proxy—must
be abandoned.

The correct way to eliminate SSL’s encryp-
tion layer is to negotiate, during the handshake
phase, an authentication-only cipher suite such as
SSL RSA WITH NULL SHA; this is usually done with
a Web server configuration setting. When such a cipher



12th USENIX Security Symposium USENIX Association190

suite is in use, no confidentiality is provided for SSL
records sent in either direction; only data authentication
is provided.

Unfortunately, this straightforward approach does not
achieve full compatibility with the existing installed
client base, because current versions of many popular
Web browsers, such as Netscape and Internet Explorer,
ship with authentication-only cipher suites disabled. The
SSL splitting protocol provides a work-around for this
problem, which can be enabled by the server adminis-
trator. If the option is enabled and a client does not of-
fer an authentication-only cipher suite, the server simply
negotiates a normal cipher suite with the client, and then
intentionally exposes the server-to-client encryption key
and initialization vector (IV) to the proxy using the key-
expose message.

SSL computes the encryption key, IV, and MAC key
as independent pseudo-random functions (PRF) of the
master secret. Because SSL uses different PRFs for each
key, revealing the cipher key and IV to the proxy does
not endanger the MAC key or any of the client-to-server
keys [19, p. 165]. Hence, key-expose preserves the data-
authentication property.

When the key-expose feature is turned on and an en-
crypted cipher suite is negotiated, the client-to-server en-
cryption keys are withheld from the proxy; thus, it would
be possible to develop an application in which the infor-
mation sent by a client was encrypted, while the content
returned by the server was unencrypted and cacheable by
the proxy. However, unless the application is carefully
designed, there is a danger of leaking sensitive data in
the server’s output, and so we do not recommend the use
of SSL splitting in this mode without very careful con-
sideration of the risks.

If necessary, an application can restrict the set of hosts
with access to the cleartext to the client, the server, and
the proxy, by encrypting the proxy-server connection.
For example, one could tunnel the proxy-server connec-
tion through a (normal) SSL connection. Of course, this
feature would be useful only in applications where the
proxy can be trusted not to leak the cleartext, intention-
ally or not; as above, we do not recommend this mode
of operation.

3.5 Server-proxy signaling

SSL splitting does not mandate any particular cache co-
herency mechanism, but it does affect the factors that
make one mechanism better than another. In particu-
lar, caching with SSL splitting is at the SSL record level

rather than at the file level. In theory, a single file could
be split up into records in many different ways, and this
would be a problem for the caching mechanism; how-
ever, in practice, a particular SSL implementation will
always split up a given data stream in the same way.

Deciding which records to encode as verbatim records
and which to encode as stub records can be done in
two ways. The server can remember which records are
cached on each proxy, and consult an internal table when
deciding whether to send a record as a stub. However,
this has several disadvantages. It places a heavy burden
on the server, and does not scale well to large numbers
of proxies. It does not give the proxies any latitude in
deciding which records to cache and which to drop, and
proxies must notify the server of any changes in their
cached set. Finally, this method does not give a clear
way for the proxies to initialize their cache.

Our design for SSL splitting uses a simpler and more
robust method. The server does not maintain any state
with respect to the proxies; it encodes records as ver-
batim or stub without regard to the proxy. If the proxy
receives a stub that is not in its local cache, it triggers
a cache miss handler, which uses a simple, HTTP-like
protocol to download the body of the record from the
server. Thus, the proxies are self-managing and may de-
fine their own cache replacement policies. This design
requires the server to maintain a local cache of recently-
sent records, so that it will be able to serve cache miss
requests from proxies. Although a mechanism similar to
TCP acknowledgements could be used to limit the size
of the server’s record cache, a simple approach that suf-
fices for most applications is to pin records in the cache
until the associated connection is terminated.

The cache-miss design permits the server to use an ar-
bitrary policy to decide which records to encode as stub
and hence to make available for caching; the most ef-
ficient policy depends on the application. For HTTPS
requests, an effective policy is to cache all application-
data records that do not contain HTTP headers, since the
headers are dynamic and hence not cacheable. Most of
the records in the SSL handshake contain dynamic ele-
ments and hence are not cacheable; however, the server’s
certificates are cacheable. Caching the server certificates
has an effect similar to that of the “fast-track” optimiza-
tion described in [22], and results in an improvement in
SSL handshake performance. This caching is especially
beneficial for requests of small files, where the latency
is dominated by the SSL connection time.

Since the stub identifier is unique and is not reused, there
is no need for a mechanism to invalidate data in the



12th USENIX Security Symposium USENIX Association 191

cache. When the file referenced by an URL changes,
the server sends a different stream of identifiers to the
proxy, which does not know anything about the URL at
all. In contrast, normal cachingWeb proxies [24] rely on
invalidation timeouts for a weak form of consistency.

4 Implementation

Our implementation of SSL splitting consists of a self-
contained proxy module and a patched version of the
OpenSSL library, which supports SSL version 3 [7] and
Transport Layer Security (TLS) [4].

4.1 Server: modified OpenSSL

We chose to patch OpenSSL, rather than developing our
own protocol implementation, to simplify deployment.
Any server that uses OpenSSL, such as the popular Web
server Apache, works seamlessly with the SSL splitting
protocol. In addition, the generic SSLizing proxy STun-
nel, linked with our version of OpenSSL, works as an
SSL splitting server: using this, one can set up SSL split-
ting for servers that don’t natively understand SSL. This
allows SSL splitting to be layered as an additional access
method on top of an existing network resource.

Our modified version of OpenSSL intercepts the record-
encoding routine do ssl write and analyzes outgo-
ing SSL records to identify those that would benefit from
caching. Our current implementation tags non-header
application-data records and server certificate records, as
described in Section 3.5.

Records that are tagged for caching are hashed to pro-
duce a short digest payload ID, and the bodies of these
records are published to make them available to prox-
ies that do not have them cached. While publishing may
take many application-specific forms, our implementa-
tion simply writes these payloads into a cache directory
on the server; a separate daemon process serves this di-
rectory to proxies.

Records that are not tagged for caching use the literal
payload “ID” encoding. Whether or not the record is
tagged for caching, the library encodes the record as a
stub message; this design choice simplifies the code.

Because the server may have to ship its encryption key
and IV to the proxy, the modified OpenSSL library
contains additional states in the connection state ma-
chine to mediate the sending of the key-expose message.
The server sends this message immediately after any
change cipher spec record, since at this point the
connection adopts a new set of keys.

4.2 Proxy

The proxy is simple: it forks off two processes to for-
ward every accepted connection. It is primarily written
in OO Perl5, with the performance-critical block cipher
and CBCmode implementation in C. The proxy includes
a pluggable cache hierarchy: when a cache lookup for
a payload ID fails, it can poll outside sources, such as
other proxies, for the missing data. If all else fails, the
server itself serves as an authority of last resort. Only
if none of these have the payload will the proxy fail the
connection.

The proxy could also replace verbatim messages from
the client to the server with stub messages to avoid send-
ing the complete request to the server. Because the
client’s data consists primarily of HTTP GET requests,
however, which are already short and are not typically
repeated, our current proxy doesn’t do so. In the future,
though, we may explore a proxy that compresses HTTP
headers using stub messages.

4.3 Message formats

Figures 3 and 4 show the format of verbatim and stub
message in the same notation as the SSL specification.
The main difference between verbatim and stub is that in
stub the payload is split into a compact encoding of the
data and a MAC authenticator for the data. Also, a stub
record is never encrypted, since the proxy would have to
decrypt it anyway in order to manipulate its contents.

We have defined two types of encoding for the payload.
The literal encoding is the identity function; this encod-
ing is useful for software design reasons, but is function-
ally equivalent to a verbatim SSL record.

The digest encoding is a SHA-1 [5] digest of the payload
contents. This encoding provides effectively a unique
identifier that depends only on the payload. This choice
is convenient for the server, and allows the proxy to store
payloads from multiple independent servers in a single
cache without concern about namespace collisions.

There are many alternative ID encodings possible with
the given stub message format; for example, a simple
serial number would suffice. The serial number, how-
ever, has only small advantages over a message digest.
A serial number is guaranteed to be unique, unlike a di-
gest. On the other hand, generating serial numbers re-
quires servers to maintain additional state, and places an
onus upon proxies to separate the caches corresponding
to multiple servers; both of these result in greater com-
plexity than the digest encoding.



12th USENIX Security Symposium USENIX Association192

enum { ccs(0x14), alert(0x15), handshake(0x16), data(0x17) } ContentType;
struct {
ContentType content_type; one byte long
uint8 ssl_version[2];
opaque encrypted_data_and_mac<0..2ˆ14+2048>;

includes implicit 2-byte length field
} VerbatimMessage;

Figure 3: Format of a verbatim SSL record.

enum { s_ccs(0x94), s_alert(0x95), s_handshake(0x96), s_data(0x97) } StubContentType;
enum { literal(1), digest(2), (2ˆ16-1) } IDEncoding;
struct {
StubContentType content_type; = verbatim.content_type | 0x80
uint8 ssl_version[2];
uint16 length; = 6 + length(id) + length(mac)
IDEncoding encoding;
opaque id<0..2ˆ14+2048>;
opaque mac<0..2ˆ14+2048>;

} StubMessage;

Figure 4: Format of a stub message.

Another alternative is to use as the encoding a com-
pressed representation of the payload. While this choice
would result in significant savings for text-intensive
sites, it would not benefit image, sound, or video files
at all, since most media formats are already highly com-
pressed. For this reason, we have not implemented this
feature.

The key-expose message is used to transmit the server
encryption key and IV to the proxy (see Figure 5), if this
feature is enabled. In our implementation, stub records
are sent in the clear to the proxy, which encrypts them
before sending them to the client.

5 Cooperative Web caching using SSL
splitting

Using SSL splitting, we have developed Barnraising,
a cooperative Web caching system consisting of a dy-
namic set of “volunteer” hosts. The purpose of this sys-
tem is to improve the throughput of bandwidth-limited
Web servers by harnessing the resources of geographi-
cally diverse proxies, without trusting those proxies to
ensure that the correct data is served.

5.1 Joining and leaving the proxy set

Volunteers join or leave the proxy set of a site by con-
tacting a broker server, which maintains the volunteer

database and handles redirecting client requests to vol-
unteers.

Volunteer hosts do not locally store any configura-
tion information, such as the SSL splitting server’s
address and port number. These parameters are
supplied by the broker in response to the vol-
unteer’s join request, which simply specifies an
identifying URI of the form barnraising://
broker.domain.org/some/site/name.

This design enables a single broker to serve any number
of Barnraising-enabled Web sites, and permits users to
volunteer for a particular site given only a short URI for
that site. Since configuration parameters are under the
control of the broker, they can be changed without man-
ually reconfiguring all proxies, allowing sites to upgrade
transparently.

The broker represents a potential bottleneck for the sys-
tem, and it could be swamped by a large number of si-
multaneous join or leave requests. However, since the
join/leave protocol is lightweight, this is unlikely to be a
performance issue under normal operating conditions. If
the load incurred by requests is high compared to the ac-
tual SSL splitting traffic, the broker can simply rate-limit
them until the proxy set stabilizes at a smaller size.

5.2 Redirection

Barnraising currently employs the DNS redirection
method [11], but could be modified to support other



12th USENIX Security Symposium USENIX Association 193

enum { key_expose(0x58) } KeyExposeContentType;
struct {
KeyExposeContentType content_type;
uint8 ssl_version[2];
uint16 length; = 4 + length(key) + length(iv)
opaque key<0..2ˆ14+2048>;
opaque iv<0..2ˆ14+2048>;

} KeyExposeMessage;

Figure 5: Format of key-expose message.

Server

Client

Proxies
Broker

Figure 6: Proxy set for a site using Barnraising.

techniques, such as URL rewriting [10, 1]. Barnraising’s
broker controls a mysql [16] database, from which a
mydns [15] server processes DNS requests.

Consider a client resolving an URL https://
www.domain.org/foo/. If www.domain.org is
using Barnraising, the DNS server for domain.org is
controlled by the broker, which will resolve the name to
the IP address of a volunteer proxy.

We chose redirection using DNS because it maintains
HTTPS reference integrity — that is, it guarantees that
hyperlinks in HTML Web pages dereference to the in-
tended destination pages. HTTPS compares the host-
name specified in the https URL with the certificate
presented by the server. Therefore, when a client con-
tacts a proxy via a DNS name, the certificate presented
to the client, by the server, via the proxy, must match
the domain name. When DNS redirection is used, the
domain name will be of the form www.domain.org,
and will match the domain name in the certificate.

5.3 Distributing the Web cache

The client will initiate an HTTPS connection to the
proxy, which will forward that request, using SSL split-
ting, to the server. Since frequently-accessed data will
be served out of the proxy’s cache, the central server’s
bandwidth usage will be essentially limited to the SSL
handshake, MAC stream, and payload IDs.

To increase the set of cached payloads available to a
proxy, while decreasing the local storage requirements,
proxies could share the cache among themselves. In
this design, volunteer nodes would join a wide-area Dis-
tributed Hash Table (DHT) [3] comprising all of the vol-
unteers for a given Web site. When lookups in the local
cache fail, nodes could attempt to find another volunteer
with the desired data item by looking for the data in the
DHT. If that fails too, the proxy would contact the cen-
tral server.

Blocks in the DHT are named by the same cryptographic
hash used for stub IDs. This decision allows correctly-
operating volunteers to detect and discard any invalid
blocks that a malicious volunteer might have inserted in
the DHT.

5.4 Deploying Barnraising

Barnraising is designed to be initially deployed as a
transparent layer over an existing Web site, and incre-
mentally brought into the core of the Web server. Us-
ing STunnel linked with our patched OpenSSL library,
an SSL splitting server that proxies an existing HTTP
server can be set up on the same or a different host; this
choice allows Barnraising to be tested without disrupt-
ing existing services. If the administrator later decides
to move the SSL splitting server into the core, he can
use Apache linked with SSL-splitting OpenSSL.

The broker requires a working installation of mysql and
mydns; since it has more dependencies than the server,
administrators may prefer to use an existing third-party



12th USENIX Security Symposium USENIX Association194

10 B 100 B 1 KB 10 KB 100 KB 1 MB 10 MB
File size (bytes) 

0.01

0.1

1

10

100

1000
B

an
dw

id
th

 e
ff

ic
ie

nc
y 

(t
hr

ou
gh

pu
t /

 b
an

dw
id

th
)

HTTP
HTTPS
Cold cache
Warm cache

Figure 7: Ratio of throughput achieved to bandwidth
used, when retrieving a single file from the server.

broker while testing Barnraising. This choice brings the
third party into the central trust domain of the server;
much like a traditional mirror, it is a role which can only
be filled by a reputable entity.

The utility of Barnraising will be limited by the volun-
teer proxies that join it. Therefore, the proxy software
has been designed to be simple to install and use, re-
quiring only a single URI to configure. Since volun-
teers will be able to download from each other, they
will have better performance than regular clients, giving
users an incentive to install the software. In the long
term, we hope to incorporate more efficient authenti-
cation schemes, such as SFSRO [8], into the volunteer
code, using the installed base of SSL splitting software
to bootstrap the more technically sophisticated systems.

6 Evaluation

This section presents microbenchmarks and trace-based
experiments to test the effectiveness and practicality of
SSL splitting. The results of these experiments demon-
strate that SSL splitting decreases the bandwidth load on
the server, and that the performance with respect to un-
cached files is similar to vanilla SSL.

6.1 General experimental setup

For the experiments we used the Apache web server
(version 1.3.23), linked with mod ssl (version 2.8.7),

10 B 100 B 1 KB 10 KB 100 KB 1 MB 10 MB
File size (bytes) 

0.1

1

10

100

1000

Sa
vi

ng
s 

fa
ct

or

Savings over HTTP
Savings over HTTPS

Figure 8: Bandwidth savings of SSL splitting over
HTTP and HTTPS.

and OpenSSL (version 0.9.6), running under Linux
2.4.18 on a 500 MHz AMD K6. This server’s network
connection is a residential ADSL line with a maximum
upstream bandwidth of 160 kbps. The client was a cus-
tom asynchronous HTTP/HTTPS load generator written
in C using OpenSSL, running under FreeBSD 4.5 on
a 1.2 GHz Athlon. The proxy, when used, ran under
FreeBSD 4.5 on a 700 MHz Pentium III. Both the client
and the proxy were on a 100 Mbps LAN, with a 100
Mbps uplink.

6.2 Bandwidth savings for a single file

Since SSL splitting caches files at the record level, and
a cached record costs a fixed amount to transmit, we
would expect the compression level to depend on the
file size. A series of short microbenchmarks consisting
of a single file download confirms that SSL splitting is
far more effective at caching large files than small files.
Figure 7 shows the bandwidth efficiency, calculated as
the ratio of file throughput to bandwidth consumption,
of HTTP, HTTPS, uncached SSL splitting, and cached
SSL splitting. (The dotted line at 1 represents the the-
oretical performance of an ideal non-caching protocol
with zero overhead.)

Figure 8 shows this data as the “savings factor”, the ratio
of bandwidth consumed by SSL splitting (with a warm
cache) to that consumed by HTTP or HTTPS to transmit
the same file. For 100-byte files, plain HTTP has about
one-third the cost of SSL splitting, since the bandwidth



12th USENIX Security Symposium USENIX Association 195

1 B 10 B 100 B 1 KB 10 KB 100 KB 1 MB
Request download size (bytes) 

0.0

0.2

0.4

0.6

0.8

1.0

www.lcs (10 MB)
www.lcs (full)
amsterdam (10 MB)
amsterdam (full)

Figure 9: CDF of request sizes in www.lcs and
amsterdam traces.

cost for small files is dominated by connection setup; on
the other hand, for one-megabyte files, SSL splitting has
a bandwidth savings of 99.5% over HTTP.

There are two artifacts evident in these graphs. They
show a sharp curve upward at the 3,000 byte point; the
reason for this artifact is that Apache sends all of the
HTTP headers and file data in a single SSL record for
files smaller than roughly 4,000 bytes, but sends the
HTTP headers in a separate record from the file data for
larger files. There is also a sharp performance drop be-
tween 3 megabytes and 10 megabytes: this is because,
for files larger than 222 bytes, Apache sends the file data
in records of 8,192 bytes, instead of the maximum record
size of 16,384 bytes.

6.3 Bandwidth savings for trace-driven loads

The next set of experiments uses traces from two Web
servers to evaluate SSL splitting on realistic workloads.

6.3.1 Web trace files

The Web traces were derived from several-month
access.log files taken from two depart-
mental Web servers, www.lcs.mit.edu and
amsterdam.lcs.mit.edu. To convert the access
logs into replayable traces, all non-GET, non-status-200

queries were filtered out, URLs were canonicalized, and
every (URL, size) pair was encoded as a unique URL.
The server tree was then populated with files containing
random bytes.

The www.lcs trace, which is seven months long, con-
tains 109 GB of downloads from a server with 10.6 GB
of files; the amsterdam trace, which is nine months
long, contains 270 GB of downloads from 77 GB of
files. Analyzing randomly-chosen chunks of various
lengths from www.lcs showed that most repetition is
long-term: a day’s trace (typically about 100 MB of data
transfer) has a repetition factor which varies between 1.5
and 3, while a month is compressible by about a factor
of 4, and the whole trace is compressible by a factor of
10. This data suggests that having proxies keep blocks
around for a long time will pay off, and supports a de-
sign in which proxies are organized into a DHT, since
this allows them to store more unique blocks for a longer
period of time.

To keep running experiments manageable over an ADSL
line, we selected a typical daytime chunk representing
approximately 10 MB of transfers from each trace. Fig-
ure 9 shows the distribution of request sizes in each
trace chunk, along with the distribution in the full traces.
The www.lcs chunk represents 4.43 MB of files and
10.0 MB of transfers, for an inherent compressibil-
ity factor of 2.26; the amsterdam chunk represents
8.46 MB of files and 11.6 MB of transfers, for an in-
herent compressibility factor of 1.37.

None of our experiments placed any limits on the size of
the proxy’s cache, since it seems reasonable for a mirror
host (or DHT) to store a full copy of a 10–70 GB Web
site. In the future, we plan to investigate the impact of
the size of the cache on SSL splitting’s performance.

6.3.2 Measurements

Ideally, SSL splitting’s bandwidth utilization should be
close to the inherent compressibility of the input trace.
To test this, we played back the two 10 MB trace chunks
to a standard HTTP server, a standard HTTPS server,
an SSL splitting proxy with a cold cache, and an SSL
splitting proxy with a warm cache; in each case, we
measured the total number of bytes sent on the server’s
network interface. The resulting bandwidth usage ratios
(measured in bytes of bandwidth used per bytes of file
throughput) are shown as the gray bars in Figures 10
and 11. (The other bars are explained later in this sec-
tion.)



12th USENIX Security Symposium USENIX Association196

HTTP HTTPS Ideal
cold cache

SSL splitting
cold cache

SSL splitting
warm cache

0.0

0.5

1.0

1.5

1.0
6 1.1

3

0.5
2

0.1
0

1.0
6 1.1

3

0.4
4 0.5

6

0.1
0

1.0
5 1.1

0

0.1
0 0.1

8

0.0
8

10 MB: measured
10 MB: simulated
Full: simulated

Figure 10: Bandwidth usage: www.lcs trace.

HTTP HTTPS Ideal
cold cache

SSL splitting
cold cache

SSL splitting
warm cache

0.0

0.5

1.0

1.5

1.0
5 1.1

2

0.8
4

0.1
1

1.0
6 1.1

2

0.7
1 0.8

4

0.1
1

1.0
4

1.0
7

0.2
8 0.3

4

0.0
5

10 MB: measured
10 MB: simulated
Full: simulated

Figure 11: Bandwidth usage: amsterdam trace.

As expected, SSL splitting with a cold cache achieves
a compression ratio of 2.04 on www.lcs and 1.25 on
amsterdam, with respect to HTTP; the compression
is about 5% more with respect to HTTPS, very close
to the inherent redundancy. If the cache is warmed
before running the trace, the compression ratio is ap-
proximately a factor of 11 for www.lcs and 10 for
amsterdam. Analysis of the portions of the trace file
preceding the www.lcs chunk indicate that if the pre-
vious two weeks had been cached by the proxy, the
cache would have been approximately 90% warm. The
amsterdam chunk is too close to the beginning of the
trace to perform this analysis.

6.3.3 Simulations

The 10 MB trace chunks used in our experiments span
only a few hours each; thus, they might not be represen-
tative of Web site traffic over long periods. In addition,
the short chunks do not contain as high a degree of rep-
etition as the long traces.

Since it is impractical to replay a several-month-long
trace from a busyWeb site over an ADSL link, we turned
to simulation to estimate the likely performance of SSL
splitting over long periods. Based on the data collected
in the single-file microbenchmark, we constructed a sim-
ple linear model of the performance of HTTP, HTTPS,

and SSL splitting in the uncached case: the bandwidth
used is a fixed per-file cost plus a marginal per-byte cost.
The marginal cost is slightly greater than one because of
packet and record overhead.

We model the cost of SSL splitting (in the cached case)
as a piecewise linear function: for files smaller than
4,000 bytes, the marginal cost is greater than one, but for
larger files, the marginal cost per byte is very small, ap-
proximately 1/250. The marginal cost increases to about
1/120 for files larger than 222 bytes.

This simple performance model fits the microbenchmark
results to within 5%. In addition, to validate the model,
we simulated each experiment with 10 MB trace chunks.
The simulated results, shown as the white bars in Fig-
ures 10 and 11, agree very closely with the measured
results.

The results of simulating the full traces, shown as the
striped bars, demonstrates that SSL splitting can take ad-
vantage of most of the available redundancy. For exam-
ple, on the www.lcs trace, SSL splitting would have a
bandwidth savings of 83% over HTTP; an ideal proto-
col with zero overhead and perfect caching would save
90%.

6.4 Latency

When the proxy’s cache is cold, SSL splitting performs
similar work to regular SSL; thus, we expect their la-
tency characteristics to be similar. However, repetition
within the trace confuses the analysis of latency factors,
since cached files are faster to download than uncached
files. To address this issue, we filtered out repetitions
from the www.lcs trace chunk, and using the resulting
uncacheable trace, measured the start and end times of
each request. In order to avoid congestion effects, we
performed requests one at a time.

The resulting graph of latencies versus file size is shown
in Figure 12. It shows three clear lines, one for each
of HTTP, HTTPS, and cold SSL splitting. Cold SSL
splitting is about 10% faster than HTTPS for small file
sizes and about 10% slower than HTTPS for large file
sizes, but for the most part they are a close match: the
majority of file downloads had less than a 5% difference
between the two latencies.

7 Discussion

7.1 The implications of key exposure

The implementation of SSL splitting provides the op-
tion to accept clients using a cipher-suite with encryp-
tion, and to expose intentionally the encryption key to



12th USENIX Security Symposium USENIX Association 197

10 B 100 B 1 KB 10 KB 100 KB 1 MB 10 MB
File size (bytes) 

1e-02

1e-01

1e-00

1e+01

1e+02

1e+03
L

at
en

cy
 (s

ec
on

ds
)

HTTP (fit)
HTTPS (fit)
Cold cache (fit)
HTTP
HTTPS
Cold cache

Figure 12: Distribution of latencies vs. file sizes.

the proxy (see Section 3.4). Since the only indication
of security in most web browsers is a simple on/off lock
icon, there is a legitimate question of whether it is rea-
sonable to mislead clients about whether their communi-
cations with the server are encrypted and secure against
eavesdroppers. We expect that most applications of SSL
splitting will not have any Web forms, since it would
be pointless to try to cache dynamic content. How-
ever, a user browsing an URL beginning with https:
might reasonably believe that his browsing pattern was
not available to eavesdroppers; the only way to deal with
this is to notify the user in the text of the Web page.
In any case, normal SSL provides no guarantee that the
server will keep its transmissions private; SSL splitting
is merely equivalent to an SSL server which sends a car-
bon copy of all transmissions to a proxy.

7.2 Alternative proxy design

In the current design of the SSL splitting protocol,
the cache is a transparent forwarding proxy operating
at the level of SSL records. An alternative approach
would have been to have the client connect directly
to the server, and have the server compress its outgo-
ing stream by converting outgoing IP packets contain-
ing SSL records to stub records sent to the cache. The
cache would then reconstitute the IP packets and send
them to the client, forging the server’s IP address and
the TCP header. This approach would have the benefit
of reducing the number of round-trip packet flight times
from four to three, and would also permit the server to
“stripe” a connection with a single client across mul-
tiple caches. An additional benefit is that no DNS or

HTTP redirection technique would be necessary, since
the client’s transmissions would be directly to the server.
However, operating at the IP layer instead of the SSL
record layer is fraught with peril: operating system inter-
faces are nonstandard and unreliable, networks are likely
to black-hole forged packets, and TCP will not behave
properly. Also, such an approach risks creating an “open
relay” which could be used by malicious clients to hide
the source of a denial-of-service attack.

8 Related work

Caching and replication in the Web is a subject of much
study. Like content-distribution networks [12] and peer-
to-peer systems [17], the primary focus of Barnraising is
cooperatively sharing the load of serving data. The main
difference between Barnraising and previous work is the
use of SSL splitting, which allows Barnraising to serve
data securely through untrusted proxies to unmodified
clients.

8.1 Verifying integrity

The standard approach to providing integrity of data
is signing the cryptographic hash of the data with the
server’s private key (or with the private key of the data’s
owner). When the client receives the data and its sig-
nature (perhaps through different channels), it verifies
the integrity of the data by verifying the signature. This
solution is typically bundled in the client of a specific
application, which users must download to use the appli-
cation. RPM [25] and FreeNet [2] are among the many
applications that use this solution.

The system closest in spirit to Barnraising is read-only
SFS [8]. SFSRO allows secure distribution of soft-
ware bundles through untrusted machines. It provides a
generic file system interface, allowing unmodified appli-
cations to use SFSRO to distribute data securely. How-
ever, SFSRO requires that an SFS client runs on the
client machine, which restricts its deployment to SFS
users. On the other hand, unlike SSL splitting, the SF-
SRO server has to serve only the root block to clients,
and the computational requirements on the server, un-
trusted machines, and client are low.

The Secure HTTP (S-HTTP) [20] protocol contains
built-in support for caching proxies, in the form of the
“320 SHTTP Not Modified” response code. Like SSL
splitting, S-HTTP provides an end-to-end freshness and
integrity guarantee, but it also provides limited support
for confidentiality from the proxy. S-HTTP’s computa-
tional requirements are similar to SSL, and like SFSRO,
the deployment of this protocol is limited.



12th USENIX Security Symposium USENIX Association198

Untrusted surrogates [6] allow storage-limited clients
to cache data on nearby surrogate machines. A server
stores data on the surrogate on behalf of the client, and
sends the hash of the data to the client; hence, the client
can verify the integrity of data when retrieved from the
surrogate.

8.2 HTTPS proxies

WASP is a proxy for HTTPS connections [14]. Like
SSL splitting, it doesn’t require client changes, and de-
fines a separate protocol between proxy and server. Un-
like SSL splitting, WASP sends the SSL master secret to
the proxy. Since SSL uses the master secret to compute
the session keys for both encryption and authentication,
this solution puts considerably more trust in the proxy
than SSL splitting does. A malicious WASP proxy can
change the cached data without the client knowing it.

Proxy certificates [23] provides restricted impersonation
within an X.509 public-key infrastructure. A Web site
could generate a proxy certificate and hand it to a proxy.
The client can then verify the proxy certificate to de-
termine whether the proxy is trusted by the web site to
serve the data. Proxy certificates require client changes
to process the new X.509 certificate extensions fields.

8.3 Content distribution systems

Commercial content-distribution systems [12] own the
machines they use for serving data and therefore trust
them. When a client contacts a server with HTTPS via
a content-distribution network, the client must trust the
content-distribution network to authenticate the server.
If SSL splitting were used, the client itself could authen-
ticate the server; also, this would simplify the operation
of the content-distribution system.

Most of the content distribution systems based on
recently-developed, scalable lookup primitives [21, 13,
3] protect the integrity of data by identifying the data
by its cryptographic hash, but the clients must run spe-
cialized software to participate in those systems. Squir-
rel [9] doesn’t require special client software, but it
doesn’t provide data integrity. These systems comple-
ment Barnraising by providing it with good techniques
for organizing the proxies.

9 Summary

SSL splitting is a novel technique for safely distributing
the network load on Web sites to untrusted proxies with-
out requiring modifications to client machines. How-
ever, because SSL splitting is effective only at reducing

bandwidth consumption when the proxy has access to
the plaintext of the connection, it is not appropriate for
applications that require confidentiality with respect to
the proxy. In addition, SSL splitting incurs a CPU load
on the central server due to public-key cryptography op-
erations; it does not address the issue of distributing this
load.

The main benefits of SSL splitting are that it provides
an end-to-end data-integrity guarantee to unmodified
clients, that it reduces the bandwidth consumed by the
server, and that it requires only a simple protocol be-
tween the server and the proxy. Experiments with a
modified OpenSSL library that supports SSL splitting
show significant bandwidth savings for files larger than
4,000 bytes: when the data of a file is cached on the
proxy, the server need only transmit the SSL handshake
messages, HTTP header, MAC stream, and payload IDs.
Because of these advantages and the ease of deployment,
we hope that SSL splitting will form a convenient tran-
sition path for content-distribution systems to provide
end-to-end data integrity.

10 Acknowledgements

We thank David Anderson, Russ Cox, Kevin Fu,
Thomer Gil, Jacob Strauss, Richard Tibbetts, the
anonymous reviewers, the members of the MIT SIPB,
and the members of the PDOS group at MIT. Also,
thanks to the denizens of TOE, Noah Meyerhans, and
the www.lcs.mit.edu webmasters, for making our
measurements possible.

More information on SSL splitting and Barnraising
can be found at http://pdos.lcs.mit.edu/
barnraising/ .

References

[1] CAIN, B., BARBIR, A., NAIR, R., AND SPATSCHECK,
O. Known CN request-routing mechanisms. draft-
ietf-cdi-known-request-routing-02.txt, Network Working
Group, November 2002.

[2] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG,
T. W. Freenet: A distributed anonymous informa-
tion storage and retrieval system. In Proc. ICSI Work-
shop on Design Issues in Anonymity and Unobserv-
ability (Berkeley, California, June 2000). http://
freenet.sourceforge.net.

[3] DABEK, F., KAASHOEK, M. F., KARGER, D., MOR-
RIS, R., AND STOICA, I. Wide-area cooperative storage
with CFS. In Proc. 18th ACM Symposium on Operating
Systems Principles (SOSP ’01) (Oct. 2001).



12th USENIX Security Symposium USENIX Association 199

[4] DIERKS, T., AND RESCORLA, E. The TLS protocol ver-
sion 1.1. draft-ietf-tls-rfc2246-bis-04.txt, NetworkWork-
ing Group, April 2003.

[5] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/N.I.S.T., National Technical Information Ser-
vice, Springfield, VA, April 1995.

[6] FLINN, J., SINNAMAHIDEE, S., AND SATYA-
NARAYANAN, M. Data staging on untrusted surrogates.
Tech. Rep. IRP-TR-02-2, Intel Research, May 2002.

[7] FREIER, A. O., KARLTON, P., AND KOCHER, P. C.
The SSL protocol version 3.0. Internet draft (draft-freier-
ssl-version3-02.txt), Network Working Group, Novem-
ber 1996. Work in progress.

[8] FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. Fast
and secure distributed read-only file system. ACM Trans-
actions on Computer Systems 20, 1 (February 2002), 1–
24.

[9] IYER, S., ROWSTRON, A., AND DRUSCHEL, P. Squir-
rel: A decentralized, peer-to-peer web cache. In 21st
ACM Symposium on Principles of Distributed Comput-
ing (PODC 2002) (July 2002).

[10] JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L.,
KAASHOEK, M. F., AND O’TOOLE, JR., J. W. Over-
cast: Reliable multicasting with an overlay network. In
Proc. of the 4th OSDI (Oct. 2002), pp. 197–212.

[11] KARGER, D., LEIGHTON, T., LEWIN, D., AND SHER-
MAN, A. Web caching with consistent hashing. In
The eighth Word Wide Web Conference (Toronto, Canada,
May 1999).

[12] KRISHNAMURTHY, B., WILLS, C., AND ZHANG, Y.
On the use and performance of content distribution net-
works. Tech. Rep. TD-52AMHL, ATT Research Labs,
Aug. 2001.

[13] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWIN-
SKI, S., EATON, P., GEELS, D., GUMMADI, R., RHEA,
S., WEATHERSPOON, H., WEIMER, W., WELLS, C.,
AND ZHAO, B. OceanStore: An architecture for global-
scale persistent storage. In Proceeedings of the Ninth in-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
2000) (Boston, MA, November 2000), pp. 190–201.

[14] MODADUGU, N., AND GOH, E.-J. The design
and implementation of WASP: a wide-area secure
proxy. Tech. rep., Stanford, Oct. 2002. http:/
/crypto.stanford.edu/˜eujin/papers/
wasp.ps.

[15] MOORE, D. MyDNS. http://mydns.bboy.net/.

[16] MYSQL AB. MySQL database server. http://
www.mysql.com/.

[17] ORAM, A., Ed. Peer-to-peer: Harnessing the power of
disruptive technologies. O’Reilly, Mar. 2001.

[18] RESCORLA, E. HTTP over TLS. RFC 2818, Network
Working Group, May 2000.

[19] RESCORLA, E. SSL and TLS. Addison-Wesley, 2001.

[20] RESCORLA, E., AND SCHIFFMAN, A. The Secure Hy-
perText Transfer Protocol. RFC 2660, Network Working
Group, 1999.

[21] ROWSTRON, A., AND DRUSCHEL, P. Storage manage-
ment and caching in PAST, a large-scale, persistent peer-
to-peer storage utility. In Proc. 18th ACM Symposium on
Operating Systems Principles (SOSP ’01) (Oct. 2001).

[22] SHACHAM, H., AND BONEH, D. Fast-track session
establishment for TLS. In Proceedings of NDSS (Feb.
2002), M. Tripunitara, Ed., Internet Society, pp. 195–
202. http://hovav.net/.

[23] TUCKE, S., ENGERT, D., FOSTER, I., WELCH, V.,
THOMPSON, M., PEARLMAN, L., AND KESSELMAN,
C. Internet x.509 public key infrastructure proxy cer-
tificate profile. Internet draft (draft-ietf-pkix-proxy-
03), Network Working Group, October 2002. Work in
progress.

[24] WESSELS, D. Squid internet object cache. http://
squid.nlanr.net/Squid/.

[25] WWW.RPM.ORG. RPM software packaging tool.
http://www.rpm.org/.


