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Lessons Learned in Implementing and Deploying Crypto Software

Peter Gutmann
University of Auckland

Abstract

Although the basic building blocks for working with
strong encryption have become fairly widespread in the
last few years, experience has shown that implementers
frequently misuse them in a manner which voids their
security properties. At least some of the blame lies
with the tools themselves, which often make it
unnecessarily easy to get things wrong. Just as no
chainsaw manufacturer would think of producing a
model without a finger-guard and cutoff mechanism, so
security software designers need to consider safety
features which will keep users from injuring themselves
or others. This paper examines some of the more
common problem areas which exist in crypto security
software, and provides a series of design guidelines
which can help minimise damage due to (mis-)use by
inexperienced users. These issues are taken from
extensive real-world experience with users of security
software, and represent areas which frequently cause
problems when the software is employed in practice.

1. Introduction

In the last five years or so the basic tools for strong
encryption have become fairly widespread, gradually
displacing the snake oil products which they had shared
the environment with until then. As a result, it’s now
fairly easy to obtain software which contains well-
established, strong algorithms such as triple DES and
RSA instead of pseudo one-time-pads. Unfortunately,
this hasn’t solved the snake oil problem, but has merely
relocated it elsewhere.

The determined programmer can produce
snake oil using any crypto tools.

What makes the new generation of dubious crypto
products more problematic than their predecessors is
that the obvious danger signs which allowed bad crypto
to be quickly weeded out are no longer present. A
proprietary, patent-pending, military-strength, million-
bit-key, one-time pad built from encrypted prime cycle
wheels is a sure warning sign to stay well clear, but a
file encryptor which uses Blowfish with a 128-bit key
seems perfectly safe until further analysis reveals that
the key is obtained from an MDS5 hash of an uppercase-
only 8-character ASCII password. This type of second-
generation snake oil crypto, which looks like the real
thing but isn’t, could be referred to as naugahyde

crypto, with an appropriately similar type of
relationship to the real thing.

Most crypto software is written with the assumption
that the user knows what they’re doing, and will choose
the most appropriate algorithm and mode of operation,
carefully manage key generation and secure key
storage, employ the crypto in a suitably safe manner,
and do a great many other things which require fairly
detailed crypto knowledge. However, since most
implementers are everyday programmers whose
motivation for working with crypto is defined by “the
boss said do it”, the inevitable result is the creation of
products with genuine naugahyde crypto. Sometimes
this is discovered (for example when encryption keys
are generated from the process ID and time, or when
the RC4 keystream is re-used multiple times so the
plaintext can be recovered with a simple XOR), but
more frequently it isn’t, so that products providing only
illusory security may be deployed and used for years
without anyone being any the wiser.

This paper looks at some of the ways in which crypto
software developers and providers can work to avoid
creating and deploying software which can be used to
create naugahyde crypto. Much of the experience
presented here comes from developing and supporting
the open-source cryptlib toolkit [1][2], which has
provided the author with a wealth of information on the
ways in which crypto software is typically misused, and
the principal areas in which users experience problems.
Additional feedback was provided from users and
developers involved with other open-source crypto
efforts.

All of the events reported here are from real
experiences with users, although the details have been
obscured and anonymised, particularly where the users
in question have more lawyers than the author’s
University has staff. In addition a few of the more
interesting stories were excluded, but are referred to
indirectly in the text (although no-one would have been
able to identify the organisations involved, it was felt
that having the event officially documented rather than
existing only in the memory of a few implementers was
too much of a legal liability). Although there are less
references to sources than the author usually includes in
his work, the reader should rest assured that all of the
events mentioned here are real, and it’s almost certain
that they have either used, or been a part of the use of,
one or more of the products which are not quite referred
to.



2. Existing Work

There exists very little published research on the topic
of proactively ensuring that crypto is used in a secure
manner, as opposed to patching programs up after a
problem is found. Most authors are content to present
the algorithms and mechanisms and leave the rest to the
implementer. An earlier work on why cryptosystems
fail concentrated mostly on banking security [3][4], but
did make the prophetic prediction that as implementers
working with crypto products “lack skills at security
integration and management, they will go on to build
systems with holes”.

Another paper examined user interface problems in
encryption software [5], an area which badly needs
further work by HCI researchers. Finally, the author of
a widely-used book on crypto went on to write a
followup work designed to address the problem that
“the world was full of bad security systems designed by
people who read [his first book]” [6]. Like the author
of this paper, he found that “the weak points had
nothing to do with mathematics [...] Beautiful pieces of
mathematics were made irrelevant through bad
programming”’. The followup work examines security
in a very general-purpose manner as a process rather
than a product, while this paper limits itself to trying to
address the most commonly-made errors which occur
when non-cryptographers (mis-)apply crypto.

In addition to these works there exist a number of
general-purpose references covering security issues
which can occur during application design and
implementation [7][8][9]. These are targeted at
application developers and are intended to cover (and
hopefully eliminate) common application security
problems such as buffer overflows, race conditions,
elevation of privileges, access control issues, and so on.
This work in contrast looks specifically at problems
which occur when end users (mis-)use security
software, and suggests design guidelines which can
help combat such misuse.

3. Crypto Software Problems and Solutions

There are many ways in which crypto and security
software can be misused. The main body of this paper
covers some of the more common problem areas,
providing examples of misuse and suggesting (if
possible) solutions which may be adopted by
developers of the security software to help minimise the
potential for problems. While there is no universal fix
for all problems (and indeed some of them have a social
or economic basis which can’t be easily solved through
the application of technology), it is hoped that the
guidelines presented here will both alert developers to

the existence of certain problem areas and provide some
assistance in combating them.

3.1 Private Keys Aren’t

One of the principal design features of cryptlib is that it
never exposes private keys to outside access. The
single most frequently-asked cryptlib question is
therefore “How do I export private keys in plaintext
form?”. The reasons given for this are many and
varied, and range from the logical (“I want to generate a
test key for use with XYZ”) to the dubious (“We want
to share the same private key across all of our servers”)
through to the bizarre (“I don’t know, I just want to do
it”).

In some cases the need to spread private keys around is
motivated by financial concerns. If a company has
spent $495 on a Verisign certificate which was
downloaded to a Windows machine then they won’t
spend that much again for exactly the same thing in a
different format. As a result, the private key is exported
from the Windows key store (from which any Windows
application can utilise it) into Netscape. And OpenSSL.
And BSAFE. And cryptlib (although cryptlib
deliberately makes it rather difficult to poke keys of
unknown provenance into it). Eventually, every
encryption-enabled application on the system has a
copy of the key, and for good measure it may be spread
across a number of systems for use by different
developers or sysadmins. Saving CA fees by re-using a
single private key for everything seems to be very
popular, particularly among Windows users.

The amount of sharing of private keys across
applications and machines is truly frightening. Mostly
this appears to occur because users don’t understand the
value of the private key data, treating it as just another
piece of information which can be copied across to
wherever it’s convenient. For example a few years ago
a company had developed a PGP-based encrypted file
transfer system for a large customer. The system used a
2048-bit private key which was stored on disk in
plaintext form, since the software was run as a batch
process and couldn’t halt waiting for a password to be
entered. One day the customer called to say that they’d
lost the private key file, and could the company’s
programmers please reconstruct it for them. This
caused some consternation at the company, until one of
the developers pointed out that there were copies of the
private key stored on a file server along with the source
code, and in other locations with the application
binaries. Further investigation revealed that the
developers had also copied it to their own machines
during the development process for testing purposes.
Some of these machines had later been passed on to
new employees, with their original contents intact. The



file server on which the development work was stored
had had its hard drives upgraded some time earlier, and
the old drives (with the key on them) had been put on a
nearby shelf in case they were needed later. The server
was backed up regularly, with three staff members
taking it in turns to take the day’s tapes home with them
for off-site storage (the standard practice was to drop
them in the back seat of the car until they were re-used
later on). In short, the only way to securely delete the
encryption key being used to protect large amounts of
long-term sensitive data would have been to carpet-
bomb the city, and even then it’s not certain that copies
wouldn’t have survived somewhere. While this
represents a marvellous backup strategy, it’s probably
not what’s required for protecting private keys.

If your product allows the export of
private keys in plaintext form or some
other widely-readable format, you should
assume that your keys will end up in every
other application on the system, and
occasionally spread across other systems
as well.

At least some of the problem arises from the fact the
much current software makes it unnecessarily easy to
move private keys around (see also section 3.2 for a
variation of this problem). For example CAs frequently
use PKCS #12 files to send a “certificate” to a new user
because it makes things simpler than going through the
multi-stage process in which the browser generates the
private key itself. These files are invariably sent in
plain text email, often with the password included.
Alternatively, when the password is sent by out-of-band
means, the PKCS #12 decryption key is generated
directly from a hash of the uppercase-only ASCII
password, despite warnings about the insecurity of this
approach being well publicised several years ago [19].
Once such file, provided as a sample to the author,
would have authorised access to third-party financial
records in a European country. This method of key
handling was standard practice for the CA involved.

Another CA took this process a step further when they
attempted to solve the problem of not having their root
certificate trusted by various browsers and mail
programs by distributing a PKCS #12 file containing
the CA root key and certificate to all relying parties.
The thinking was that once the CA’s private key was
installed on their system, the user’s PKI software would
regard the corresponding certificate as being trusted (it
still didn’t quite fix the problem, but it was a start).
This “solution” is in fact so common that the OpenSSL
FAQ contains an entry specifically warning against it
[55]. Incredibly, despite the strong warning in the FAQ
that “this command will give away your CA’s private

key and reduces its security to zero”, security books
have appeared which give clear, step-by-step
instructions on how to distribute the CA’s private key
“to all your user’s web browsers” [10].

Making it more difficult to do this sort of thing might
help alleviate some of the problems. Certainly in the
case of cryptlib when users are informed that what
they’re asking for isn’t possible, they find a means of
working within those constraints (or maybe they quietly
switch to CryptoAPI, which allows private keys to be
sprayed around freely). However the real problem is a
social and financial one, and is examined in more detail
in section 3.2.

3.2 Everything is a Certificate

In 1996 Microsoft introduced a new storage format for
private keys and certificates to replace the collection of
ad hoc (and insecure) formats which had been in use
before then [11][12]. Initially called PFX (Personal
Information Exchange) [13][14][15][16], it was later re-
released in a cleaned-up form as PKCS #12 [17]. One
of the main motivations for its introduction was for use
in Internet kiosks in which users carried their personal
data around on a floppy disk for use wherever they
needed it. In practice this would have been a bad idea
since Internet Explorer retains copies of the key data so
that the next user who came along could obtain the
previous user’s keys by exporting them back onto a
floppy. Internet kiosks never eventuated, but the PKCS
#12 format has remained with us.

Since PKCS #12 stores both keys and certificates, and
(at least under Windows) the resulting files behave
exactly like certificates, many users are unable to
distinguish certificates from PKCS #12 objects. In the
same way that “I’m sending you a document” typically
heralds the arrival of a Microsoft Word file, so “I’'m
sending you a my certificate” is frequently
accompanied by a PKCS #12 file. This problem isn’t
helped by the fact that the Windows “Certificate Export
Wizard” actually creates PKCS #12 files as output,
defaulting to exporting the private key alongside the
certificate. The situation is further confused by some of
the accompanying documentation, which refers to the
PKCS #12 data as a “digital ID” (rather than
“certificate” or “private key”), with the implication that
it’s just a certificate which happens to require a
password when exported. The practice of mixing public
and private keys in this manner, and referring to the
process of and making the behaviour of the result
identical to the behaviour of a plain certificate, are akin
to pouring weedkiller into a fruit juice bottle and
storing it on an easily accessible shelf in the kitchen
cupboard.



The author, being a known open-source crypto
developer, is occasionally asked for help with
certificate-management code, and has over the years
accumulated a small collection of users’ private keys
and certificates, ranging from disposable email
certificates through to relatively expensive higher-
assurance certificates (the users were notified and the
keys deleted where requested). The current record for a
key obtained in this manner (reported by another open-
source crypto developer in a similar situation) is the key
for a Verisign Class 3 code-signing certificate, the
highest-level certificate provided by Verisign which
requires notarisation, background investigations, and
fairly extensive background checking [18].

Once the PKCS #12 file is obtained, the contents can
generally be recovered, either by recovering the
password [19][20][21] or by taking advantage of the
fact that the Certificate Export Wizard will export keys
without any password if the user just keeps clicking
‘Next’” in standard Wizard fashion (they are in fact
encrypted with a password consisting of two null
characters, a Microsoft implementation bug which was
reverse-engineered back into PKCS #12).

In contrast, PGP has no such problems. PGP physically
separates the public and private portion of the key into
two files, and makes it quite clear that the private-key
file should never be distributed to anyone: “keep your
secret key file to yourself [...] Never give your secret
key to anyone else [...] Always keep physical control of
your secret key, and don’t risk exposing it by storing it
on a remote timesharing computer. Keep it on your
own personal computer” [22]. When distributing keys
to other users, PGP only extracts the public
components, even if the user explicitly forces PGP to
read from the private key file (the default is to use the
public key file). Even if the user never bothers to read
the documentation which warns about private key
security, PGP’s safe-by-default key handling ensures
that they can’t accidentally compromise the key.

Make very clear to users the difference
between public and private keys, either in
the documentation/user interface or,
better, by physically separating the two.

The single biggest reason for the re-use of a single key
wherever possible is, as already mentioned in section
3.1, the cost of the associated certificate. A secondary
reason is the complexity involved in obtaining the
certificate, even if it is otherwise free. Examples of the
latter include no-assurance email certificates,
sometimes known as “clown-suit certificates” because
of the level of identity assurance they provide [23].
Generating a new key rather than re-using the current
one is therefore expensive enough and cumbersome

enough that users are given the incentive to put up with
considerable inconvenience in order to re-use private
keys. Users have even tried to construct ways of
sharing smart cards across multiple machines in order
to solve the annoying problem that they can’t export the
private key from the card. Another approach, which
only works with some cards, is to generate the key
externally and load it onto the card, leaving a copy of
the original in software to be used from various
applications and/or machines (the fact that people were
doing this was discovered because some cards or card
drivers handle external key loads in a peculiar manner,
leading to requests for help from users).

PGP on the other hand, with its easily-generated, self-
signed keys and certificates, suffers from no such
problem, and real-world experience indicates that users
are quite happy to switch to new keys and discard their
old ones whenever they feel the need.

In order to solve this problem, it is necessary to remove
the strong incentive provided by current X.509-style
certificate management to re-use private keys. One
solution to this problem would be for users to be issued
key-signing certificates which they could use to create
their own certificates when and as needed. This
represents a somewhat awkward workaround for the
fact that X.509 doesn’t allow multiple signatures
binding an indentity to a certificate, so that it’s not
possible to generate a self-signed certificate which is
then endorsed through further, external signatures. In
any case since this solution would deprive CAs of
revenue, it’s unlikely to ever be implemented. As a
result, even if private key sharing is made as difficult as
possible, sufficiently motivated users will still find
ways to spread them around. It is, unfortunately, very
difficult to fix social/economic issues using technology.

3.3 Making Key Management Easy

One popular solution for key management, which has
been around since the technology was still referred to as
dinosaur oil, is the use of fixed, shared keys. Despite
the availability of public-key encryption technology,
the use of this type of key management is still popular,
particularly in sectors such as banking which have a
great deal of experience in working with confidential
information. Portions of the process have now been
overtaken by technology, with the fax machine
replacing trusted couriers for key exchange.

Another solution which is popular in EDI applications
is to transmit the key in another message segment in the
transaction. If XML is being used, the encryption key
is placed in a field carefully tagged as <password> or
<key>. Yet another solution, popularised in WEP, is to
use a single fixed key throughout an organisation [24].



Even when public-key encryption is being used, users
often design their own key-management schemes to go
with it. One (geographically distributed) organisation
solved the key management problem by using the same
private key on all of their systems. This allowed them
to deploy public-key encryption throughout the
organisation while at the same time eliminating any key
management problems, since it was no longer necessary
to track a confusing collection of individual keys.

Straight Diffie-Hellman requires no key
management. This is always better than
other no-key-management alternatives
which users will create.

Obviously this method of (non-)key management is still
vulnerable to a man-in-the-middle (MITM) attack,
however this requires an active attack at the time the
connection is established. This type of attack is
considerably more difficult than a passive attack
performed an arbitrary amount of time later, as is
possible with unprotected, widely-known, or poorly-
chosen shared keys, or, worse yet, no protection at all
because a general solution to the problem isn’t available
[25]. In situations like this the engineering approach
(within +10% of the target with reasonable effort) is
often better than the mathematician’s approach (100%
accuracy with unreasonable effort, so that in practice
nothing gets done).

3.4 What Time is it Anyway?

Many security protocols, and in particular almost all
PKI protocols which deal with validity intervals and
time periods, assume they’re operating in the presence
of precisely-synchronised clocks on all systems. The
fact that this frequently isn’t the case was recognised a
decade ago both by security researchers (mostly as a
result of Kerberos V4’s use of timestamps) [26][27][28]
and by implementers of post-Kerberos V4 protocols
such as IBM’s KryptoKnight, which replaced the time-
stamps with nonces [29][30][31][32], Bell-Atlantic’s
Yaksha [33][34], and to some extent Kerberos V5,
which allows for (but doesn’t require) nonces [35].
More recently, one of the few published papers on PKI
implementation experience pointed out the problems
inherent in using timestamps for synchronisation in the
CMP PKI protocol [36].

The author has seen Windows machines whose time
was out by tens of minutes (incorrect settings or general
clock drift), one or more hours (incorrect settings or
incorrect time zone/daylight savings time adjustment),
one or more days (incorrect settings or incorrect time
zone, for example a machine in New Zealand set to
GMT), and various larger units (weeks or months). In
the most extreme case the time was out by several

decades but wasn’t noticed by the user until cryptlib
complained about a time problem while processing
certificates with a known validity period. In addition to
the basic incorrect time problems, combinations such as
an offset of one day + one hour + 15 minutes have been
spotted.

In addition to problems due to incorrect settings, there
are also potential implementation problems. One PKI
pilot ran into difficulties because of differences in the
calculation of offsets from GMT in different software
packages [37]. Time zone issues are extremely
problematic because some operating systems handle
them in a haphazard manner or can be trivially mis-
configured to get the offset wrong. Even when
everything is set up correctly it can prove almost
impossible to determine the time offset from a program
in one time zone with daylight savings time adjustment
and a second program in a different time zone without
daylight savings time adjustment.

A further problem with a reliance on timestamps is the
fact that it extends the security baseline to something
which is not normally regarded as being security-
relevant, and which therefore won’t be handled as
carefully as obviously-security-related items such as
passwords and crypto tokens. To complicate things
further, times are often deliberately set incorrectly to
allow expired certificates to continue to be used without
paying for a new one, a trick which shareware authors
countered many years ago to prevent users from
running trial versions of software indefinitely. For
example Netscape’s code signing software will blindly
trust the date incorporated into a JAR file by the signer,
allowing expired certificates to be rejuvenated by
backdating the signature generation time. It would also
be possible to resuscitate a revoked certificate using this
trick, except that the software doesn’t perform
revocation checking so it’s possible to use it anyway.

Don’t incorporate the system clock (or the
other parties’ system clocks) in your
security baseline. If you need synchro-
nisation, use nonces.

If some sort of timeliness guarantees are required, this
can still be achieved even in the presence of completely
desynchronised clocks by using the clock as a means of
measuring the passage of time rather than as an
absolute indicator of time. For example a server can
indicate to a client that the next update will take place
15 minutes after the current request was received, a
quantity which can be measured accurately by both
sides even if one side thinks it’s currently September
1986. To perform this operation, the client would
submit a request with a nonce, and the server would
respond with a (signed or otherwise integrity-protected)



reply containing a relative time to the next update. If
the client doesn’t receive the response within a given
time, or the response doesn’t contain the nonce they
sent, then there’s something suspicious going on. If
everything is OK, they know the exact time (relative to
their local clock) of the next update, or expiry, or
revalidation. Although this measure is simple and
obvious, the number of security standards which define
mechanisms which assume the existence of perfectly
synchronised clocks for all parties is somewhat

worrying.

In the presence of arbitrary end user
systems, relative time measures work.
Absolute time measures don'’t.

For non-interactive protocols which can’t use nonces
the solution becomes slightly more complex, but can
generally be implemented using techniques such as a
one-off online query, or time-stamping [38].

3.5 RSA in CBC Mode

When the RSA algorithm is used for encryption, the
operation is usually presented as “encrypting with
RSA”. The obvious consequence of this is that people
try to perform bulk data encryption using pure RSA
rather than using it purely as a key exchange
mechanism for a fast symmetric cipher. In most cases
this misunderstanding is quickly cleared up because the
crypto toolkit API makes it obvious that RSA can’t be
used that way, however the JCE API, which attempts to
provide a highly orthogonal interface to all ciphers even
if the resulting operations don’t make much sense,
allows for bizarre combinations such as RSA in CBC
mode with PKCS #5 padding alongside the more
sensible DES alternative with the same mode and
padding (CBC and PKCS #5 are mechanisms designed
for use with block ciphers, not public-key algorithms).
As a result, when a programmer is asked to implement
RSA encryption of data, they implement the operation
exactly as the API allows it. One of the most
frequently-asked questions for one open-source Java
crypto toolkit covers assorted variations on the use of
bulk data encryption with RSA, usually relating to
which (block cipher) padding or chaining mode to use,
but eventually gravitating towards “Why is it so slow?”
once the code nears completion and testing commences.

This can lead to a variety of interesting debates.
Typically a customer asks for “RSA encryption of
data”, and the implementers deliver exactly that. The
customer claims that no-one with an ounce of crypto
knowledge' would ever perform bulk data encryption

" Equivalent to 31 grams of crypto knowledge, being
worth its weight in gold.

with RSA and the implementers should have known
better, and the implementers claim that they’re
delivering exactly what the customer asked for.
Eventually the customer threatens to withhold payment
until the code is fixed, and the implementers sneak the
changes in under “Misc.Exp.” at five times the original
price.

Don’t include insecure or illogical
security mechanisms in your crypto tools.

3.6 Left as an Exercise for the User

Crypto toolkits sometimes leave problems which the
toolkit developers couldn’t solve themselves as an
exercise for the user. For example the gathering of
entropy data for key generation is often expected to be
performed by user-supplied code outside the toolkit.
Experience with users has shown that they will
typically go to any lengths to avoid having to provide
useful entropy to a random number generator which
relies on this type of user seeding. The first widely-
known case where this occurred was with the Netscape
generator, whose functioning with inadequate input
required the disabling of safety checks which were
designed to prevent this problem from occurring [39].
A more recent example of this phenomenon was
provided by an update to the SSLeay/OpenSSL
generator, which in version 0.9.5 had a simple check
added to the code to test whether any entropy had been
added to the generator (earlier versions would run the
pseudo-random number generator (PRNG) with little or
no real entropy). This change lead to a flood of error
reports to OpenSSL developers, as well as helpful
suggestions on how to solve the problem, including
seeding the generator with a constant text string
[40][41][42], seeding it with DSA public key
components (whose components look random enough
to fool entropy checks) before using it to generate the
corresponding private key [43], seeding it with
consecutive output byes from rand () [44], using the
executable image [45], using /etc/passwd [46], using
Ivar/log/syslog [47], using a hash of the files in the
current directory [48], creating a dummy random data
file and using it to fool the generator [49], downgrading
to an older version such as 0.9.4 which doesn’t check
for correct seeding [50], using the output of the
unseeded generator to seed the generator (by the same
person who had originally solved the problem by
downgrading to 0.9.4, after it was pointed out that this
was a bad idea) [51], and using the string
“0123456789ABCDEF0” [52]. Another alternative,
suggested in a Usenet news posting, was to patch the
code to disable the entropy check and allow the
generator to run on empty (this magical fix has since
been independently rediscovered by others [53]). In



later versions of the code which used /dev/random if it
was present on the system, another possible fix was to
open a random disk file and let the code read from that
thinking it was reading the randomness device [54]. It
is likely that considerably more effort and ingenuity has
been expended towards seeding the generator
incorrectly than ever went into doing it right.

The problem of inadequate seeding of the generator
became so common that a special entry was added to
the OpenSSL frequently-asked-questions (FAQ) list
telling users what to do when their previously-fine
application stopped working when they upgraded to
version 0.9.5 [55], and since this still didn’t appear to
be sufficient later versions of the code were changed to
display the FAQ’s URL in the error message which was
printed when the PRNG wasn’t seeded. Based on
comments on the OpenSSL developers list, quite a
number of third-party applications which used the code
were experiencing problems with the improved random
number handling code in the new release, indicating
that they were working with low-security
cryptovariables and probably had been doing so for
years. Because of this problem, a good basis for an
attack on an application based on a version of
SSLeay/OpenSSL before 0.9.5 is to assume the PRNG
was never seeded, and for versions after 0.9.5 to assume
it was seeded with the string “string to make the
random number generator think it has entropy”, a value
which appeared in one of the test programs included
with the code and which appears to be a favourite of
users trying to make the generator “work”.

The fact that this section has concentrated on
SSLeay/OpenSSL seeding is not meant as a criticism of
the software, the change in 0.9.5 merely served to
provide a useful indication of how widespread the
problem of inadequate initialisation really is. Helpful
advice on bypassing the seeding of other generators (for
example the one in the Java JCE) has appeared on other
mailing lists. The practical experience provided by
cases such as the ones given above shows how
dangerous it is to rely on users to correctly initialise a
generator — not only will they not perform it correctly,
they’ll go out of their way to do it wrong. Although
there is nothing much wrong with the
SSLeay/OpenSSL generator itself, the fact that its
design assumes that users will initialise it correctly
means that it (and many other user-seeded generators)
will in many cases not function as required.

If a security-related problem is difficult
Jfor a crypto developer to solve, there is no
way a non-crypto user can be expected to
solve it. Don’t leave hard problems as an
exercise for the user.

In the above case the generator should handle not only
the PRNG step but also the entropy-gathering step
itself, while still providing a means of accepting user
optional entropy data for those users who do bother to
initialise the generator correctly. As a generalisation,
crypto software should not leave difficult problems to
the user in the hope that they can somehow
miraculously come up with a solution where the crypto
developer has failed.

3.7 This Function can Never Fail

A few years ago a product was developed which
employed the standard technique of using RSA to wrap
a symmetric encryption key such as a triple DES key
which was then used to encrypt the messages being
exchanged (compare this with the RSA usage described
in section 3.5). The output was examined during the
pre-release testing and was found to be in the correct
format, with the data payload appropriately encrypted.
Then one day one of the testers noticed that a few bytes
of the RSA-wrapped key data were the same in each
message. A bit of digging revealed that the key
parameters being passed to the RSA encryption code
were slightly wrong, and the function was failing with
an error code indicating what the problem was. Since
this was a function which couldn’t fail, the programmer
hadn’t checked the return code but had simply passed
the (random-looking but unencrypted) result on to the
next piece of code. At the receiving end, the same
thing occurred, with the unencrypted symmetric key
being left untouched by the RSA decryption code.
Everything appeared to work fine, the data was
encrypted and decrypted by the sender and receiver,
and it was only the eagle eyes of the tester which
noticed that the key being used to perform the
encryption was sitting in plain sight near the start of
each message.

Another example of this problem occurred in Microsoft
Internet Information Server (IIS), which tends to fail in
odd ways under load, a problem shared with MS
Outlook, which will quietly disable virus scanning
when the load becomes high enough so that as much as
90% of incoming mail is never scanned for viruses [56].
In this case the failure was caused by a race condition
in which one thread received and decrypted data from
the user while a second thread, which used the same
buffer for its data, took the decrypted data and sent it
back to the user. As a result, when under load IIS was
sending user data submitted over an SSL connection
back to the user unencrypted [57][58]. The fix was to
use two buffers, one for plaintext and one for
ciphertext, and zero out the ciphertext buffer between
calls. As a result, when the problem occurred, the
worst which could happen was that the other side was
sent an all-zero buffer [9].



To avoid problems of this kind, implementations should
be designed to fail safe even if the caller ignores return
codes. A straightforward way to do this is to set output
data to a non-value (for example fill buffers with zeroes
and set numeric or boolean values to —1) as the first
operation in the function being called, and to move the
result data to the output as the last operation before
returning to the caller on successful completion. In this
way if the function returns at any earlier point with an
error status, no sensitive data will leak back to the
caller, and the fact that a failure has taken place will be
obvious even if the function return code is ignored.

Make security-critical functions fail
obviously even if the user ignores return
codes.

Another possible solution is to require that functions
use handles to state information (similar to file or BSD
sockets handles) which record error state information
and prevent any further operations from occurring until
the error condition is explicitly cleared by the user.
This error-state-propagation mechanism helps make the
fact that an error has occurred more obvious to the user,
even if they only check the return status at the end of a
sequence of function calls, or at sporadic intervals.

3.8 Careful with that Axe, Eugene

The functionality provided by crypto libraries constitute
a powerful tool. However, like other tools, the potential
for misuse in inexperienced hands is always present.
Crypto protocol design is a subtle art, and most users
who cobble their own implementations together from a
collection of RSA and 3DES code will get it wrong. In
this case “wrong” doesn’t refer to (for example)
missing a subtle flaw in Needham-Schroeder key
exchange, but to errors such as using ECB mode (which
doesn’t hide plaintext data patterns) instead of CBC
(which does).

The use of ECB mode, which is simple and
straightforward and doesn’t require handling of
initialisation vectors (IVs) and block chaining and
synchronisation issues is depressingly widespread
among users of basic collections of encryption routines,
despite this being warned against in every crypto
textbook. Confusion over block cipher chaining modes
is a significant enough problem that several crypto
libraries include FAQ entries explaining what to do if
the first 8 bytes of decrypted data appear to be
corrupted, an indication that the IV wasn’t set up

properly.
As if the use of ECB itself wasn’t bad enough, users

often compound the error with further implementation
simplifications. For example one vendor chose to

implement their VPN using triple DES in ECB mode,
which they saw as the simplest to implement since it
doesn’t require any synchronisation management if
packets are lost. Since ECB mode can only encrypt
data in multiples of the cipher block size, they didn’t
encrypt any leftover bytes at the end of the packet. The
interaction of this processing mechanism with
interactive user logins, which frequently transmit the
user name and password one character at a time, can be
imagined by the reader.

The issue which needs to be addressed here is that the
average user hasn’t read any crypto books, or has at
best had some brief exposure to portions of a popular
text such as Applied Cryptography, and simply isn’t
able to operate complex (and potentially dangerous)
crypto machinery without any real training. The
solution to this problem is for developers of libraries to
provide crypto functionality at the highest level
possible, and to discourage the use of low-level routines
by inexperienced users. The job of the crypto library
should be to protect users from injuring themselves
(and others) through the misuse of basic crypto
routines.

Instead of “encrypt a series of data blocks using 3DES
with a 192-bit key”, users should be able to exercise
functionality such as “encrypt a file with a password”,
which (apart from storing the key in plaintext in the
Windows registry) is almost impossible to misuse.
Although the function itself may use an iterated HMAC
hash to turn the password into a key, compress and
MAC the file for space-efficient storage and integrity-
protection, and finally encrypt it using (correctly-
implemented) 3DES-CBC, the user doesn’t have to
know (or care) about this.

Provide crypto functionality at the highest
level possible in order to prevent users
from injuring themselves and others
through misuse of low-level crypto
functions with properties they aren’t
aware of.

4. Conclusion

Although snake oil crypto is rapidly becoming a thing
of the past, its position is being taken up by a new breed
of snake oil, naugahyde crypto, which misuses good
crypto in a manner which makes it little more effective
than the more traditional snake oil. This paper has
covered some of the more common ways in which
crypto and security software can be misused by users.
Each individual problem area is accompanied (where
possible) by guidelines for measures which can help
combat potential misuse, or at least warn developers



that this is an area which is likely to cause problems
with users. It is hoped that this work will help reduce
the incidence of naugahyde crypto in use today.

Unfortunately the single largest class of problems, key
management, can’t be solved as easily as the other
ones. Solving this extremely hard problem in a manner
practical enough to ensure uses won’t bypass it for
ease-of-use or economic reasons will require a multi-
faceted approach involving better key management user
interfaces, user-certified or provided keys of the kind
used by PGP, application-specific key management
such as that used with ssh, and a variety of other
approaches [59]. Until the key management task is
made much more practical, “solutions” of the kind
presented in this paper will continue to be widely
employed.
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