
USENIX Association

Proceedings of the
11th USENIX Security

Symposium

San Francisco, California, USA
August 5-9, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Infranet: Circumventing Web Censorship and Surveillance

Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, David Karger
MIT Laboratory for Computer Science

ffeamster, mbalazin, gch, hari, kargerg@lcs.mit.edu
http://nms.lcs.mit.edu/projects/infranet

Abstract

An increasing number of countries and companies rou-
tinely block or monitor access to parts of the Internet.
To counteract these measures, we propose Infranet, a sys-
tem that enables clients to surreptitiously retrieve sensitive
content via cooperating Web servers distributed across the
global Internet. These Infranet servers provide clients ac-
cess to censored sites while continuing to host normal un-
censored content. Infranet uses a tunnel protocol that pro-
vides a covert communication channel between its clients
and servers, modulated over standard HTTP transactions
that resemble innocuous Web browsing. In the upstream
direction, Infranet clients send covert messages to Infranet
servers by associating meaning to the sequence of HTTP
requests being made. In the downstream direction, Infranet
servers return content by hiding censored data in uncen-
sored images using steganographic techniques. We describe
the design, a prototype implementation, security properties,
and performance of Infranet. Our security analysis shows
that Infranet can successfully circumvent several sophisti-
cated censoring techniques.

1 Introduction

The World Wide Web is a prime facilitator of free
speech; many people rely on it to voice their views and to
gain access to information that traditional publishing venues
may be loath to publish. However, over the past few years,
many countries, political regimes, and corporations have at-
tempted to monitor and often restrict access to portions of
the Web by clients who use networks they control. Many of
these attempts have been successful, and the use of the Web
as a free-flowing medium for information exchange is being
severely compromised.

Several countries filter Internet content at their borders,
fearful of alternate political views or external influences.
For example, China forbids access to many news sites that
have been critical of the country’s domestic policies. Saudi

Arabia is currently soliciting content filter vendors to help
block access to sites that the government deems inappro-
priate for political or religious reasons [10]. Germany cen-
sors all Nazi-related material. Australia’s laws ban pornog-
raphy. In addition, Internet censorship repeatedly threat-
ens to cross political boundaries. For example, the U.S.
Supreme Court recently rejected France’s request to censor
Nazi-related material on Yahoo’s site [12]. Censorship and
surveillance also extend into free enterprise, with several
companies in the U.S. reportedly blocking access to sites
that are not related to conducting business. In addition to
blocking sites, many companies routinely monitor their em-
ployees’ Web surfing habits.

This paper focuses on the challenging technical prob-
lems of circumventing Web censorship and largely ignores
the many related political, legal, and policy issues. In par-
ticular, we investigate how to leverage Web communication
with accessible servers in order to surreptitiously retrieve
censored content, while simultaneously maintaining plausi-
ble deniability against receiving that content. To this end,
we develop a covert communication tunnel that securely
hides the exchange of censored content in normal, innocu-
ous Web transactions.

Our system, called Infranet, consists of requesters and
responders communicating over this covert tunnel. A re-
quester, running on a user’s computer, first uses the tunnel
to request censored content. Upon receiving the request, the
responder, a standard public Web server running Infranet
software, retrieves the sought content from the Web and re-
turns it to the requester via the tunnel.1

The covert tunnel protocol between an Infranet requester
and responder must be difficult to detect and block. More
specifically, a censor should not be able to detect that a
Web server is an Infranet responder or that a client is an In-

1We use the terms “requester” and “responder” rather than the more
traditional “client” and “server” to avoid confusion with Web clients
(“browsers”) and Web servers. We also considered a number of terms
like “proxy”, “gateway”, “front-end”, etc., but rejected them for similar
reasons.

franet requester. Nothing in their HTTP transactions ought
to arouse suspicion.

The Infranet tunnel protocol uses novel techniques for
covert upstream communication. It modulates covert mes-
sages on standard HTTP requests for uncensored con-
tent using a confidentially negotiated function which maps
URLs to message fragments that compose requests for cen-
sored content. For downstream communication, the tunnel
protocol leverages existing data hiding techniques, such as
steganography. While steganography provides little defense
against certain attacks, we are confident that the ideas we
present can be used in conjunction with other data hiding
techniques.

The main challenge in the design of the tunnel protocol is
ensuring covertness while providing a level of performance
suitable for interactive browsing. Furthermore, the tunnel
protocol must defend against a censor capable of passive at-
tacks based on logging all transactions and packets, active
attacks that modify messages or transactions, and imper-
sonation attacks where the adversary pretends to be a legit-
imate Infranet requester or responder. Our security analy-
sis indicates that Infranet can successfully circumvent sev-
eral sophisticated censoring techniques, including various
active and passive attacks. Our system handles almost all of
these threats while achieving reasonable performance. This
is achieved by taking advantage of the asymmetric band-
width requirements of Web transactions, which require sig-
nificantly less upstream bandwidth than downstream band-
width.

To assess the feasibility of our design, we implemented
an Infranet prototype and conducted a series of tests using
client-side Web traces to evaluate the performance of our
system. Our experimental evaluation shows that Infranet
provides acceptable bandwidth for covert Web browsing.
Our range-mapping algorithm for upstream communication
allows a requester to innocuously transmit a hidden request
in a number of visible HTTP requests that is proportional
to the binary entropy of the hidden request distribution. For
two typical Web sites running Infranet responders, we find
that a requester using range-mapping can modulate 50% of
all requests for hidden content in 6 visible HTTP requests or
fewer and 90% of all hidden requests in 10 visible HTTP re-
quests or fewer. Using typical Web images, our implemen-
tation of downstream hiding transmits approximately 1 kB
of hidden data per visible HTTP response.

2 Related Work

Many existing systems seek to circumvent censorship
and surveillance of Internet traffic. Anonymizer.com
provides anonymous Web sessions by requiring users to
make Web requests through a proxy that anonymizes user-
specific information, such as the user’s IP address [2]. The

company also provides a product that encrypts HTTP re-
quests to protect user privacy; Zero Knowledge provides a
similar product [24]. Squid is a caching Web proxy that
can be used as an anonymizing proxy [21]. The primary
shortcoming of these schemes is that a well-known proxy is
subject to being blocked by a censor. Additionally, the use
of an encrypted tunnel between a user and the anonymizing
proxy (e.g., port forwarding overssh) engenders suspicion.

Because censoring organizations are actively discover-
ing and blocking anonymizing proxies, SafeWeb has pro-
posed a product called Triangle Boy, a peer-to-peer appli-
cation that volunteers run on their personal machines and
that forwards clients’ Web requests to SafeWeb’s anonymiz-
ing proxy [19, 27]. SafeWeb recently formed an alliance
with the Voice of America [28], whose mission is to en-
able Chinese Internet users to gain access to censored sites.
However, Triangle Boy has several drawbacks. First, the
encrypted connection to a machine running Triangle Boy is
suspicious and can be trivially blocked since SSL handshak-
ing is unencrypted. Second, SafeWeb’s dependence on an
encrypted channel for confidentiality makes it susceptible to
traffic analysis, since Web site fingerprinting can expose the
Web sites that a user requests, even if the request itself is en-
crypted [7]. Third, SafeWeb is vulnerable to several attacks
that allow an adversary to discover the identity of a SafeWeb
user, as well as every Web site visited by that user [11].
Peekabooty also attempts to circumvent censoring firewalls
by sending SSL-encrypted requests for censored content to
a third party, but its reliance on SSL also makes it suscepti-
ble to traffic analysis and blocking attacks [26].

Various systems have attempted to protect anonymity
for users who publish and retrieve censored content. In
Crowds, users join a large, geographically diverse group
whose members cooperate in issuing requests, thus mak-
ing it difficult to associate requests with the originating
user [18]. Onion routing also separates requests from the
users who make them [25]. Publius [30], Tangler [29], and
Free Haven [4] focus on protecting the anonymity of pub-
lishers of censored content and the content itself. Freenet
provides anonymous content storage and retrieval [3].

Infranet aims to overcome censorship and surveillance,
but also provides plausible deniability for users. In addition
to establishing a secure channel between users and Infranet
responders, our system creates a covert channel within
HTTP, i.e., a communication channel that transmits infor-
mation in a manner not envisioned by the original design of
HTTP [9]. In contrast with techniques that attempt to over-
come censorship using a confidential channel (e.g., using
SSL, which is trivial to detect and block) [19, 23, 24, 26],
our approach is significantly harder to detect or block. To
be effective against blocking, a scheme for circumventing
censorship must be covert as well as secure.

Infranet
Requester

Infranet
Responder

User
Web

Browser

Origin
Web

Server

Communication Tunnel

Censor

Visible HTTP
Req/

Hidden msg Standard
HTTP

Visible HTTP
Resp/

Hidden content

Visible HTTP
Resp/

Hidden content

Visible HTTP
Req/

Hidden msg

User Machine

Figure 1. Infranet system architecture.

3 System Architecture

This section presents Infranet’s design considerations
and system architecture and gives an overview of the sys-
tem’s communication protocols.

3.1 Terminology

Figure 1 shows the system architecture of Infranet and
introduces relevant terminology. Users surf Web content as
usual via a Web browser. To retrieve censored content, the
browser uses a software entity that runs on the same host,
called the Infranet requester, as its local proxy. The In-
franet requester knows about one or more Infranet respon-
ders, which are Web servers in the global Internet that im-
plement additional Infranet functionality. The idea is for
the Web browser to request censored content via the In-
franet requester, which in turn sends a message to an In-
franet responder. The responder retrieves this content from
the appropriate origin Web server and returns it to the re-
quester, which delivers the requested content to the browser.
The requester and responder communicate with each other
using a covert tunnel. Technically, Infranet involves three
distinct functions—issuing a hidden request, decoding the
hidden request, and serving the requested content. We first
describe a system whereby the responder performs the latter
two functions. We describe a design enhancement in Sec-
tion 8 whereby an untrusted forwarder can forward hidden
requests and serve hidden content, thereby making it more
difficult for a censor to block access to the system.

The censor shown in Figure 1 might have a wide range
of capabilities. At a minimum, the censor can block specific
IP addresses (e.g., of censored sites and suspected Infranet
responders). More broadly, the censor might have the capa-
bility to analyze logs of all observed Web traffic, or even to
modify the traffic itself.

The long-term success of Infranet depends on the
widespread deployment of Infranet responders in the Inter-
net. One way of achieving this might be to bundle responder

software with standard Web server software (e.g., Apache).
Hopefully, a significant number of people will run Infranet
responders due to altruism or because they believe in free
speech.

3.2 Design Goals

We designed Infranet to meet a number of goals. Or-
dered by priority, the goals are:

1. Deniability for any Infranet requester. It should be
computationally intractable to confirm that any individual
is intentionally downloading information via Infranet, or to
determine what that information might be.

2. Statistical deniability for the requester. Even if it is
impossible to confirm that a client is using Infranet, an ad-
versary might notice statistical anomalies in browsing pat-
terns that suggest a client is using Infranet. Ideally, an In-
franet user’s browsing patterns should be statistically indis-
tinguishable from those of normal Web users.

3. Responder covertness. Since an adversary will likely
block all known Infranet responders, it must be difficult
to detect that a Web server is running Infranet simply by
watching its behavior. Of course, any requester using the
server will know that the server is an Infranet responder;
however, this knowledge should only arise from possession
of a secret that remains unavailable to the censor. If the cen-
sor chooses not to block access to the responder but rather to
watch clients connecting to it for suspicious activities, de-
niability should not be compromised. The responder must
assume that all clients are Infranet requesters. This ensures
that Infranet requesters cannot be distinguished from inno-
cent users based on the responder’s behavior.

4. Communication robustness. The Infranet channel
should be robust in the presence of censorship activities de-
signed to interfere with Infranet communication. Note that
it is impossible to be infinitely robust, because a censor who
blocks all Internet access will successfully prevent Infranet
communication. Thus, we assume the censor permits some
communication with non-censored sites.

Any technique that prevents a site from being used as an
Infranet responder should make that site fundamentally un-
usable by non-Infranet clients. As an example of a scheme
that is not robust, consider using SSL as our Infranet chan-
nel. While this provides full requester and responder de-
niability and covertness (since many Web servers run SSL
for innocent reasons), it is quite plausible for a censor to
block all SSL access to the Internet, since vast amounts of
information remain accessible through non-encrypted con-
nections. Thus, a censor can block SSL-Infranet without
completely restricting Internet access.

In a similar vein, if the censor has concluded that a par-
ticular site is an Infranet responder, we should ensure that
their only option for blocking Infranet access is to block all
access to the suspected site. Hopefully, this will make the
censor more reluctant to block sites, which will allow more
Infranet responders to remain accessible.

5. Performance. We seek to maximize the performance
of Infranet communication, subject to our other objectives.

3.3 Overview

A requester must be able to both join and use Infranet
without arousing suspicion. To join Infranet, a user must
obtain the Infranet requester software, plus the IP address
and public key of at least one Infranet responder. Users
must be able to obtain Infranet requester software without
revealing that they are doing so. Information about Infranet
responders must be available to legitimate users, but should
not fall into the hands of an adversary who could then con-
figure a simple IP-based filtering proxy. One way to dis-
tribute software is out-of-band via a CD-ROM or floppy
disk. Users can share copies of the software and learn about
Infranet responders directly from one another.

The design and implementation of a good tunnel proto-
col between an Infranet requester and responder is the crit-
ical determinant of Infranet’s viability. The rest of this sec-
tion gives an overview of the protocol, and Section 4 de-
scribes the protocol in detail.

We define the tunnel protocol between the requester and
responder in terms of three abstraction layers:

1. Message exchange. This layer of abstraction specifies
high-level notions of information that requester and re-
sponder communicate to each other.

2. Symbol construction. Any communication system
must specify an underlying alphabet of symbols that
are transmitted. This layer of abstraction specifies the
alphabets for both directions of communication. The
primary design constraint is covertness.

3. Modulation. The lowest layer of abstraction speci-
fies the mapping between symbols in the alphabet and
message fragments. The main design goal is reason-
able communication bandwidth, without compromis-
ing covertness.

��������

��	
�����

��������

��������

� ���� ���� ����	
� ���� ���
��
�

� �� ���� ����	
� �� ���
��
�

�����

Figure 2. Top-most layer of abstraction in communication

tunnel.

The top-most layer of abstraction is the exchange of mes-
sages between the requester and responder. The requester
sends requests for content to the responder, hidden in vis-
ible HTTP traffic. The responder answers with requested
content, hidden in visible HTTP responses, after obtaining it
from the origin server. As shown in Figure 2, messages are
hidden with a hiding function H(MSG; COVER; SECRET),
where MSG is the message to be hidden, COVER is the visi-
ble traffic medium in which MSG is hidden, and SECRET en-
sures that only the requester and responder can reveal MSG.

Designing the hiding function H involves defining a set
of symbols that map onto message fragments. The set of
all symbols used to transmit message fragments is called an
alphabet. Since an ordered sequence of fragments forms a
message, an ordered sequence of symbols, along with the
hiding function, also represent a message. Both upstream
and downstream communication require a set of symbols
for transmitting messages.

The lowest abstraction layer is modulation, which speci-
fies the mapping between message fragments and symbols.
We discuss several ways to modulate messages in the up-
stream and downstream directions in Sections 4.2 and 4.3.

3.3.1 Upstream Communication

In our design, the cover medium for upstream communica-
tion, COVERup, is sequences of HTTP requests (note that
which link is selected on the page contains information and
can therefore be used for communication).

The alphabet is the set of URLs on the responder’s Web
site. Other possible alphabets exist, such as various fields
in the HTTP and TCP headers. We choose to use the set
of URLs as our alphabet because it is more difficult for the
transmission of messages to be detected, it is immune to
malicious field modifications by a censor, and it provides
reasonable bandwidth. Careful metering of the order and
timing of the cover HTTP communication makes it diffi-
cult for the censor to distinguish Infranet-related traffic from
regular Web browsing. Upstream modulation corresponds

��������

��	
�����

��������

��������

����������������

�����������������������

�
�� �
 �!

����
��!
" ����� ��
����
$� ��

����

� �	
�
�� ����

������ ��
�� ����
$� ��%!
"

� �	
�
�� ������

������ ��
�� ����
$� ���!
"

�
�� ��%&&
' ��
����� ��
����
$� ���

������

� �	
�
���'�
'� ������ ��
�� ����
$� ���!
"

����(��)

%&

%����* �+�

���� *����

,��-����

�-�*�.�

!�/

(��*��

���� *����

,��-����

�)*�����

�������

�)*�����

��������

����

���
�����

�
�

�
�

�
 ��

�
��

�
�

��
*

�
/

��
�*

��
Figure 3. Messages exchanged during the tunnel setup

and steady state communication phases. Message ex-

changes are driven by a common state machine shown

on the left. In the optional Initialize Modulation Func-
tion state, the responder sends an initial modulation

function Uinit to the requester.

to mapping a sequence of one or more URL retrievals, visi-
ble to a censor, to a surreptitious request for a censored Web
object.

3.3.2 Downstream Communication

The cover medium in the downstream direction,
COVERdown, is provided by JPEG images (within
HTTP response streams). The responder uses the high
frequency components of images as its alphabet for sending
messages to the requester. This technique provides good
bandwidth and hiding properties. Downstream modulation
consists of mapping a sequence of high-frequency image
components to the censored web object, such as HTML or
MIME-encoded content.

4 Tunnel Protocol

The Infranet tunnel protocol is divided into three main
components: tunnel setup, upstream communication, and
downstream communication. Tunnel setup allows both
parties to agree on communication parameters. Upstream
communication consists of message transmissions from re-

quester to responder. Downstream communication consists
of message transmissions in the opposite direction.

Both the requester and responder operate according to
the finite state machine shown in the left column of Figure 3.
The first four states constitute tunnel setup. The last two
compose steady state communication, where the requester
transmits hidden URLs and the responder answers with the
corresponding content.

We now explore various design alternatives and describe
the mechanisms used for each part of the protocol.

4.1 Tunnel Setup

An Infranet requester and responder establish a tunnel
by agreeing on parameters to the hiding functions Hup and
Hdown. The requester and responder exchange these pa-
rameters securely, thereby ensuring confidentiality during
future message exchanges.

Figure 3 shows the messages involved in establishing the
tunnel. Communication with an Infranet responder begins
with a request for an HTML page served by the responder.
This first request initiates the following tunnel setup proto-
col:

1. Set User ID

The requester sends an implicit HELLO message to the
responder by requesting an HTML document, such as
index.html.

To identify subsequent message transmissions from
the requester, the responder creates a unique user ID
for the requester. This user ID could be explicitly set
via a Web cookie. However, for greater defense against
tampering, the user ID should be set implicitly. As ex-
plained later, the responder modifies the visible URLs
on its Web site for each requester. Such modification is
sufficient to identify requesters based on which URLs
are requested.

2. Exchange Key

To ensure confidentiality, the requester uses a
responder-specific modulation function Uinit to send
a shared secret, SKEY, encrypted with the public key
of the responder.

The responder recovers SKEY using its private key.

3. Update Modulation Function

The responder first selects a requester-specific modu-
lation function Utunnel. Next, the responder hides the
function in an HTTP response stream with the shared
secret SKEY.

The requester recovers Utunnel from the HTTP re-
sponse stream using SKEY.

Thus, the tunnel setup consists of the exchange of two
secrets: a secret key SKEY, and a secret modulation func-
tion Utunnel. SKEY ensures that only the requester is ca-
pable of decoding the messages hidden in HTTP response
streams. Utunnel allows the requester to hide messages in
HTTP request streams. The secrecy of Utunnel provides
confidentiality for upstream messages by ensuring that it is
hard for a censor to uncover the surreptitious requests, even
if a requester is discovered.

In order for the requester to initiate the transmission of
SKEY, encrypted with the Infranet responder’s public key,
the requester must have a way of sending a message to the
responder. The transmission is done using an initial modu-
lation function, Uinit. This initial function may be a well-
known function. Alternatively, the responder may send an
initial modulation function, Uinit to the requester. To pro-
tect responder covertness, this initial function should be hid-
den using a responder-specific key IKEY. The requester may
learn IKEY with the IP address and public key of the respon-
der. This method, which requires the additional Initialize
Modulation Function state, has the advantage of allowing
responders to periodically change modulation schemes, but
suffers the disadvantage of requiring more HTTP message
exchanges to establish a tunnel.

With the tunnel established, the requester and respon-
der enter the Transmit Request state. In this state, the re-
quester uses Utunnel to hide a request for content in a series
of HTTP requests sent to the Infranet responder. When the
covert request completes, the requester and responder enter
the Transmit Response state, at which point the responder
fetches the requested content and hides it in an HTTP re-
sponse stream using SKEY. When the transmission is com-
plete, the requester and responder both re-enter the Trans-
mit Request state.

4.2 Upstream Communication

At the most fundamental level, a requester sends a mes-
sage upstream by sending the responder a visible HTTP re-
quest that contains additional hidden information. Figure 4
shows the decomposition of the upstream hiding function
Hup(MSG;HTTP REQUEST STREAM;Ux), where MSG is
the transmitted information (e.g., request for hidden con-
tent), HTTP REQUEST STREAM is the cover medium, and
Ux is a modulation function that hides the message in a vis-
ible HTTP request stream. The specific mapping from mes-
sage fragments to visible HTTP requests depends on the pa-
rameter x.

To send a hidden message, a requester divides it into
multiple fragments, each of which translates to a visi-
ble HTTP request. The responder applies U�1

x to the re-
quester’s HTTP requests to extract the message fragments
and reassembles them to recover the hidden message.

There are many possible choices for the upstream mod-

��������

��	
�����

��������

��������

������������� (�0
1

�������������

�����

�

���� �,�$�
1

2� (�0
1

�� ��

�(�0
1

2� ��� �,�$�
1

������������� (�0
�

�������������

�

���� �,�$�
�

2� (�0
�

�� ��

�(�0
�

2� ��� �,�$�
�

�
�
�

Figure 4. Sequence of HTTP requests and responses in-

volved in a single upstream message transmission. Both

parties must know the secret modulation function Ux.

ulation function Ux. Each option for Ux presents a differ-
ent design tradeoff between covertness and upstream band-
width. There are many modulation functions that pro-
vide deniability for an Infranet requester—certain types
of basic mapping schemes, when implemented correctly,
can do so. We describe two such examples in Sec-
tions 4.2.1 and 4.2.2. To provide statistical deniability, how-
ever, requests should follow typical browsing patterns more
closely. To achieve this, we propose the range-mapping
scheme in Section 4.2.3.

4.2.1 Implicit Mapping

One of the simplest Ux modulates each bit of a hidden mes-
sage as a separate HTTP request. While this approach pro-
vides extremely limited bandwidth, it offers a high level of
covertness—on any given page the requester may click on
any one of half of the links to specify the next fragment. For
example, one can specify that any even-numbered link on
the page corresponds to a 0, while any odd-numbered link
corresponds to a 1. A generalization of this scheme uses the
function R mod n, where R is specified by the Rth link on
the last requested page and n is at most equal to the total
number of links on that page. This mechanism may be less
covert, but sends lg(n) bits of information per visible HTTP
request.

4.2.2 Dictionary-based Schemes

An Infranet responder can send the requester a static or dy-
namic codebook that maps visible HTTP requests to mes-

sage fragments. While a static mapping between visible
HTTP requests and URLs is simple to implement, the re-
sulting visible HTTP request streams may result in strange
browsing behavior. To create a dynamic mapping, the re-
sponder uses images embedded in each requested page to
send updates to the modulation function as the upstream
transmission progresses. The responder may also use its
log of hidden requests to provide most probable comple-
tions to an ongoing message transmission. Transmission
of a b-bit hidden message using a dictionary-based scheme,
where each dictionary entry contains M bits requires b=M
visible HTTP requests.

The structure of the dictionary determines both the
covertness and bandwidth of the modulated request. There-
fore, the dictionary might be represented as a directed
graph, based on the structure of the Infranet responder’s
Web site. To preserve confidentiality in the event that a
communication tunnel is revealed, the dictionary should be
known only to the requester and the responder.

4.2.3 Range-mapping

The requester and responder communicate via a channel
with far greater bandwidth from the responder to the re-
quester than vice versa. Because the responder serves many
Infranet users’ requests for hidden content, it can maintain
the frequency distribution of hidden messages, C. A re-
quester wants to send a message, URL, from the distribution
C. This communication model is essentially the asymmetric
communication model presented by Adler and Maggs [1].

We leverage their work to produce an iterative modula-
tion function based on range-mapping of the distribution of
lexicographically ordered URLs, C. In each round, the re-
sponder sends the requester a set S of tuples (si; ri), where
si is a string in the domain of C and ri is the visible HTTP
request that communicates si. si is called a split-string.
It specifies the range of strings in C that are lexicograph-
ically smaller than itself and lexicographically larger than
the preceding split-string in S. The client determines which
lexicographic interval contains the hidden message and re-
sponds with the split-string that identifies that interval.

While the focus of the Adler-Maggs protocol is to en-
able communication over an asymmetric channel, we are
also concerned with maintaining covertness and statistical
deniability. In particular, we aim to ensure that at each step,
the probability that an Infranet requester selects a particular
link is equal to the probability that an innocent browser se-
lects that link. We therefore include link traversal probabil-
ity information as a parameter to the algorithm for choos-
ing split-strings. We extract these probabilities from the
server’s access log.

Prior to communicating with the requester, the
responder computes the following information of-

PROCEDURE MODULATE(URL, S)
// Select the smallest split-string from Ss
// lexicographically larger than URL

stringmax fu j u 2 Ss and u > url

and @v 2 S s.t.url<v<ug

// Request the page corresponding to the selected string
r fSr[i] j Ss[i] = stringmaxg
send r

Figure 5. Pseudocode for a modulation function using

range-mapping.

fline: C, the cumulative frequency distribution for
hidden requests; and P , the link-traversal proba-
bilities. Specifically, P is the set of probabilities
pij = P (next request is for page pj jcurrent page is pi)
for all pages pi and pj in R, the set of all pages on the
responder’s Web site.

In each round, the set S contains k tuples, where k is
the number of pages r for which P (rjrcurrent) > 0, i.e.,
the number of possibilities for the requester’s next visible
HTTP request, given the current page rcurrent. These tu-
ples specify k consecutive probability intervals within C.
The size of each probability interval �vi is proportional
to the conditional probability P (rjrcurrent). By assigning
probability intervals according to the next-hop probabilities
for HTTP requests on a Web site, range-mapping provides
statistical deniability for the requester by making it more
likely that the requester will take a path through the site that
would be taken by an innocuous Web client.2 The sum of all
k intervals is equal to Æ, the size of the probability interval
for the previous iteration, or to 1 for the first iteration.

Pseudocode for the modulation function is shown in Fig-
ure 5. In each iteration, the requester receives S and selects
the split string s that specifies the range in which its mes-
sage URL lies. It then sends the corresponding visible HTTP
request r.

Figure 6 shows pseudocode for the demodulation func-
tion. The responder interprets the request rcurrent as a
range specification, bounded above by the corresponding
split-string scurrent and below by split-string in S which
precedes scurrent lexicographically. Given this new range,
the responder updates the bounds for the range, stringmin

and stringmax (lines 12-13), and generates a new split-
string set S for that range (as shown in lines 5-9 and Fig-
ure 7).

A requester can use this scheme to modulate the hidden
message URL even if it is not in the domain of C. The re-

2We present the range-mapping model based on one-hop conditional
probabilities. It should be noted that although this approach provides the
appropriate distribution on link probabilities at each step, it is not guaran-
teed to properly distribute more complex quantities such as the probability
of an entire sequence of link choices.

PROCEDURE DEMODULATE(P;C; rcurrent; stringmin
; string

max
)

// When the range reaches zero, return the string found
1 if (string

min
= string

max
)

2 return string
min

else
// Compute total range for this iteration

3 Æ C(string
max

)� C(string
min

)
// Initialize lower bound of first sub-interval

4 vmin C(stringmin
)

// For all openly served pages r in R, where
// R is the set of all pages on the Web site

5 8r 2 R

// Set the upper bound of the sub-interval proportional
// to the probability of requesting page r

6 v Æ � P(rjrcurrent) + vmin

// Extract the string at the boundary of the sub-interval
// This is the split-string for the sub-interval

7 s C�1(v)
// Save the pair formed by split-string s and page r

8 S S [f(s; r)g
Prepare to compute subsequent sub-interval

9 vmin v

// Send the set of all pairs to the requester
10 send S

// Receive new HTTP request
11 receive rcurrent

// Update interval given the selected split-string
12 string

max
 fSs[i] j Sr[i] = rcurrentg

13 string
min

�
fSs[i] j Ss[i + 1] = string

max
g if i 6= 0

0 otherwise
// Further reduce interval

14 return DEMODULATE(P; C; rcurrent; stringmin
; string

max
)

Figure 6. Pseudocode for a demodulation function using

range-mapping.

quester and responder can perform range-mapping until the
range becomes two consecutive URLs in C. The prefix that
these two URLs share becomes the prefix p of the hidden
message. At this point, the requester and responder may
continue the range-mapping algorithm over the set of all
strings that have p as a prefix.

Since the requester’s message may be of arbitrary length,
there must exist an explicit way to stop the search. One so-
lution is to add a tuple (�; rend) to S, where � indicates that
the requester is finished sending the request. When all split-
strings share a common prefix equal to the hidden message,
the requester transmits rend.

Range-mapping is similar to arithmetic coding, which
divides the size of each interval in the space of binary strings
according to the probability of each symbol being transmit-
ted. The binary entropy, H(C), is the expected number of

string min string maxs1 s2

Lexicographically
ordered strings

vmin

v1

v2

vmax

...

...

δ * P(r1|rcurrent)

δ

δ * P(r2|rcurrent)

C

0

1

Figure 7. One iteration of the range-mapping

demodulation function. The initial interval

[C(stringmin); C(stringmax)] is divided into k
sub-intervals according to probabilities of requesting

any page on the responder’s Web site given the current

page rcurrent. The responder generates the split-

strings s1 through sk that correspond to sub-interval

boundaries and returns them to the requester.

bits required to modulate a message in C. Arithmetic coding
of a binary string requires H(C) + 2 transmissions, assum-
ing 1 bit per symbol [31]. In our model, each page has k
links. Therefore, each visible HTTP request transmits lg(k)
bits, and the expected number of requests required to mod-

ulate a hidden request is
l
H(C)
lg k

m
+ 2.

4.3 Downstream Communication

Figure 8 shows the decomposition of the downstream
hiding function Hdown. The requester receives a hidden
message from the responder by making a series of HTTP re-
quests for images. The responder appliesD to the requested
images and sends the resulting images to the requester. The
requester can then apply the inverse modulation function
D�1 to recover the hidden message fragment. To ensure
innocuous browsing patterns, the requester should request
an HTML page and subsequently request the embedded im-
ages from that page (as opposed to making HTTP requests
for images out of the blue).

For the modulation function D, we use the outguess
utility [16], which modifies the high frequency components
of an image according to both the message being transmit-
ted and a secret key. Modulation takes place in two stages—
finding redundant bits in the image (i.e., the least significant
bits of DCT coefficients in the case of JPEG), and embed-
ding the message in some subset of these redundant bits.
The first stage is straightforward. The second stage uses

��������

��	
�����

��������

��������

������������� %�$�

1

��������������� %�$�
 1
3

�����

� ����� �,�$�
1
�%�$�

1
��!
"

2� %�$�

1
3

�� �� ��%�$�

1
3��!
"

2� ��� �,�$�
1

������������� %�$�

�

�������������� %�$�
 �
3

�
�
�

� ����� �,�$�
�
�%�$�

�
��!
"

2� %�$�

�
3

�� �� ��%�$�

�
3��!
"

2� ��� �,�$�
�

Figure 8. Downstream communication also consists of a

sequence of HTTP requests and responses. The respon-

der hides messages that it sends to the requester in the

HTTP responses. One efficient downstream communi-

cation mechanism uses steganography to hide down-

stream messages in requested images.

the shared secret SKEY as a seed to a pseudorandom num-
ber generator that determines which subset of these bits will
contain the message. Therefore, without knowing the secret
key, an adversary cannot determine which bits hold infor-
mation. Previous work describes this process in greater de-
tail [17].

Steganography is designed to hide a message in a cover
image, where the adversary does not have access to the orig-
inal cover and thus cannot detect the presence of a hidden
message. However, because a Web server typically serves
the same content to many different users (and even to the
same user multiple times), an adversary can detect the use of
steganography simply by noticing that the same requested
URL corresponds to different content every time it is re-
quested. One solution to this problem is to require that
the responder never serve the same filename twice for files
that embed hidden information. For this reason, a webcam
serves as an excellent mode for transmitting hidden mes-
sages downstream, because the filenames and images that
a webcam serves regularly change by small amounts. We
discuss this problem in more detail in Section 5. To pro-
tect Infranet requesters, Infranet responders embed content
in every image, regardless of whether the Web client is an
Infranet requester.

There are many other possible modulation functions for
hiding downstream messages. One possibility is to embed
messages in HTTP response headers or HTML pages. How-
ever, this does not provide the downstream bandwidth that

is necessary to deliver messages to the requester in a reason-
able amount of time. Another alternative is to embed mes-
sage fragments in images using hidden watermarks. Both
watermarking and steganography conceal hidden content;
additionally, watermarks are robust to modification by an
adversary. Past work has investigated watermarking tech-
niques for compressed video [6]. A feasible downstream
modulation function might use downloaded or streaming
audio or video clips to hide messages.

Note that our downstream modulation scheme does not
fundamentally depend on the use of steganography. In fact,
it may make more sense to use a data hiding technique that
an adversary cannot modify or remove without affecting the
visibly returned content. For example, if a responder uses
low-order bits of the brightness values of an image to em-
bed data, the censor will have more difficulty removing the
covert data without affecting the visible characteristics of
the requested image. Since we assume that the censor does
not want to affect the experience of normal users, this type
of downstream communication might be more appropriate.

5 Security Analysis

In this section, we discuss Infranet’s ability to handle a
variety of attacks from a determined adversarial censor. We
are concerned with maintaining deniability and covertness
in the face of these attacks, i.e., making it hard for the cen-
sor to detect requesters and responders. In addition, Infranet
should provide confidentiality, so that even if a censor dis-
covers an Infranet requester or responder, it cannot recover
any of the messages exchanged.

The adversary has access to all traffic passing between
its network and the global Internet, especially all visible
HTTP requests and responses. Furthermore, the adversary
can actively modify any traffic that passes through it, as long
as these modifications do not affect the correctness of the
HTTP transactions themselves.

5.1 Discovery Attacks

A censor might attempt to discover Infranet requesters
or responders by joining Infranet as a requester or a respon-
der. To join Infranet as a requester, a participant must dis-
cover the IP address and public key of a responder. Once
the client joins, all information exchanged with a responder
is specific to that requester. Thus, by joining the network
as a requester, the censor gains no additional information
other than that which must already have been obtained out-
of-band.

Alternatively, a censor might set up an Infranet respon-
der in the hope that some unlucky requesters might con-
tact it. By determining which Web clients’ visible HTTP
requests demodulate to sensible Infranet messages, a cen-

HTTP Requests HTTP Responses

No Target Suspicious HTTP request headers Suspicious response headers or content
One Target HTTP request patterns Content patterns (e.g., same URL, different

image)
Multiple Targets Link requests across Infranet requesters Common patterns in HTTP responses (e.g.,

for commonly requested forbidden URLs)

Table 1. A taxonomy of passive attacks on Infranet. If the censor has the ab ility to target suspected users, attacks involve

more sophisticated analysis of visible HTTP traffic.

sor can distinguish innocent Web clients from Infranet re-
questers. Currently, we rely on each requester trusting the
legitimacy of any responder it contacts. Section 8 describes
a possible defense against this attack by allowing for un-
trusted forwarders.

A censor might mount a passive attack in an attempt to
discover an Infranet communication tunnel. Because this
type of attack often requires careful traffic analysis, passive
attacks on Infranet are much more difficult to mount than
active attacks based on filtering or tampering with visible
HTTP traffic. The types of attacks that an adversary can
perform depend on the amount of state it has, as well as
whether or not it is targeting one or more users.

Table 1 shows a taxonomy of passive attacks that a cen-
sor can perform on Infranet. Potential attacks become more
serious as the adversary targets more users. Weak attacks
involve detecting anomalies in HTTP headers or content.
Stronger attacks require more complex analysis, such as
correlation of users’ browsing patterns.

If a censor observes all traffic that passes through it
without targeting users, it could attempt to uncover an In-
franet tunnel by detecting suspicious HTTP request and re-
sponse headers, such as a request header with a strange
Date value or garbage in the response header. Infranet
defends against these attacks by avoiding suspicious mod-
ifications to the HTTP headers and by hiding downstream
content with steganography. Additionally, by requiring that
Infranet responders always serve unique URLs when con-
tent changes, Infranet guards against a discovery attack on
a responder, whereby a censor notices that slightly different
content is being served from the same URL each time it is
requested.

A censor who targets a suspected Infranet requester can
mount stronger attacks. A censor can observe a Web user’s
browsing patterns and determine whether these patterns
look suspicious. Since the modulation function determines
the browsing pattern, a function that selects subsequent re-
quests based on the structure of the responder’s Web site
might help, but does not always reflect actual user behavior.
Some pages might be rarely requested, while others might

always be requested in sequence. Thus, it is best to base
modulation functions on information from real access logs.

While generating visible HTTP requests automatically
requires the least work on the part of the user, this is not
the only alternative. A particularly cautious user might fear
that any request sequence generated by the system is likely
to look “strange” and thus arouse suspicion. To overcome
this, the system could give the user a certain degree of con-
trol over which visible requests are transmitted. One ex-
ample is for the requester to confirm each URL with the
user before sending it. If the user finds the URL strange, he
can force the requester to send a different URL that com-
municates the same message fragment. These overrides in-
troduce noise into the requester’s sequence. However, the
requester can encode the message with an error correcting
code that allows for such noise.

Another solution would be to ensure that multiple URLs
map to each message fragment the requester wants to send
to give the user a choice of which specific visible URL to
request. We conjecture that with sufficient redundancy, a
user will frequently be able to find a plausible URL that
sends the desired message fragment.

By targeting multiple users, a censor may learn about
many Infranet users as a result of discovering one Infranet
user. Alternatively, a censor could become an Infranet re-
quester and compare its behavior against other suspected
users. We defend against these types of attacks by using
requester-specific shared secrets.

5.2 Disruptive Attacks

Because all traffic between an Infranet requester and re-
sponder passes through the censor, the censor can disrupt
Infranet tunnels by performing active attacks on HTTP traf-
fic, such as filtering, transaction tampering, and session
tampering.

5.2.1 Filtering

A censor may block access to various parts of the Internet
based on IP address or prefix block, DNS name, or port

number. Additionally, censors can block access to content
by filtering out Web pages that contain certain keywords.
For instance, Saudi Arabia is reportedly trying to acquire
such filtering software [10].

Infranet’s success against filtering attacks depends on the
pervasiveness of Infranet responders throughout the Web.
Because Infranet responders are discovered out-of-band, a
censor cannot rapidly learn about Infranet responders by
crawling the Web with an automated script. While a cen-
sor could conceivably learn about responders out-of-band
and systematically block access to these machines, the out-
of-band mechanism makes it more difficult for a censor to
block access to all Infranet responders. The wider the de-
ployment of responders on Web servers around the world,
the more likely it is that Infranet will succeed.

Note that because the adversary may filter traffic based
on content and port number, it is relatively easy for the ad-
versary to block SSL by filtering SSL handshake messages.
Thus, Infranet provides far better defense against filtering
than a system that simply relies on SSL.

5.2.2 Transaction Tampering

A censor may attempt to disrupt Infranet tunnel communi-
cation by modifying HTTP requests and responses in ways
that do not affect HTTP protocol conformance. For exam-
ple, the adversary may change fields in HTTP request or
response headers (e.g., changing the value of the Date:
field), reorder fields within headers, or even remove or add
fields. Infranet is resistant to these attacks because the tun-
nel protocol does not rely on modifications to the HTTP
header.

As described in Section 4.1, the Infranet requester must
present a unique user identifier with each HTTP request in
order to be recognized across multiple HTTP transactions.
A requester could send its user ID in a Web cookie with each
HTTP request. However, if the censor removes cookies,
we suggest maintaining client state by embedding the user
ID (or some token that is a derivative of the user ID) in
each URL requested by the client. Of course, to preserve
the requester’s deniability, the responder must rewrite all
embedded links to include this client token.

The censor may modify the returned content itself. For
example, it might insert or remove embedded links on a re-
quested Web page or flip bits in requested images. Link
insertion and deletion does not affect tunnel communica-
tions that use a codebook because the client sends mes-
sages upstream according to this codebook. Attacks on
image content could disrupt the correct Infranet communi-
cation. Traditional robust watermarking techniques defend
against such attacks. Infranet detects and blocks such dis-
ruptions by embedding the name of the served URL in each
response.

5.2.3 Session Tampering

An adversary might attempt to disrupt tunnel communica-
tion by interfering with sequences of HTTP requests. A
censor could serve a requester’s visible HTTP request from
its own cache rather than forwarding this request to the In-
franet responder. To prevent such an attack, the Infranet re-
quester must ensure that its HTTP requests are never served
from a cache. One way to do this is to always request
unique URLs. We consider this requirement fairly reason-
able: many sites that serve dynamic content (e.g., CGI-
based pages, webcams, etc.) constantly change their URLs.
Another option is to use the Pragma: no-cache di-
rective, although a censoring proxy will likely ignore this.

Alternatively, a censor might insert, remove, or reorder
HTTP requests and responses. If a censor alters HTTP re-
quest patterns, the Infranet responder might see errors in the
received message. However, Infranet responders include the
name of the served URL in each response stream, thus en-
abling the requester to detect session corruption and restart
the transmission. In the case of range-mapping, upstream
transmission errors will be reflected in the split-strings re-
turned by the responder. The requester can also defend
against these attacks with error correction techniques that
recover from the insertion, deletion, and transposition of
bits [20].

6 Implementation

Our implementation of Infranet consists of two compo-
nents: the Infranet requester and the Infranet responder. The
requester functions as a Web proxy and is responsible for
modulating a Web browser’s request for hidden content as
a sequence of visible HTTP requests to the Infranet respon-
der. The responder functions as a Web server extension and
is responsible for demodulating the requester’s messages
and delivering requested content. The requester and respon-
der utilize a common library, libinfranet, that imple-
ments common functionality, such as modulation, hiding,
and cryptography. In this section, we discuss our implemen-
tation of the Infranet requester and responder, as well as the
common functionality implemented in libinfranet.

6.1 Requester

We implemented the Infranet requester as an asyn-
chronous Web proxy in about 2,000 lines of C++. We used
libtcl for the asynchronous event-driven functionality.
The requester sends visible HTTP requests to an Infranet
responder, based on an initial URL at the responder, the re-
sponder’s public key, and optionally an initial key IKEY.

The requester queues HTTP requests from the user’s
browser and modulates them sequentially. If the requester

Fragment Offset

Message Length

10 2 3 4 5 6 7 8 9
0

10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9
1 2

0 1
3

Version Type Z Empty Fragment Length

Figure 9. Responder header format.

knows about more than one responder, it can service re-
quests in parallel by using multiple responders.

In our implementation, visible HTTP requests from the
requester are generated entirely automatically. As discussed
in Section 5.1, we could also allow the user to participate in
link selection to provide increased covertness.

6.2 Responder

We implemented the Infranet responder as an Apache
module, mod infranet in about 2,000 lines of C++,
which we integrated with Apache 1.3.22 running on Linux
2.4.2. The Apache request cycle consists of many phases,
including URI translation, content-handling, and authoriza-
tion [22]. Our mod infranetmodule augments the con-
tent handler phase of the Apache request loop. The respon-
der processes requests as it normally would but also inter-
prets them as modulated hidden messages.

An Infranet responder must maintain state for a requester
across multiple HTTP transactions. The current implemen-
tation of the responder uses Web cookies to maintain client
state because this mechanism was simple to implement; in
the future, we plan to implement the URL rewriting mech-
anism outlined in Section 5 because of its stronger defense
against passive discovery attacks. The responder uses the
REQUESTERTOKEN cookie, which contains a unique iden-
tifier, to associate HTTP requests to a particular requester.
For each requester, the responder maintains per-requester
state, including which FSM state the requester is in, the
modulation function the requester is using, the shared se-
cret SKEY, and message fragments for pending messages.

Figure 9 shows the header that the responder prepends to
each message fragment. Version is a 4-bit field that specifies
which version of the Infranet tunnel protocol the responder
is running. Type specifies the type of message that the pay-
load corresponds to (e.g., modulation function update, re-
quested hidden content, etc.). Z is a 1-bit field that indicates
whether the requested content in the payload is compressed
with gzip (this is the case for HTML files but not images).
Fragment Length refers to the length of the message frag-
ment in the payload in bytes, and Fragment Offset speci-
fies the offset in bytes where this fragment should be placed
for reassembly of the message. Message Length specifies
the total length of the message in bytes. Because upstream

bandwidth is scarce and transmitting a header might cre-
ate recognizable modulation patterns, the requester does not
prepend a header to its messages.

6.3 Steganography and Compression

Upon receiving a request, the responder determines
whether it can embed hidden content in the response. Cur-
rently, mod infranet only embeds data in JPEG images.
If the responder determines that it is capable of hiding infor-
mation in the requested data, it uses outguess to embed
the hidden information using SKEY. To reduce the amount
of data that the responder must send to the requester, the
responder compresses HTML files with gzip [5] before
embedding them into images.

6.4 Cryptography

The Infranet requester generates the 160-bit shared se-
cret SKEY using /dev/random. SKEY is encrypted us-
ing the RSA public key encryption implementation in the
OpenSSL library [15]. This ciphertext is 128 bytes, which
imposes a large communication overhead. However, be-
cause the ciphertext is a function of the length of the re-
quester’s public key, it is difficult to make this ciphertext
shorter. One option to ameliorate this would be to use an
implementation of elliptic curve cryptography [13].

7 Performance Evaluation

In this section, we examine Infranet’s performance. We
evaluate the overhead of the tunnel setup operation and
the performance of upstream and downstream communi-
cation. Finally, we estimate the overhead imposed by
mod infranet on normal Web server operations.

All of our performance tests were run using Apache
1.3.22 with mod infranet on a 1.8 GHz Pentium 4 with
1 GB of RAM. For all performance tests, we ran an Infranet
requester and a Perl script that emulates a user’s browser
from the same machine.

7.1 Tunnel Setup

Tunnel setup consists of two operations: upstream trans-
mission of SKEY encrypted with the responder’s public-key,
and downstream transmission of Utunnel. In our implemen-
tation, SKEY is 160 bits long and the corresponding cipher-
text is 128 bytes, proportional to the length of the respon-
der’s public key. Transmission of Utunnel is equivalent to a
single document transmission. The transmission of an ini-
tial modulation function, if one is used, requires one addi-
tional downstream transmission.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
of

 a
ll

hi
dd

en
 U

R
Ls

Number of requests to transmit hidden URL

Ignoring traversal probabilities (mean: 5.9)
Using traversal probabilities (mean: 6.4)

Figure 10. Number of visible HTTP requests required to

modulate hidden URLs with and without link traversal

probabilities for range-mapping, assuming 8 links per

page (k = 8). The expected number of visible HTTP

requests required to modulate a message is independent

of whether the link traversal probabilities are used.

7.2 Upstream Communication

An important measure of upstream communication per-
formance is how many HTTP requests are required to mod-
ulate a typical message. We focus our evaluation on the
range-mapping scheme described in Section 4.2.

We evaluated the performance of range-mapping using a
Web proxy trace containing 174,100 unique URLs from the
Palo Alto IRCache [8] proxy on January 27, 2002.3 When
we weight URLs according to popularity, the most popular
10% of URLs account for roughly 90% of the visible HTTP
traffic. This is significant, since modulating the most popu-
lar 10% of URLs requires a small number of visible HTTP
requests.

A requester can achieve statistical deniability by pattern-
ing sequences of HTTP requests after those of innocuous
Web clients. As described in Section 4.2.3, this is done by
assigning split-string ranges in C according to the pairwise
link traversal probabilities P . To evaluate the effect of us-
ing the distributionP , we modulated 1,740 requests from C,
both using and ignoring P , assuming 8 outgoing links per
page.

Figure 10 shows that assigning ranges based on link
traversal probabilities does not affect the expected number
of visible HTTP requests required to modulate a hidden re-
quest. This follows directly from properties of arithmetic
codes [31]. In both cases, over half of hidden messages

3These traces were made available by National Science Foundation
grants NCR-9616602 and NCR-9521745, and the National Laboratory for
Applied Network Research.

0

5

10

15

20

1 2 4 8 16 32 64 128

N
um

be
r

of
 r

eq
ue

st
s

Number of possible next requests at each page

90th percentile
50th percentile

Figure 11. The median and 90th percentile of number of

requests to modulate a message is very small even for

small numbers of outgoing links (k) on each page.

required 4 visible HTTP requests, and no more than 10
requests were needed for any message. Therefore, using
traversal probabilities to determine the size of ranges in C
provides statistical deniability without hurting performance.

Setting link traversal probabilities to 1=k, we evaluated
the effect of the number of links on a page, k, on upstream
communication performance. Figure 11 shows that 90% of
messages from C can be modulated in 10 visible HTTP re-
quests or fewer, even for k as small as 4.

In the trace we used for our experiments, the binary en-
tropy of the frequency distribution of requested URLs is
16.5 bits. Therefore, the expected number of requests re-

quired to transmit a URL from C is
l
16:5
lg k

m
+ 2. The em-

pirical results shown in Figure 11 agree with this analytical
result.

To evaluate the performance of range-mapping on real
sites, we modulated hidden requests while varying k and
p according to the browsing patterns observed on a real
Web site. We analyzed the Web access logs for nms.lcs.
mit.edu and pdos.lcs.mit.edu to generate values
for k and p for each page on these sites. We then observed
the number of visible HTTP requests required to transmit
1,740 messages from C. Results from this experiment are
shown in the table below. The number of requests required
to modulate a hidden message is slightly higher than in Fig-
ure 11, since k varies for a real Web site.

SITE kavg MEDIAN 90%
nms.lcs.mit.edu 8 6 10
pdos.lcs.mit.edu 12 4 6

5

10

15

20

25

30

35

40

45

50

55

60

0 10000 20000 30000 40000 50000 60000 70000 80000

N
um

be
r

of
 r

eq
ue

st
s

to
 r

et
rie

ve
 d

at
a

Size of requested data (bytes)

Figure 12. Number of requests required to retrieve data

of various sizes. Each visible HTTP request contains

approximately 1 kB of a hidden message.

7.3 Downstream Communication

Figure 12 shows the number of HTTP requests that an
Infranet requester must make to retrieve hidden messages
of various sizes. Each visible HTTP response contains ap-
proximately 1 kB of a hidden message. The amount of
data that can be embedded in one visible HTTP response
depends on two factors—the compression ratio of the mes-
sage and the amount of data that can be steganographically
embedded into a single image. Thus, depending on the re-
quested document and the images used to embed the hidden
response, the number of visible HTTP requests required to
send a given amount of hidden data may vary.

We microbenchmarked the main operations involved in
content preparation. First, we ran a microbenchmark of
outguess in an attempt to determine the rate at which
it can embed data into images. Our measurements indicate
that outguess embeds data into an image at a rate of 20
kB/sec, and that the time that outguess takes to embed
data is proportional to the size of the cover image.

We also ran microbenchmarks on gzip to determine its
computational requirements, as well as the compression ra-
tios it achieves on typical HTML files. We fetched the in-
dex.html page from 100 popular Web sites that we se-
lected from Nielsen Netratings [14] and IRCache [8]; the
median file size for these files was 10 kB. gzip compressed
these HTML files to as much as 12% of their original size;
in the worst case, gzip compressed the HTML file to 90%
of its original size. In all cases, compression of an HTML
file never took more than 20 milliseconds.

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
an

dw
id

th
 (

kB
/s

)

Percentage of Requests

No Infranet
Infranet

Figure 13. The overhead of running Infranet on Web

server performance. For disk bound workloads, an In-

franet responder performs comparably to an unmodified

Apache server.

7.4 Server Overhead

To ensure plausible deniability for Infranet requesters,
Infranet responders always embed random or requested data
in the content they serve. Because the responder must make
no distinction between Infranet requesters and normal Web
clients, an Infranet-enabled Web server incurs additional
overhead in serving data to all clients.

Therefore, to determine the performance implications of
running an Infranet responder, we submitted an identical
sequence of requests to an Infranet-enabled Apache server
and an ordinary Apache server. The request trace contains a
sequence of visible HTTP requests that were generated by
using an Infranet requester to modulate the requests in the
set of 100 popular Web sites.

Figure 13 shows the additional overhead of running In-
franet. Because the server must embed every image with
data, regardless of whether it is serving an Infranet request
or not, running Infranet incurs a noticeable performance
penalty. 16% of all requests served on an Infranet responder
achieved 300 kB/s or less, and 89% of requests were trans-
ferred at 1 MB/s or less. In contrast, 62% of requests on a
normal Apache server were delivered at 1 MB/s or greater.
Nevertheless, for disk bound workloads, an Infranet respon-
der performs comparably to a regular Apache server. Band-
width achieved by Infranet never drops below 32% of that
achieved by an Apache server running without Infranet, and
is within 90% of Apache without Infranet for 25% of re-
quests. Our current implementation has not been optimized,
and we believe we can reduce this overhead. One way to do
so might be to pre-fetch or cache commonly requested cen-
sored content. The overhead of running outguess could

Infranet
Requester

Infranet
Forwarder

Infranet
Responder

Censor

URL URL

Hidden
content

Hidden
content

(UID, Link
number)

(UID,
Encrypted
content)

Figure 14. An improved architecture separates the for-

warding and decoding of hidden messages in both di-

rections. This allows a potentially untrusted forwarder

to service requests and serve hidden content. The UID

serves to demultiplex requesters.

be reduced by pre-computing the least-significant bits of the
DCT for each image on the site.

8 Enhancements

To this point, we have assumed that Infranet requester
software can be distributed on a physical medium, such as
a CD-ROM. However, this distribution mechanism is slow,
provides evidence for culpability, and is much easier for op-
pressive governments to control than electronic distribution.
Thus, a future enhancement would allow clients to down-
load the Infranet requester software over Infranet itself, es-
sentially bootstrapping the Infranet requester.

The architecture we presented in Section 3 does not pro-
tect against an impersonation attack whereby a censor es-
tablishes an Infranet responder and discovers requesters by
identifying the Web clients that send meaningful Infranet
requests. Figure 14 shows an improved system architec-
ture, where a requester forwards visible HTTP requests to a
trusted responder through a potentially untrusted forwarder,
such that only the responder can recover the hidden request.
Responders fetch and encrypt requested content and return
it to the requester through a forwarder, which hides the
encrypted content in images. This scheme provides sev-
eral improvements. First, blocking access to Infranet be-
comes more difficult, because a requester can contact any
forwarder, trusted or untrusted, to gain access. Second, the
censor can become a forwarder, but it is much more difficult
for the censor to become a trusted responder.

In the current tunnel communication protocol, an In-
franet requester and responder take turns transmitting mes-
sages. It is conceivable that a scheme could be devised
whereby the HTTP requests used to fetch the requested con-
tent could also be used to transmit the next hidden message,
thus interleaving the retrieval of hidden information with
the transmission of the next hidden message.

Since there are many conceivable ways of performing
modulation and hiding, it is likely that there will be many
different versions of the tunnel communication protocol.
Tunnel setup should be amended to include version agree-

ment, such that if some particular aspect of the tunnel proto-
col in a given version is found to be insecure, the requester
and responder can easily adapt to run a different version.

9 Conclusion

Infranet enables users to circumvent Web censorship and
surveillance by establishing covert channels with accessible
Web servers. Infranet requesters compose secret messages
using sequences of requests that are hard for a censor to
detect, and Infranet responders covertly embed data in the
openly returned content. The resulting traffic resembles the
traffic generated by normal browsing. Hence, Infranet pro-
vides both access to sensitive content and plausible denia-
bility for users.

Infranet uses a tunnel protocol that provides a covert
communication channel between requesters and responders,
modulated over standard HTTP transactions. In the up-
stream direction, Infranet requesters send covert messages
to Infranet responders by associating additional semantics
to the HTTP requests being made. In the downstream di-
rection, Infranet responders return content by hiding cen-
sored data in uncensored images using steganographic tech-
niques. While downstream confidentiality is achieved using
a session key, upstream confidentiality is achieved by con-
fidentially exchanging a modulation function.

Our upstream and downstream protocols solve two in-
dependent problems, and each can be tackled separately.
Although our protocol is optimized for downloading Web
pages, it actually provides a channel for arbitrary two-way
communication; for example, Infranet could be used to
carry out a remote login session.

Our security analysis showed that Infranet can suc-
cessfully circumvent several sophisticated censoring tech-
niques, ranging from active attacks to passive attacks to im-
personation. Our performance analysis showed that Infranet
provides acceptable bandwidth for covert Web browsing.
The range-mapping algorithm for upstream communication
allows the requester to innocuously transmit a hidden re-
quest in a number of visible HTTP requests that is propor-
tional to the binary entropy of the hidden request distribu-
tion. We believe that the widespread deployment of Infranet
responders bundled with Web server software has the po-
tential to overcome various increasingly prevalent forms of
censorship and surveillance on the Web.

Acknowledgments

We thank Sameer Ajmani and Dave Andersen for sev-
eral helpful discussions, and Frank Dabek, Kevin Fu, Kyle
Jamieson, Jaeyeon Jung, David Martin, and Robert Morris
for useful comments on drafts of this paper.

References

[1] M. Adler and B. Maggs. Protocols for asymmetric communication
channels. In Proceedings of 39th IEEE Symposium on Foundations
of Computer Science (FOCS), Palo Alto, CA, 1998.

[2] Anonymizer. http://www.anonymizer.com/.

[3] I. Clarke, O. Sandbert, B. Wiley, and T. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Proceedings
of the Workshop on Design Issues in Anonymity and Unobservability,
Berkeley, CA, July 2000.

[4] R. Dingledine, M. Freedman, and D. Molnar. The Free Haven
Project: Distributed anonymous storage service. In Proceedings of
the Workshop on Design Issues in Anonymity and Unobservability,
Berkeley, CA, July 2000.

[5] gzip. http://www.gzip.org/.

[6] F. Hartung and B. Girod. Digital watermarking of raw and com-
pressed video. In Proc. European EOS/SPIE Symposium on Ad-
vanced Imaging and Network Technologies, pages 205–213, Berlin,
Germany, October 1996.

[7] A. Hintz. Fingerprinting websites using traffic analysis. In Workshop
on Privacy Enhancing Technologies, San Francisco, CA, April 2002.

[8] IRCache. http://www.ircache.net/.

[9] B.W. Lampson. A note on the confinement problem. Communica-
tions of the ACM, 16(10):613–615, October 1973.

[10] J. Lee. Companies compete to provide Saudi Internet veil, Novem-
ber 19, 2001. http://www.nytimes.com/2001/11/19/
technology/19SAUD.html.

[11] D. Martin and A. Schulman. Deanonymizing users of the SafeWeb
anonymizing service. In Proc. 11th USENIX Security Symposium,
San Francisco, CA, August 2002.

[12] P. Meller. Europe moving toward ban on Internet hate speech,
November 10, 2001. http://www.nytimes.com/2001/11/
10/technology/10CYBE.html.

[13] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer
Academic Publishers, Boston, MA, 1993.

[14] Nielsen Netratings’ Top 25. http://pm.netratings.com/
nnpm/owa/NRpublicreports.toppropertiesweekly,
November 25, 2001.

[15] OpenSSL. http://www.openssl.org/.

[16] Outguess. http://www.outguess.org/.

[17] N. Provos. Defending against statistical steganalysis. In Proc. 10th
USENIX Security Symposium, Washington, D.C., August 2001.

[18] M. Reiter and A. Rubin. Crowds: Anonymity for web trans-
actions. ACM Transactions on Information and System Security
(TISSEC), 1:66–92, November 1998. http://www.research.
att.com/projects/crowds/.

[19] SafeWeb. http://www.safeweb.com/.

[20] L. J. Schulman and D. Zuckerman. Asymptotically good codes cor-
recting insertions, deletions, and transpositions. In Symposium on
Discrete Algorithms, pages 669–674, 1997.

[21] Squid Web Proxy Cache. http://www.squid-cache.org/.

[22] L. Stein et al. Writing Apache Modules with Perl and C: The Apache
API and mod perl. O’Reilly and Associates, Sebastopol, CA, March
1999.

[23] Stunnel—universal SSL wrapper. http://www.stunnel.
org/.

[24] Zero-Knowledge Systems. Freedom WebSecure. http://www.
freedom.net/products/websecure/.

[25] P. Syverson, M. Reed, and D. Goldschlag. Onion routing access
configurations. In DARPA Information Survivability Conference and
Exposition, pages 34–40, Hilton Head Island, SC, January 2000.
http://www.onion-router.net.

[26] The Cult of the Dead Cow (cDc). Peekabooty. http://
www-peek-a-booty.org.

[27] Triangle Boy. http://fugu.safeweb.com/sjws/
solutions/triangle_boy.html.

[28] Voice of America. http://www.voa.gov/.

[29] M. Waldman and D. Mazières. Tangler: A censorship-resistant pub-
lishing system based on document entanglements. In Proceedings of
the 8th ACM Conference on Computer and Communications Secu-
rity, Philadelphia, PA, November 2001.

[30] M. Waldman, A. Rubin, and L. Cranor. Publius: A robust, tamper-
evident, censorship-resistant, web publishing system. In Proc. 9th
USENIX Security Symposium, pages 59–72, Denver, CO, August
2000.

[31] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, Febru-
ary 1987.

