

DataCollider: Effective Data-Race

Detection for the Kernel
 John Erickson, Madanlal Musuvathi,

Sebastian Burckhardt, Kirk Olynyk

Microsoft Windows and Microsoft Research

{jerick, madanm, sburckha, kirko}@microsoft.com

"Although threads seem to be a small step from sequential computation, in fact, they represent a
huge step. They discard the most essential and appealing properties of sequential computation:

understandability, predictability, and determinism."
 — From “The Problem with Threads,” by Edward A. Lee, IEEE Computer, vol. 25, no. 5, May 2006

Windows case study #1

RunContext(...)

{

 pctxt->dwfCtxt &=

 ~CTXTF_RUNNING;

}

Thread B

RestartCtxtCallback(...)

{

 pctxt->dwfCtxt |=

 CTXTF_NEED_CALLBACK;

}

 • The OR’ing in of the CTXTF_NEED_CALLBACK flag can be swallowed
by the AND’ing out of the CTXTF_RUNNING flag!

• Results in system hang.

Thread A Thread B

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

EAX = ??

EAX = ??

pctxt->dwfCtxt = 11h

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

1

EAX = ??

EAX = 11h

pctxt->dwfCtxt = 11h

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

1

2

EAX = ??

EAX = 01h

pctxt->dwfCtxt = 11h

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

/* CONTEXT SWITCH */

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

1

2

EAX = ??

EAX = 01h

pctxt->dwfCtxt = 11h

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

/* CONTEXT SWITCH */

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

1

2

3

EAX = 11h

EAX = 01h

pctxt->dwfCtxt = 11h

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

/* CONTEXT SWITCH */

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

1

2

3

4

EAX = 31h

EAX = 01h

pctxt->dwfCtxt = 11h

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

/* CONTEXT SWITCH */

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

1

2

3

4

5

EAX = 31h

EAX = 01h

pctxt->dwfCtxt = 31h

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

/* CONTEXT SWITCH */

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

1

2

3

6

4

5

EAX = 31h

EAX = 01h

pctxt->dwfCtxt = 01h

Case study #1, assembled

Thread A

mov eax, [pctxt->dwfCtxt]

and eax, NOT 10h

/* CONTEXT SWITCH */

mov [pctxt->dwfCtxt], eax

Thread B

mov eax, [pctxt->dwfCtxt]

or eax, 20h

mov [pctxt->dwfCtxt], eax

1

2

3

6

4

5

EAX = 31h

EAX = 01h

pctxt->dwfCtxt = 01h

CTXTF_NEED_CALLBACK disappeared!

(pctxt->dwfCtxt & 0x20 == 0)

Windows case study #1

RunContext(...)

{

 pctxt->dwfCtxt &=

 ~CTXTF_RUNNING;

 and [ecx+40], ~10h

}

Thread B

RestartCtxtCallback(...)

{

 pctxt->dwfCtxt |=

 CTXTF_NEED_CALLBACK;

 or [ecx+40], 20h

}

• Instructions appear atomic, but they are not!

Thread A Thread B

 By our definition, a data race is a pair of memory accesses
that satisfy all the below:

 The accesses can happen concurrently

 There is a non-zero overlap in the physical address

ranges specified by the two accesses

 At least one access modifies the contents of the
memory location

Data race definition

 Very hard to reproduce
 Timings can be very tight

 Hard to debug
 Very easy to mistake as a hardware error “bit flip”

 To support scalability, code is moving away from
monolithic locks
 Fine-grained locks

 Lock-free approaches

Importance

 Happens-before and lockset algorithms have
significant overhead

 Intel Thread Checker has 200x overhead

 Log all synchronizations

 Instrument all memory accesses

 High overhead can prevent usage in the field

 Causes false failures due to timeouts

Previous Techniques

 Prior schemes require a complete knowledge and
logging of all locking semantics

 Locking semantics in kernel-mode can be
homegrown, complicated and convoluted.

 e.g. DPCs, interrupts, affinities

Challenges

DataCollider: Goals

1. No false data races

 Tradeoff between having
false positives and reporting
fewer data races

DataCollider: Goals

 False data race

 A data race that cannot actually occur

 Benign data race

 A data race that can and does occur, but is
intended to happen as part of normal program
execution

False vs. Benign

False vs. benign example

Thread A

MyLockAcquire();

gReferenceCount++;

MyLockRelease();

gStatisticsCount++;

Thread B

MyLockAcquire();

gReferenceCount++;

MyLockRelease();

gStatisticsCount++;

 False data race

 A data race that cannot actually occur

 Benign data race

 A data race that can and does occur, but is
intended to happen as part of normal program
execution

False vs. Benign

False vs. benign example

Thread A

MyLockAcquire();

gReferenceCount++;

MyLockRelease();

gStatisticsCount++;

Thread B

MyLockAcquire();

gReferenceCount++;

MyLockRelease();

gStatisticsCount++;

2. User-controlled overhead

 Give user full control of
overhead – from 0.0x up

 Fast vs. more races found

DataCollider: Goals

3. Actionable data

 Contextual information is
key to analysis and
debugging

DataCollider: Goals

Insights

1. Instead of inferring if a data race
could have occurred, let’s cause it to
actually happen!

 No locksets, no happens-before

Insights

2. Sample memory accesses
 No binary instrumentation

 No synchronization logging

 No memory access logging

 Use code and data breakpoints

 Randomly selection for uniform
coverage

Insights

Intersection Metaphor

Intersection Metaphor

Memory
Address = 0x1000

Intersection Metaphor

Memory
Address = 0x1000

Hi, I’m
Thread A!

Intersection Metaphor

Memory
Address = 0x1000

Instruction stream

Intersection Metaphor

Memory
Address = 0x1000

Instruction stream

I have the lock, so I get
a green light.

Intersection Metaphor

Memory
Address = 0x1000

Instruction stream

Intersection Metaphor

Memory
Address = 0x1000

DataCollider

Intersection Metaphor

Memory
Address = 0x1000

DataCollider

Intersection Metaphor

Memory
Address = 0x1000

Please wait a moment,
Thread A – we’re doing

a routine check for
data races.

DataCollider

Intersection Metaphor

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

Intersection Metaphor

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

Intersection Metaphor:
Normal Case

Intersection Metaphor: Normal Case

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

Intersection Metaphor: Normal Case

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

Thread B

Intersection Metaphor: Normal Case

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

I don’t’ have the lock,
so I’ll have to wait.

Intersection Metaphor: Normal Case

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

Nothing to
see here. Let
me remove

this trap.

Intersection Metaphor: Normal Case

Looks safe now.
Sorry for the

inconvenience.

DataCollider

Intersection Metaphor: Normal Case

Intersection Metaphor:
Data Race

Intersection Metaphor: Data Race

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

Intersection Metaphor: Data Race

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

Thread B

Intersection Metaphor: Data Race

Memory
Address = 0x1000

Value = 3

DataCollider

Data Breakpoint

Locks are for
wimps!

Intersection Metaphor: Data Race

DataCollider

Intersection Metaphor: Data Race

Intersection Metaphor: Data Race

DataCollider

Intersection Metaphor: Data Race

Looks safe now.
Sorry for the

inconvenience.

DataCollider

Intersection Metaphor: Data Race

Implementation

Sampling memory accesses with
code breakpoints; part 1

Process

1. Analyze target binary for
memory access instructions.

2. Hook the breakpoint handler.

3. Set code breakpoints at a
sampling of the memory
access instructions.

4. Begin execution.

Advantages

 Zero base-overhead– no
code breakpoints means
only the original code is
running.

 No annotations required
– only symbols.

Sampling memory accesses with
code breakpoints, part 2

Advantages

OnCodeBreakpoint(pc) {

 // disassemble the instruction at pc
 (loc, size, isWrite) = disasm(pc);

 DetectConflicts(loc, size, isWrite);

 temp = read(loc, size);
 if (isWrite)
 SetDataBreakpointRW(loc, size);
 else
 SetDataBreakpointW(loc, size);

 delay();

 ClearDataBreakpoint(loc, size);

 temp’ = read(loc, size);
 if(temp != temp’ || data breakpoint hit)
 ReportDataRace();
}

• Setting the data breakpoint
will catch the colliding thread
in the act.

• This provides much more
actionable debugging
information.

Sampling memory accesses with
code breakpoints, part 2

Advantages

OnCodeBreakpoint(pc) {

 // disassemble the instruction at pc
 (loc, size, isWrite) = disasm(pc);

 DetectConflicts(loc, size, isWrite);

 temp = read(loc, size);
 if (isWrite)
 SetDataBreakpointRW(loc, size);
 else
 SetDataBreakpointW(loc, size);

 delay();

 ClearDataBreakpoint(loc, size);

 temp’ = read(loc, size);
 if(temp != temp’ || data breakpoint hit)
 ReportDataRace();
}

• The additional re-read
approach helps detect races
caused by:

• Hardware interaction via DMA

• Physical memory that has
multiple virtual mappings

Results

 Most of dynamic data
races are benign

 Many have the potential
to be heuristically pruned

 Much room to
investigate and develop
in this area

Results: bucketization of races

 25 confirmed bugs in the
Windows OS have been
found

 8 more are still pending
investigation

Results: bugs found

Windows case study #2

Thread A

Connection->Initialized = TRUE;

or byte ptr [esi+70h],1

Thread B

Connection->QueuedForClosing = 1;

or byte ptr [esi+70h],2

This data race was found by using DataCollider on a test machine that was
running a multi-threaded fuzzing test. It has been fixed.

struct CONNECTION {

 UCHAR Initialized : 1;

 UCHAR QueuedForClosing : 1;

};

Windows case study #3

Thread A (owns SpinLock)

parentFdoExt->idleState = newState;

Thread B

parentFdoExt->idleState = newState;

This data race was found by using DataCollider on a test machine that was
running a PnP stress test. In certain circumstances, ChangeIdleState was
being called with acquireLock==FALSE even though the lock was not already
acquired.

VOID ChangeIdleState(

 FDO_IDLE_STATE newState,

 BOOLEAN acquireLock);

Results: Scalability

 By using the code
breakpoint method, we
can see that data races
can be found with as little
as 5% overhead

 The user can effectively
adjust the balance
between races found and
overhead incurred

 Better methods for prioritizing benign vs. non-benign
races

 Statistical analysis? Frequency?

 Apply algorithm to performance issues

 True data sharing

 False data sharing = data race “near miss”

Future Work

Demo

 DataCollider can detect data races

 with no false data races,

 with zero base-overhead,

 in kernel mode,

 and find real product bugs.

We’re hiring! jerick@microsoft.com

Summary

DataCollider Original Prototype

Original Algorithm

OnMemoryAccess(byte* Addr)

{

 if(rand() % 50 != 0) return;

 byte b = *Addr;

 int count = rand() % 1000;

 while(count--) {

 if(b != *Addr) Breakpoint();

 }

}

 “If the memory a thread is
accessing changes, then a data
race could have occurred.”

 Used an internal tool to inject
code into existing binaries

 Written without knowledge of
lockset or happens-before
approaches

False vs. benign example

Thread A

MyLockAcquire();

gReferenceCount++;

MyLockRelease();

gStatisticsCount++;

Thread B

MyLockAcquire();

gReferenceCount++;

MyLockRelease();

gStatisticsCount++;

MyLockAcquire() {
 while(0 !=
 InterlockedExchange(&gLock, 1)
);
}

MyLockAcquire() {
 while(0 !=
 InterlockedExchange(&gLock, 1)
);
}

 Issue:
 Fixing a bug when one only has knowledge of one side

of the race can be very time consuming because it
would often require deep code review to find what the
colliding culprit could be.

 Solution:
 Make use of the hardware debug registers to cause a

processor trap to occur on race.

Improvements: Actionable data

 Issue:

 Injecting code into a binary introduced an unavoidable
non-trivial base overhead.

 Solution:

 Dispose of injecting code into binaries entirely. Sample
memory accesses via code breakpoints instead.

Improvements: Highly scalable

 False data race
 A data race that is claimed to exist by a data race detection

tool, but, in reality, cannot occur.

 Benign data race
 A data race that can and does occur, but is intended to

happen as part of normal program execution. E.g.
synchronization primitives usually have benign data races as
the key to their operation.

 Real data race
 A data race that is not intended or causes unintended

consequences. If the developer were to write the code again,
he/she would do so differently.

False vs. benign vs. real definitions

False vs. benign vs. real example

Thread A

MyLockAcquire();

gReferenceCount++;

MyLockRelease();

gStatisticsCount++;

Thread B

MyLockAcquire();

gReferenceCount++;

MyLockRelease();

gStatisticsCount++;

gReferenceCount++;

