
Embrace Your Inner Virus

Michael F. Nowlan and Bryan Ford

Yale University

Introduction

A huge amount of systems research effort is currently

spent on fighting viruses and other forms of infective

malware. But in our so far vain struggle to eradicate

viruses, are we failing to learn important lessons they

teach? Might viruses point the way toward the next fun-

damental and beneficial computing paradigm shift? Con-

sider the many technical advantages viruses offer over

other software, both conventional (e.g., MS-Word) and

“cloud-based” (e.g., Google Docs):

• Viruses are easy to install. You don’t have to insert a

DVD and run an installer; you don’t even have to visit

a particular web site. The virus comes to you.

• Viruses are easy to manage. You don’t have to copy or

re-install it if you move to another machine. The virus

moves with you automatically via any means available:

USB stick, Webmail or Facebook account, etc.

• Viruses are highly available. Unlike conventional and

cloud-based software, viruses keep operating, commu-

nicating, and propagating even among machines that

can’t reach the Internet or the original provider’s site.

• Viruses are highly resilient. If a node gets wiped or

otherwise loses its state, a virus will just re-infect the

node the next time the node communicates.

As networked computing infrastructure becomes ever

more crucial to the operation human society at all lev-

els, we must ask ourselves whether we can afford not

to be using a computing model that offers the above

advantages. What we need is not to eradicate viruses

but harness them. We need a viral computing model

that offers the above properties and two additional ones:

transparency—visibility into what a virus is doing and

what information and computing resources it is using;

and choice—control over how and when a virus spreads

and what information and resources it may access.

Virix: An Operating System to Host Viruses

We propose Virix, a new operating system that expects

all applications to be viruses. These viral applications,

or vapps, propagate automatically via any communica-

tion or storage channel the OS allows them to use, online

or offline. A Virix user creates one or more profiles to en-

force policies on where a vapp may propagate and what

computing resources it may access. Virix assigns vapps

to profiles, and determines their resource allocations, ac-

cording to their origin and perhaps other criteria.

When Alice visits Bob’s web site or contacts Bob via

E-mail, for example, Alice’s Virix nodes allow them-

selves to become infected with the vapps contained in

Bob’s public profile. These vapps effectively create an

“embassy of Bob” on each of Alice’s machines, through

which Alice can interact with Bob’s public persona via

software and communication protocols defined and con-

trolled by Bob. In exchange for devoting some local

resources to hosting Bob’s public vapps, Alice can use

Bob’s vapps to find and retrieve (public) information

about Bob, or to contact Bob via channels approved by

Bob: e.g., only via E-mail and not voice, only during

business hours in Bob’s time zone, or only via Bob’s

secretary. If Alice and Bob establish a “friends” relation-

ship, then Alice’s nodes might allocate more resources

to Bob’s vapps, and become infected with the additional

vapps comprising Bob’s more private “friends profile.”

Finally, if Alice logs in to her employer’s private net-

work from her laptop, her laptop automatically becomes

infected with all the vapps comprising her employer’s

computing ecosystem—or at least the vapps inhabiting

the profile representing Alice’s job role.

Virix treats new versions of vapps, and changes to their

associated data, exactly like brand-new vapp infections.

When Bob edits a document associated with a vapp in

his profile, Alice’s devices pull these changes whenever

connectivity permits, making them highly available even

under intermittent connectivity.

Vapps and their data propagate relentlessly wherever

Virix offers them resources. Once Alice has shown an

interest in Bob, granting him a share of her resources, Al-

ice’s devices constantly attempt to locate and download

Bob’s new or changed vapps from any machine hosting

them—e.g., from Charlie, if Bob is offline but Charlie

communicated with him recently. Similarly, Virix em-

braces the “Windows autorun vulnerability” as a feature,

treating the insertion of a CD-ROM or USB drive as a

signal to grant a (perhaps small) resource quota to any

vapps found on the drive. Bob’s devices automatically

keep any spare capacity on his USB drives stuffed with

his vapps and recent updates, so Bob can easily infect

and use his vapps on a new machine—or quickly bring a

1



friend’s machine up-to-date—anywhere he goes.

The only way to delete a vapp is by denying it re-

sources. If Alice contacts Bob once and henceforth

ignores him, for example, then her resource quota for

Bob’s vapps will gradually diminish, squeezing them un-

til they can no longer execute, and finally disappear. If

Alice does contact Bob again or establishes a long-lived

relationship, her quota for Bob increases again, and her

system is reinfected or updated with Bob’s latest vapps.

For efficient resource sharing, Virix enables vapps to

build on other vapps “by reference”: e.g., two location-

aware applications might (perhaps unknowingly) share a

single viral mapping component on each machine they

infect. Many software layers such as GUIs and network

protocols might be composed this way: in the Virix ar-

chitecture, “it’s viruses all the way down.”

The Well-Tempered Virus

Vapps will of course follow the mantra, “Don’t Be Evil.”

But just to keep them honest, Virix should offers users

intuitive, easy-to-use policy controls both over the re-

sources they make available to foreign vapps they host,

and over which foreign devices may host private vapps

containing the user’s sensitive data.

To control resources, we distinguish computing re-

sources from information resources. Computing re-

sources are those such as CPU, storage, and network

bandwidth, which enable vapps to execute but—barring

side-channels—do not grant them information they could

not otherwise acquire. Virix by default shares computing

resources liberally, automatically granting a controlled

share to vapps from any source the user has shown any

interest in—and perhaps granting more limited shares to

“friends of friends” or even to random strangers.

Information resources, in contrast—such as a key-

board, GPS, or webcam—can potentially produce “sen-

sitive” data, for which Virix adapts recent Information

Flow Control (IFC) techniques. A vapp that has been

“tainted” with sensitive data becomes a sensitive vapp,

which Virix allows to propagate in unencrypted form

only to devices the user has specifically authorized for

that sensitivity level. Encrypted copies of sensitive vapps

and their data still propagate freely, however, enabling

Alice to use Bob’s spare storage capacity—or that of

any cloud storage provider—as a storage repository or

a “data mule,” without having to trust the storage.

Different types of devices will require different and

perhaps evolving types of information flow policies and

other device-specific behavior. Like everything else in a

Virix system, device drivers are viruses—created by the

hardware vendor or driver writer—and by default keep

themselves up-to-date with no user action.

The Vapp Store: An Economy of Viruses

What kind of business models might be compatible with

and foster the development of a (preferably legal) ecosys-

tem of vapps for an operating system like Virix?

An advertising-based model is an obvious possibility:

a software vendor embeds in its vapps a reference to an

“ad virus,” which pulls ads from both ad servers and

peers, displaying them when the embedding vapp has ac-

cess to the display. An ad virus can select targeted ads us-

ing any information the user has granted the embedding

vapp—but cannot send information back to ad servers

except as the user’s information flow policies permit.

Today’s malware economy might also hint at a next-

generation economic model for software. Just as mal-

ware writers create and sell malware “toolkits” to spam-

mers, vapp vendors might make their profits by selling

access to custom “vapp generators” to non-programmers.

For example, Bob purchases a “Skype virus” customized

to himself, which provides a “Contact Me” service in his

public profile. Bob can then spread his customized vapp

to anyone—no DRM or license counting—but it’s useful

only for contacting Bob. If Charlie sees and likes Bob’s

Skype vapp, he must purchase his own customized ver-

sion to get one suited for use in his own public profile.

Finally, a vapp economy might even be based on

“quid pro quo” or bartering. In exchange for on-demand

weather reports, a user might allow WeatherVapp.com

access to the external thermometer/barometer connected

to the user’s device, an otherwise restricted information

resource. WeatherVapp’s users thus collectively form

a distributed sensor network, providing WeatherVapp a

goldmine of free information. A parking vapp might of-

fer predictions of available parking spaces, in exchange

for GPS information from the user’s car indicating where

the user has parked (and left) recently, which the vapp

uses to make predictions for other users. Finally, vapp

vendors can always offer services in exchange for users’

computing resources such as storage and CPU time, giv-

ing the vendor a massive supply of processing power

and/or storage—essentially forming a “legal botnet.”

Stop Worrying and Love the Virus

This proposal certainly leaves a few interesting questions

unanswered. How should Virix control interaction be-

tween vapps? How should Virix and its vapps interact

with the emasculated world of non-viral legacy software?

What if a bad virus infects a good virus? Once everything

is a virus, will anti-virus software vendors die out or be-

come all-powerful? These and other details we leave

as exercises for the reader. For now, we merely offer

a parting thought: given how pragmatically impossible

we have found it to eradicate viruses we don’t want, who

really wants to place a bet against viruses we do?

2


