
Enabling Configuration-Independent Automation by Non-Expert Users

Nate Kushman

Massachusetts Institute of Technology

Dina Katabi

Massachusetts Institute of Technology

Abstract

The Internet has allowed collaboration on an unprece-

dented scale. Wikipedia, Luis Von Ahn’s ESP game, and

reCAPTCHA have proven that tasks typically performed

by expensive in-house or outsourced teams can instead be

delegated to the mass of Internet computer users. These

success stories show the opportunity for crowd-sourcing

other tasks, such as allowing computer users to help each

other answer questions like “How do I make my com-

puter do X?”. The current approach to crowd-sourcing IT

tasks, however, limits users to text descriptions of task so-

lutions, which is both ineffective and frustrating. We pro-

pose instead, to allow the mass of Internet users to help

each other answer how-to computer questions by actually

performing the task rather than documenting its solution.

This paper presents KarDo, a system that takes as input

traces of low-level user actions that perform a task on in-

dividual computers, and produces an automated solution

to the task that works on a wide variety of computer con-

figurations. Our core contributions are machine learning

and static analysis algorithms that infer state and action

dependencies without requiring any modifications to the

operating system or applications.

1 Introduction

Computer systems are becoming increasingly complex.

As a result, users regularly encounter tasks that they do

not know how to perform such as configuring their home

router, removing a virus, or creating an email account.

Many users do not have technical support, and hence

their first, and often only, resort is a web search. Such

searches, however, often lead to a disparate set of user fo-

rums written in ambiguous language. They rarely make

clear which user configurations are covered by a par-

ticular solution; descriptions of different problems over-

lap; and many documents contain conjectured solutions

that may not work. The net result is that users spend

hours manually working through large collections of doc-

uments to try solutions that often fail to help them per-

form their task.

What a typical user really wants is a system that auto-

matically performs the task for him, taking into account

his machine configuration and global preferences, and

asking the user only for information that cannot be au-

tomatically pulled from his computer. Today, however,

automation requires experts to program scripts. This pro-

cess is slow and expensive and hence unlikely to scale to

the majority of tasks that users perform. For instance,

a recent automation project at Microsoft succeeded in

scripting only about 150 of the hundreds of thousands

of knowledge-base articles in a period of 6 months [10].

This paper introduces KarDo, a system that enables

the mass of Internet users to automate computer tasks.

KarDo aims to build a database of automated solutions

for computer tasks. The key characteristic of KarDo is

that a user contributes to this database simply by perform-

ing the task. For lay users this means interacting with

the graphical user interface, which manifests itself as a

stream of windowing events (i.e., keypresses and mouse

clicks). KarDo records the windowing events as the user

performs the task. It then merges multiple such traces

to produce a canonical solution for the task which en-

codes the various steps necessary to perform the task on

different configurations and for different users. A user

who comes across a task he does not know how to per-

form searches the KarDo database for a matching solu-

tion. The user can either use the solution as a tutorial that

walks him through how to perform the task step by step,

or ask KarDo to automatically perform the task for him.

The key challenge in automating computer tasks based

on windowing events is that events recorded on one ma-

chine may not work on another machine with a differ-

ent configuration. To address this problem, a system

needs to understand the dependencies between the sys-

tem state and the windowing events. While the system

could track these dependencies explicitly by modifying

Figure 1: Illustration of KarDo’s three-stage design.

the OS and potentially applications [18], such an ap-

proach presents a high deployment barrier and is hard to

use for tasks that involve multiple machines (e.g., config-

uring a wireless router). KarDo therefore adopts an ap-

proach that implicitly infers system state dependencies,

and does not require modifying the OS or applications.

In particular, KarDo builds a model that maps window-

ing events to abstract actions that capture impact on sys-

tem state: UPDATE and COMMIT actions, which actu-

ally modify system state, and NAVIGATE actions, which

simply open or close windows but do not modify system

state. KarDo performs this mapping automatically us-

ing machine learning. It then runs a set of static analysis

algorithms on these sequences of abstract actions to pro-

duce a canonical solution which can perform the task on

various different configurations. The system operates in

3 stages, described below and shown in Fig. 1.

(a) Abstraction. KarDo first captures the context around

each windowing event (e.g, the associated application,

window, widget etc.) using the accessibility interface,

which was originally developed for visually impaired

users and is supported by modern operating systems [8,

5]. KarDo then extracts from the context a per event fea-

ture vector, which it uses in a machine learning algorithm

to map the event to the corresponding abstract action.

Fig. 1(a) illustrates this operation.

(b) Generalization. KarDo then performs static analysis

on the abstract actions in each recorded trace to elimi-

nate irrelevant actions that do not affect the final system

state. Once it has the relevant actions for each task, it

proceeds to generalize them to deal with diverse config-

urations. Since navigation actions do not update state,

KarDo can learn the many diverse ways to navigate the

GUI from totally unrelated tasks, and therefore builds a

global navigation graph across all tasks. In contrast, for

state-modifying actions (i.e., UPDATES and COMMITS),

KarDo uses differences across recordings of the same

task to learn the different sequences of state-modifying

actions that perform the task on various configurations,

and represents this knowledge as a per task directed graph

parameterized by configuration. Fig. 1(b) illustrates the

generalization stage.

(c) Replay. In order to perform the task in a specific

environment, KarDo walks down the graph of state-

modifying actions trying to find a branch where all the

actions involve applications (i.e. Thunderbird, Firefox,

etc.) that exist on the machine. Once it finds such a

branch, it proceeds to execute the actions along it. It

moves from one state modifying action to the next by

leveraging the global navigation graph to find a path from

one of the active desktop widgets to the widget corre-

sponding to the next state-modifying action. Fig. 1(c)

illustrates the replay stage.

We built a prototype of KarDo as a thin client con-

nected to a cloud-based service. We evaluate KarDo on

57 computer tasks drawn from the Microsoft Help web-

site [9] and the eHow [4] websites which together include

more than 1000 actions and include tasks like configuring

a firewall, web proxy, and email. We generate a pool of

20 diversely configured virtual machines which we sep-

arate into 10 training VMs and 10 test VMs. For each

task, two users performed the task on two randomly cho-

sen VMs from the training set. We then attempt to per-

form the task on the 10 test VMs. Our results show that a

baseline that tries both user traces on each test VM, and

picks whichever works better, succeeds in only 18% of

the cases. In contrast, KarDo succeeds on 84% of the

500+ VM-task pairs. Thus, KarDo can automate com-

puter tasks across a wide variety of configurations with-

out modifying the OS or applications.

We also performed a user study on 5 different com-

puter tasks, to evaluate how well KarDo performs com-

pared to humans for the same set of tasks. Even with

detailed instructions from our lab website the students

failed to correctly complete the task in 20% of the cases.

In contrast, when given traces from all 12 users, KarDo

produced a correct canonical solution which played back

successfully on a variety of different machines.

2 Challenges

A system that aims to automate computer tasks based on

user executions and without instrumenting the OS or ap-

plications, needs to attend to multiple subtleties.

(a) Generalizing Navigation. Consider the task of con-

figuring a machine for access through remote desktop.

On Microsoft Windows, the first step is to enable remote

desktop on the local machine through the “System” dia-

log box which is accessed through the Control Panel. Au-

tomatically navigating to this dialog box can be difficult

however because the Control Panel can be configured in

three different ways. Novice users typically retain the de-

(a) Classic View

(b) Category View

Figure 2: Diverse Configurations. To enable remote desktop one
must go to the “System” dialog box. Depending on the configuration
of the Control Panel, one can either directly click the “System” icon (a)
or must first navigate to “Performance and Maintenance” (b) then click
the “System” icon.

fault view which uses a category based naming scheme,

as in Fig. 2(a). Most advanced users however switch to

the “Classic View” which always shows all available con-

trols, as in Fig. 2(b). And, efficiency oriented users often

go as far as configuring the control panel so it appears as

an additional menu off of the start menu. All three paths

however lead to the same “System” dialog box where one

can turn on remote desktop. The challenge is to produce

a canonical GUI solution that performs the task on ma-

chines with any of these configurations even when the

recorded traces for this task show only one of the possi-

ble configurations.

(b) Filtering Mistakes and Irrelevant Actions. KarDo

needs a mechanism to detect mistakes and eliminate ir-

relevant actions that are not necessary for the task. For

example, while performing a task, the user may acciden-

tally open some program that turns out to not be relevant

for the task. If this mistake is included in the final so-

lution, however, it will require the playback machine to

have this irrelevant program installed in order for KarDo

to automatically perform the task. It is important to re-

move mistakes like this to prevent the need for the user

to rerecord a second “clean” trace, thus allowing users to

generate usable recordings as part of their everydaywork.

(c) Parameterizing Replay. After enabling remote desk-

top on his local machine, the user needs to configure the

router to allow through the incoming remote desktop con-

nections and direct them to the right machine. KarDo can

easily automate a task like this, since it is done through

a web-browser interface to the router, which provides the

same accessibility information as all other GUI applica-

tions. The challenge arises, however, because one user

may have a static IP address while another has a dy-

namic IP address, or worse, one user might have a DLink

router, while another has a Netgear. Different steps are

required to perform this task if the user has a static IP

address vs. a dynamic IP address. Similarly, different

routers present different web-based configuration inter-

faces, so users with different routers need to perform dif-

ferent GUI actions to perform this task. KarDo needs

to retain each of these paths in the final canonical so-

lution, and parametrize them such that the appropriate

path can be chosen during playback. The challenge is

to distinguish these configuration based differences from

mistakes and irrelevant actions so that the former can be

retained while the later are removed.

(d) User-Specific Entries. Some tasks require a user to

enter his name, password, or other user-specific entries.

KarDo can easily avoid recording passwords by recog-

nizing that the GUI naturally obfuscates them, provid-

ing a simple heuristic to identify them. However, KarDo

also needs to recognize all other entries that are user spe-

cific and distinguish them from entries that differ across

traces because they are mistakes or configuration-based

differences. It is critical to distinguish user specific en-

tries frommistakes and configuration differences because

KarDo should ask the user to input something like his

username, while it should automatically discover which

path to follow for different router manufacturers.

3 KarDo Overview

KarDo is a system that enables end users to automate

computer tasks without programming, and does not re-

quire modifications to the OS or applications. It has two

components, a client that runs on the user machine to

do recording and playback, and a server that contains a

database of solutions.

When a user performs a task that he thinks might be

useful to others, he asks the KarDo client to record his

windowing events while he performs the task. If the user

cannot, or does not want to perform the task on his ma-

chine, he can perform the task remotely on a virtual ma-

chine running on the KarDo server, while KarDo records

his windowing events. In either case, when the user is

done, the client uploads the resulting windowing event

trace to the KarDo server. The server asks the user for

a task name and description. It uses this information to

search its database for similar tasks and asks the user if

his task matches any of those. This ensures that all traces

for the same task are matched together.

When a user encounters a task he does not know how

to perform, he searches the KarDo database for a solu-

tion. KarDo’s search algorithm has access to not only the

information that a normal text search would have, such

as the task’s name and description, the steps of the task,

and the text of each relevant widget, but also system level

information like which programs are installed, and which

GUI actions he has taken recently. As a result, we believe

that task search with KarDo can be much more effective

than standard text searching is today. However, effective

search represents a research paper on its own, and so we

leave the search algorithm details to future work.

The user can either use the solution as a tutorial that

will walk him through how to perform the task step by

step, or allow the solution to automatically perform the

task for him. It is important to recognize however that

KarDo’s solutions are intended to be best-effort. Even a

highly evolved system will not be able to automate cor-

rectly all of the time. Thus, KarDo takes a Microsoft Vir-

tual Shadow Service snapshot before automatically per-

forming any task, and immediately rolls back if the user

does not confirm that the task was successfully performed

(as discussed in §8, however, we leave the security as-

pects of this problem to future work).

The next three sections detail the three steps for trans-

forming a set of traces recorded on one set of machines

into a solution which allows automated replay on any

other machine. §4 covers how to record the windowing

events and map them to abstract actions that highlight

how each action affects the system state. §5 then de-

scribes how to merge together multiple such sequences

of abstract actions to create a generalized solution for any

configuration. Finally, §6 discusses how replay utilizes

the generalized solution and the state of the playback ma-

chine to determine the exact set of playback steps appro-

priate for that machine.

4 Windowing Events to Abstract Actions

The first phase of generating a canonical solution from

a set of traces is to transform a windowing event trace

into a sequence of abstract actions, since the generaliza-

tion phase, discussed in §5 works over abstract actions.

Performing this abstraction requires first converting the

trace to a sequence of raw GUI actions by associating

GUI context informationwith each windowing event, and

then mapping raw GUI actions to abstract actions using a

machine learning classifier.

4.1 Capturing GUI Context

A low-level windowing event contains only the specific

key pressed, or the mouse button click along with the

screen location. Effectively mapping these low-level

events to abstract actions requires additional information

about the GUI context in which that event took place such

as which GUI widget is at the screen location where the

mouse was clicked. KarDo gathers this information using

theMicrosoft Active Accessibility (MSAA) interface [8].

Developed to enable accessibility aids for users with im-

paired vision, the accessibility interface has been built

into all versions of the Windows platform sinceWindows

98 and is now widely supported [8]. Apple’s OS X al-

ready provides a similar accessibility framework [7], and

the Linux community is working to standardize a single

accessibility interface as well [5]. The accessibility in-

terface provides information about all of the visible GUI

widgets, including their type (button, list box, etc.), their

text name, and their current value, among other charac-

teristics. It also provides a naming hierarchy of each wid-

get which we use to uniquely name the widget. KarDo

uses this context information to transform each window-

ing event to a raw GUI action performed on a particular

widget. An example of such a raw GUI action is a left

click on the OK button in the Advanced tab in the “In-

ternet E-mail Setting” window.

4.2 Abstract Model

KarDo uses an abstract model for GUI actions. This

model captures the impact that each action has on the

underlying system state. We do not claim that our model

captures all possible applications and tasks, however, it

does capture common tasks (e.g., installation, configura-

tion changes, network configurations, e-mail, web tasks)

performed on typicalWindows applications (e.g., MSOf-

fice, IE, Thunderbird, FireFox) as shown from the 57

evaluation tasks in Table 3. As discussed in §12, it also
can be extended if important non-compliant tasks or ap-

plications arise.

In the abstract model all actions are performed on wid-

gets. A widget could be a text box, a button, etc. There

are three types of abstract actions in KarDo’s model:

UPDATE Actions: These actions create a pending change

to the system state. Examples of UPDATE actions include

editing the state of an existing widget, such as typing into

a text box or checking a check-box, and adding or remov-

ing entries in the system state, e.g., an operation which

adds or removes an item from a list-box.

COMMIT/ABORT Actions: These actions cause pending

changes made by UPDATE actions to be written back into

the system state. An example of a COMMIT action is

pressing the OK button, which commits all changes to all

widgets in the corresponding window. An ABORT action

is the opposite: it aborts any pending state changes in the

corresponding window, e.g., pressing a Cancel button.

NAVIGATE Actions: These change the set of currently

visible widgets. NAVIGATE actions include opening a di-

alog box, moving from one tab to another, or going to the

next step of a wizard by pressing the Next button.

Note that a single raw GUI action may be converted

into multiple abstract actions. For example, pressing the

��������������	AB

������CD�EF��A�

��������

��������������	AB

	A������CD�EF��A�

��������

���������	ABCDE �FEA��	A��	ABCDE

BCD�ECF��F�����	AB�

	��CF������	AB�����B��F �CD�EF�

�����F�����	AB������B��F�

BCD�ECF��F������

BCD�ECF��F�����	AB�

	��CF������	AB�����B��F ���ED�EF�

�����F ����	AB������B��F���������

��������������	AB

������CD�EF��A�

������C��E�	

�����F ����	AB������B��F�

BCD�ECF��F������

BCD�ECF��F�����	AB�

	��CF������	AB�����B��F �CD�EF�

����F ����	AB������B��F�

BCD�ECF��F������

Figure 3: A simplified illustration mapping raw GUI action to the
corresponding abstract actions.

OK button both commits the pending states in the corre-

sponding window and navigates to a new view.

Fig. 3 illustrates a simple sequence of raw GUI actions

and the corresponding abstract actions. Here a user clicks

to open a dialog box, clicks to check a check box, and

then clicks OK. He then realizes that he made a mistake

and opens the dialog again to uncheck the check box. Fi-

nally, he opens the dialog one last time, rechecks the box,

but reconsiders his change and hits the Cancel button.
The corresponding sequence of abstract actions shows

that the user navigated thrice to the dialog box, updated

the check box, committed or aborted the UPDATE, and

navigated again to the main window. However, the ab-

stract model allows us to reason that the first UPDATE

and the corresponding NAVIGATE and COMMIT actions

are overwritten by the later UPDATE and hence are re-

dundant and can be eliminated. Similarly, since the last

UPDATE and associated ABORT do not update the state,

they too can be eliminated. In §5.1, we describe KarDo’s
static analysis algorithm for filtering out such mistakes.

4.3 Mapping to Abstract Actions

KarDo has to label the raw GUI actions returned by

the accessibility interface as UPDATE, COMMIT, and/or

NAVIGATE. It does not attempt to explicitly classify

ABORT actions because KarDo’s algorithms implicitly

treat the lack of a COMMIT action as an ABORT action

as explained in §5.1. Further, a given action can have

multiple different abstract action labels, or not have any

label at all. KarDo performs the labeling as follows.

To label an action as a NAVIGATE action, KarDo uses

the simple metric of observing whether new widgets be-

come available before the next raw action. Specifically,

KarDo’s recordings contain information about not only

the current window, but all other windows on the screen.

Thus, if an action either changes the available set of wid-

gets in the current window, or opens another window,

Widget/

Window

Features

Widget name (typically the text on the widget)

Widget role (i.e., button, edit box, etc.)

Does the widget contain a password?

Is the widget updatable (i.e., check box, etc.)?

Is the widget in a menu with checked menu items?

Does the window contain an updatable widget?

Response

To Action

Features

Did the action cause a window to close?

Did the action cause a window to open?

Did the action generate an HTTP POST?

Did the action cause the view to change?

Did the action cause the view state to change?

Action

Features

Action type (right mouse click, keypress, etc.)

Keys pressed (the resulting string)

Does the keypress contain an “enter”?

Does the keypress contain alpha numeric keys?

Is this the last use of the widget?

Table 1: SVM Classifier Features. This table shows the list of fea-

tures used by the SVM classifier to determine which actions are UP-

DATE and COMMIT actions. All features are encoded as binary features

with multi-element features (such as widget name) encoded as a set of

binary features with one feature for each possible value.

then KarDo labels that action as a NAVIGATE action.1

Labeling an action as a COMMIT or UPDATE action is

not as straightforward. There are cases where this label-

ing is fairly simple; for example, typing in a text box or

checking a check box is clearly an UPDATE action. But to

handle the more complex cases, KarDo approaches this

problem the same way a user would, by taking advantage

of the visual features on the screen. For example, a typ-

ical feature of a COMMIT action, is that it is associated

with a user clicking a button whose text comes from a

small vocabulary of words like {OK, Finish, Yes}.

KarDo does this labeling using a machine learning

(ML) classifier. Specifically, an ML classifier for a given

class takes as input a set of data points, each of which is

associated with a vector of features and produces as out-

put a label for each data point indicating whether or not

it belongs to that class. It does this labeling by learning a

set of weights which indicate which features, and which

combinations of features, are likely to produce a posi-

tive data point, and which are likely to produce a nega-

tive data point. KarDo uses a supervised classifier, which

does this learning based on a small set of training data.

KarDo uses two separate classifiers, one for COM-

MITS and one for UPDATES. These classifiers take as

input a data point for each user action (i.e., each mouse

click or keypress), and label them as UPDATES and COM-

MITS respectively. 2 Table 1 shows the features used by

KarDo’s classifiers to determine the labels. Features such

as widget name, and widget role cannot be used directly

by the classifiers however, because classifiers only work

with numerical features. Thus, KarDo handles features

1KarDo will also label a window close as a NAVIGATE action in
cases like a modal dialog box, where the user cannot interact with the
underlying window again until the dialog box is closed.

2Note that since a given action is fed to both classifiers it can be
classified as both an UPDATE and a COMMIT to account for actions
like clicking the “Clear Internet Cache” button which both update the
state and immediately commit that update.

like these, which are character strings, using the same

technique as the Natural Language Processing commu-

nity. Specifically, it adds a new binary feature for each

observed string, i.e., is the the widget name “OK”, is

the widget name “Close”, etc. This creates a relatively

large number of features for each action which can cause

a problem called overfitting, where the classifier works

well only on the training data set, and it does not gen-

eralize to new data. To handle this large number of fea-

tures, KarDo uses a type of classifier called a Support

Vector Machine (SVM) which is robust to large num-

bers of features because it uses a technique called margin

maximization. KarDo trains the SVM classifier using a

set of training data from one set of traces, while all testing

is done using a distinct set of traces.

5 Generalization

Generalization starts with multiple abstract action traces

which perform the same task on different configurations

and transforms them into a single canonical solution that

performs the task on all configurations. KarDo performs

this step by separating how it handles NAVIGATE actions

from how it handles state modifying actions, i.e. UP-

DATES and COMMITS. Specifically, it first prunes out all

NAVIGATE actions from each trace (and all unlabeled ac-

tions), leaving only the state modifying actions. It then

follows a three step process to generate a canonical solu-

tion: (1) it runs a static analysis algorithm on each pruned

trace that removes all the mistakes and irrelevant UP-

DATES; (2) these simplified traces are merged together

to create a single canonical trace which is parameterized

by user-specific environment; and (3) the NAVIGATE ac-

tions from all traces for all tasks are utilized to create a

global navigation graph which is used to do navigation

during playback. The rest of this section describes these

three steps in detail.

5.1 Filtering Mistakes

The first step of generalization is to filter out mistakes

from each trace. To understand the goal of filtering

out mistakes, consider the example in Fig. 3, where the

user opens the dialog box multiple times, changing the

value of a given widget each time. In this example, the

first check box UPDATE is overwritten by the second,

while the third is never committed. Thus both of these

UPDATES are unnecessary, and they should be removed

along with the opening and closing of the dialog box as-

sociated with them. Their removal is important for two

reasons. First, if a user chooses to read the text version of

a solution, or to have KarDo walk him through the task,

then such mistakes will be confusing to the user. Sec-

ond, if not removed, mistakes like this can be confused as

����������	��������

ABC����D�������E�����	ABF

�	�����D�������E�����	ABF

����������	�C��D

����������	��������

ABC����D�������E�����	ABF

�	�����D�������E�����	ABF

����������	AB��CDD�E����F��C������

�	�����D�������E�����	ABF

����������	�C��D

����������	��������

ABC����D�������E�����	ABF

��	���D�������E�����	ABF

����������	�C��D

����������	��������

A	BB���C�������D�����	ABE

����������	�C��D

����������	��������

F������C�������D�����	ABE

A	BB���C�������D�����	ABE

����������	AB��CDD�E����F���A		���

A	BB���C�������D�����	ABE

����������	�C��D

����������	��������

��	���C�������D�����	ABE

����������	�C��D

Figure 4: A Two-Pass Algorithm to Remove Mistakes.

user-specific or environment-specific actions and hence

limit our ability to generalize.

The naive approach to identifying mistakes would

compare multiple GUI traces from users who performed

the same task, and consider differing actions as mistakes.

Unfortunately, such an approach will also eliminate nec-

essary actions which differ due to differences in users’

personal information (e.g., printer name) or their work-

ing environment (e.g., different wireless routers).

In contrast, the key idea in KarDo is to recognize that

the difference between unnecessary actions and environ-

ment specific actions is that unnecessary actions do not

affect the final system state, and GUIs are merely a way

of accessing this system state. So KarDo tracks the state

represented by each widget and keeps only actions that

affect the final state of the system. It does this using the

following two-pass static analysis algorithm that resem-

bles the algorithms used in various log recovery systems

to determine the final set of committed UPDATES.

Pass 1 - Filtering Out Unnecessary UPDATES: The first

pass removes all UPDATES on a particular widget except

the last UPDATE which actually gets committed. Specif-

ically, consider again our example from Fig. 3 where a

user opens a given dialog box, and modifies a widget

three times. We can see that KarDo needs to recognize

that the second UPDATE overwrote the first UPDATE, ren-

dering the first unnecessary. However, it cannot blindly

take the last UPDATE, because the final UPDATE was

aborted. Thus KarDo needs to keep the final committed

UPDATE for each widget. It does this by walking back-

wards through the trace maintaining both a list of out-

standing COMMITS, and a list of widgets for which it’s

already seen a committed UPDATE. As it walks back-

wards, it removes both UPDATES without outstanding

COMMITS and UPDATES for which it’s already seen a

committed UPDATE on that same widget.

Pass 2: Filtering Out Unnecessary COMMITS: The

second pass removes COMMITS with no associated UP-

DATES. It does this by walking forwards through the

trace maintaining a set of pending UPDATES. When it

reaches an UPDATE, it adds the affected widget to the

pending set. When it reaches a COMMIT, if there are any

widget(s) associated with this COMMIT in the pending

set, it removes them from the pending set, otherwise it

removes the COMMIT from the trace.

One may fear that there are cases in which having the

system go through an intermediate state is necessary even

if that state is eventually overwritten. For example, if

the task involves disabling a webserver, updating some

configuration that can only be modified when the web-

server is disabled and then re-enabling the webserver,

it would be incorrect to remove the disabling and re-

enabling of the webserver. While in theory such prob-

lems could arise, we find that in practice they do not

arise. This is because actions like enabling and disabling

a webserver typically look to KarDo like independent

UPDATES which do not reverse each other, since one

may require clicking the “disable” button while the other

requires clicking the “enable” button. This causes the

mistake removal algorithm to be somewhat conservative,

which is the appropriate bias since it’s worse to remove

a required action than to leave a couple of unnecessary

actions.

5.2 Parametrization

The second step of generalization is to parameterize the

traces. Specifically, now that we have removed mis-

takes and navigation actions, the remaining differences

between traces of the same task are either user specific

actions (e.g. user name), or machine configuration dif-

ferences (static IP vs. dynamic IP) which change the set

of necessary UPDATE or COMMIT actions. To integrate

these differences into a canonical trace that works on all

configurations KarDo parametrizes the traces as follows:

(a) Parametrize UPDATES. The values associated with

some UPDATE actions, such as usernames and pass-

words, are inherently user specific and cannot be auto-

mated. KarDo identifies these cases by recognizingwhen

two different traces of the same task update the same wid-

get with different values. To handle these kinds of UP-

DATES, KarDo parses all traces of a task to find all unique

values that were given to each widget via UPDATE ac-

tions that were subsequently committed. Based on these

values the associated UPDATE actions are marked as ei-

ther AutoEnter if the associated widget is assigned the

same value in all traces of that task, or UserEnter if the

associated widget is assigned a different value in each

trace. On play back, AutoEnter UPDATES are performed

automatically, while KarDo will stop play back and ask

the user for UserEnter actions. Note that if the widget is

assigned to a few different values, many of which occur

in multiple traces (e.g., a printer name), KarDo will as-

sign it PossibleAutoEnter, and on play back let the user

select among values previously entered by multiple dif-

ferent users or enter a new value.

(b) Parameterized Paths. All of the remaining differ-

ences between traces now stem from configuration dif-

ferences in the underlying machine, which necessitate a

different set of UPDATES or COMMITS in order to per-

form the same task. To handle this type of difference,

KarDo recognizes that when a user’s actions in two dif-

ferent traces differ because of the underlying machine

configuration, the same action will generate two different

resulting views. For example, consider the task of setting

up remote desktop. Different traces may have used dif-

ferent routers, which require different sets of actions to

configure the router. Since the routers are configured via

a web browser, opening a web browser and navigating to

the default IP address for router setup, http://192.168.1.1,

will take the user to a different view depending on which

router the user has. KarDo takes advantage of this to rec-

ognize that if the DLink screen appears, then it must fol-

low the actions from the trace for the DLink router, and

similarly for the other router brands.

Thus, KarDo builds a per-task state-modifying graph

and automatically generates a separate execution branch

with the branch point parameterized by how the GUI

reacts, e.g., which router configuration screen appears.

This ensures that even when differences in the underly-

ing system create the need for different sets of UPDATES

and COMMITS, KarDo can still automatically execute the

solution without needing help from the user. If the traces

actually perform different actions even though the under-

lying system reacts exactly the same way, then these are

typically mistakes, which would be removed by our fil-

tering algorithm above. If differences still exist after fil-

tering, this typically represents two ways of performing

the same step in the task, i.e. downloading a file using IE

vs. Firefox. Thus KarDo retains both possible paths in

the canonical solution and if both are available on a given

playback machine, then KarDo will choose the path that

is the most common among the different traces.

5.3 Building a Global Navigation Graph

Real world machines expose high configuration diversity.

This diversity stems from basic system level configura-

tion like which programs a user puts on their desktop

and which they put in their Start Menu, to per application

configuration like whether a user enables a particular tool

bar in Microsoft Word, or whether they configure their

default view in Outlook to be e-mail view or calendar

view. All of these configuration differences affect how

one can reach a particular widget to perform a necessary

UPDATE or COMMIT. KarDo handles this diversity with

only a few traces for each task by leveraging that multiple

tasks may touch the same widget, and building a single

general navigation graph using traces for all tasks.

Figure 5: Illustration of the Navigation Graph. A simplified illus-
tration showing a few ways to reach the IE window. The actual graph
is per widget and includes many more edges.

Building such a general navigation graph is relatively

straightforward. KarDo marks each NAVIGATE action as

an enabler to all of the widgets that it makes available.

KarDo then adds a link to the navigation graph from the

widget this NAVIGATE action interacted with (e.g., the

icon or button that is clicked), to the widgets it made

available, and associates this NAVIGATE action with that

edge. Fig. 5 presents a simplified illustration of a por-

tion of the navigation graph. It shows that one can run IE

from the desktop, the Start menu, or the Run dialog box.

6 Replay

The replay process takes a solution constructed using the

process described in the preceding sections, and produces

the low-level window events to perform a task on a par-

ticular machine. At each step, this process utilizes the

full navigation graph, the per-task state-modifying de-

pendency graph, and the current GUI context.

During replay, KarDo walks down the task’s state-

modifying dependency graph. As described in §5.2, this
graph is parameterized by GUI context. Thus, KarDo

utilizes the current GUI context and the installed applica-

tions to determine the path to follow at any branch point.

At each step, KarDo needs to ensure that the next state-

modifying action is enabled. To enable a given UPDATE/

COMMIT action, KarDo finds the shortest directed path

in the navigation graph between the widget required for

the UPDATE/COMMIT action, and any widget that is cur-

rently available on the screen. KarDo finds this path by

working backwards in the navigation graph. Specifically,

it first checks to see if the necessary widget is already

available. If not, it looks in the navigation graph for all

incoming edges to the necessary widget, and checks to

see if any of the widgets associated with those edges are

available. If not, it checks the incoming edges to those

widgets, etc. It continues this process until either it finds

a widget which is already available on the screen, or there

are no more incoming edges to parse.

Once KarDo’s navigation algorithm finds a relevant

widget in the navigation graph which is currently avail-

able on the screen, it performs the associated action. If

the expected next widget in the graph appears, KarDo

follows the path through the navigation graph until the

widget associated with the necessary UPDATE/COMMIT

action becomes available. If at any point, the expected

widget that the edge leads to does not appear, however,

KarDo marks that navigation edge as unusable, and again

performs the above search process. 3 It continues this

process until either it succeeds in making the necessary

UPDATE/COMMIT widget appear on the screen, or it has

exhausted all possibilities and has no paths left in the nav-

igation graph between widgets currently on the screen

and the next necessary UPDATE/COMMIT widget.

Finally, each abstract action, whether NAVIGATE or

state-modifying, is mapped to a low-level windowing

event by utilizing the accessibility interface similar to the

way it is used during recording.

7 Solution Validation

When a user uploads a solution for a task, KarDo allows

the user to provide a solution-check. To do so, the user

performs the steps necessary to confirm the task has been

completed correctly and highlights the GUI widget that

indicates success. For example, to check an IPv6 config-

uration, the user can go to ipv6.google.com and highlight

the Google search button. As with standard tasks, KarDo

will map the trace to abstract actions, clean it from ir-

relevant actions, etc. Such solution-checks allow KarDo

to confirm that its canonical solution for a task works on

all configurations by playing the solution followed by its

solution-check on a set of VMs with diverse configura-

tions, and checking that in each VM the highlighted GUI

widget has the same state as in the solution-check.

8 Security

Ensuring that users cannot insert malicious actions into

KarDo’s solutions is an important topic that represents a

research paper on its own. We do not attempt to tackle

that problem in this paper. To handle non-malicious mis-

takes, however, KarDo takes a Microsoft Virtual Shadow

Service snapshot before automatically performing a task

and rolls back if the user is unhappy with the results.

9 Implementation

The KarDo implementation has three components: a

client for doing the recording and the playback, a server

to act as the solution repository, and a virtual machine

infrastructure for remote recording and solution testing.

9.1 Client

Our current KarDo client is built on Microsoft Win-

dows as a browser plugin. The user interface runs in the

3It caches the searched subgraphs to speed up any later searches.

browser and is built using standard HTML and Javascript

which communicate with the plugin to provide all KarDo

functionality. The plugin is written natively in C++. As

discussed in §4.1, the plugin uses the OS Accessibility

API to do the recording and playback.

The main implementation challenge in the client is to

ensure that the GUI context of each mouse click and key-

press can be recorded before the GUI changes as a re-

sult of the user action, i.e. before the window closes as

a result of clicking the “OK” button. KarDo achieves

the timely recording of the GUI context by utilizing the

Windows Hooks API, which allows registration of a call-

back function to be called immediately before keypress

and/or mouse click messages are passed to the applica-

tion. The challenge is that such a callback function needs

to be extremely fast, otherwise the UI feels sluggish to

the user [17]. Calls to MSAA to get the GUI context are

very slow, however, for two reasons: (1) they use the Mi-

crosoft Component Object Model (COM)4 interface to

marshal and unmarshal arguments for each function call,

and (2) MSAA requires a separate call for each attribute

of each widget on the screen (e.g., a widget name or role)

often resulting in thousands of COM function calls per

window.

We use two main techniques to maintain acceptable

recording performance. First, we implement the callback

function in a shared library so that it can run in-process

with the application receiving the click/keypress. This

significantly improves performance since it avoids the

overhead of COM IPC for each function call. Second,

instead of recording the GUI context of every window

on the screen with every user input, we record only the

full context of the window receiving the user input, and

for all other windows we record only high level informa-

tion such as the window handle, and window title. As we

show in §10.4, this significantly improves performance

when the user has many other windows open.

9.2 Solution Repository Server

The solution server provides a central location for upload,

download and storage of all solutions. In our current im-

plementation, all solution merging also happens on the

server. We implement the solution server on Linux us-

ing a standard Apache/Tomcat server backed by a Post-

gres database. All solutions are stored on disk, with all

meta-data stored in the database. When the client fin-

ishes recording a trace, KarDo immediately asks the user

if he would like to upload the trace. Upon confirmation,

the client uploads the trace to the server, and the server

searches its existing database for solutions with similar

sets of steps, and asks the user to confirm if his trace

matches any of these. The server also provides a web in-

4a binary interface used for inter-process communication

terface listing all solutions. When a user finds a task they

would like automatically performed, they click the Play

button which calls into the client browser plugin to down-

load that solution from the server and start playback.

9.3 Virtual Machine Infrastructure

The VM infrastructure is used for two purposes: 1) to en-

able users to record a solution for a task which they either

cannot or do not want to perform on their own machine;

and 2) to perform solution validation as discussed in §7.5

KarDo’s VM infrastructure is build on top of Kernel-

based Virtual Machine (KVM)[6]. Its design is based on

Golden Master (GM) VM images, which are generic ma-

chine images that have been configured to expose a cer-

tain dimension of configuration diversity, or make avail-

able a certain set of tasks. For example, some GMs are

configured with static IP addresses, while others have dy-

namic IP addresses, and some have Outlook as the default

mail client, while others have Thunderbird. The infras-

tructure can then quickly bring up a running snapshot of

any GM by taking advantage of KVM’s copy-on-write

disks and its memory snapshotting support.

10 Evaluation

We evaluate KarDo on 57 computer tasks which together

include more than 1000 actions and are drawn from the

Microsoft Help website [9] and the eHow [4] website.

We chose these tasks by randomly pulling articles from

the websites and then eliminating those which did not

describe an actual task (i.e. “What does Microsoft Ex-

change do?”), those which described hardware changes

(i.e. “How to addmore RAM”), and those which required

software to which we did not already have a license. We

focused on common programs, e.g., Outlook, IE, and di-

versified the tasks to address Web, Email, Networking,

etc. The full list of tasks is shown in Table 3 and includes

tasks like configuring IPv6, defragmenting a hard drive,

and setting up remote desktop.

10.1 Handling Configuration Diversity

Our goal with KarDo is to handle the wide diversity of

ways in which users configure their machines. Measur-

ing KarDo’s performance on a small number of actual

user machines is not representative of the wide diversity

of configurations, however, since many users leave the

default option for most configuration settings. To capture

this wide diversity, we generate a pool of 20 virtual ma-

chines whose configurations differ along the following

axes: differences of installed applications (e.g., Firefox

5We also used it to produce the evaluation results in §10.1.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
a
g
e
 o

f
V

M
s
 S

u
c
c
e
e
d
in

g
 o

n
 R

e
p
la

y

(Ordered) TaskId

KarDo - Two Traces
KarDo - One Trace

Baseline - Best Trace
Baseline - Random Trace

Figure 6: Success Rate on Diverse Configurations: For each
task on the x-axis the figure plots on the y-axis the percentage of test
VMs that succeeded in performing the task using a specific automation
scheme. For each scheme, the area under the curve refers to the success
rate taken over all task-VM pairs. KarDo-Two-Traces has a success rate
of 84%, whereas KarDo-One-Trace has a success rate of 64%. In con-
trast, Best-Trace, which tries both of the two traces and picks whichever
works better, has a success rate of only 18%, and Random-Trace, which
randomly chooses between the two traces, has a success rate of only
11%.

vs. IE, Thunderbird vs. Outlook), differences of per-

application configuration (e.g., different enabled tool and

menu bars), user-specific OS configuration (e.g., differ-

ent views of the control panel, different icons on the desk-

top), and different desktop states (e.g., different windows

or applications already opened). We apply each configu-

ration option to a random subset of the VMs. This results

in a set of machines with more configuration diversity

than normal, but which represent the kind of diversity of

configurations we would like to handle.

We separate this pool of VMs into 10 training and 10

test. We recruited a set of 6 different users to help us

record traces, including 2 non-expert users and 4 com-

puter science experts. For each of the 57 evaluation tasks,

two of the six users perform the task on two randomly

chosen VMs from the training set. We then try to replay

each task on the 10 test VMs. We compare four schemes:

• KarDo - Two Traces: We generate a canonical so-

lution by merging together the two traces for each

task, and we generate a navigation graph using all

of the traces from all tasks. We then use the KarDo

replay algorithm to playback the resulting solutions

on the test VMs.

• KarDo - One Trace: We randomly pick one of the

two traces and use it to generate a canonical solution

for that task. The navigation graph is generated from

that trace plus all traces for all other tasks (but not

the other trace for that same task).

• BaseLine - Best Trace: For each VM, we try di-

rectly playing both of the two recorded traces for

each task. If either trace succeeds then we report

success for that VM-task combination. This shows

how well a baseline system would perform with two

traces per task.

• BaseLine - Random Trace: We randomly pick one

of the two traces and directly playback all of the

GUI actions in the original trace on the test VMs.

This represents how well a baseline system would

perform with only one trace per task.

Fig. 6 plots the success rate of these four schemes. It

shows that the Best-Trace approach succeeds on average

on only 18% of the VMs while the Random-Trace suc-

ceeds on just 11% of the test VMs. In contrast, KarDo

succeeds on 84% of the 500+ VM-task pairs when given

two traces, and on 64% when given only one trace. Thus,

KarDo enables non-programmers to automate computer

tasks across diverse configurations.

10.2 Understanding Baseline Errors

The Best-Trace and Random-Trace schemes are very

susceptible to configuration differences. Even a sin-

gle configuration difference can cause the Random-Trace

scheme to fail. The two traces considered by the Best-

Trace approach make it more robust to configuration dif-

ferences, but it still only works if the test VM looks very

similar to one of the VMs on which the recordings were

performed. Consider a case where one recording opened

Outlook from the desktop, and then accessed a menu item

to change some configuration, and the other recording

opened it from the Start Menu, and then used the tool bar

to change that configuration. Even in this simple case

where the two recordings see a large amount of diversity

between them, the Best-Trace algorithm cannot handle a

case where the tool bars are turned off, but Outlook is not

on the desktop, or a case where menus are turned off, but

Outlook is not in the Start Menu. More generally, even

if the test VM is a hybrid of the two VMs on which the

traces were recorded, the Best-Trace approach will fail.

This is because a hybrid configuration requires pulling

different parts from each of the traces which cannot be

done without KarDo’s technique of merging the traces

together. Thus, the Best-Trace approach requires an ex-

cessive number of examples to successfully play back on

diverse machines. Finally, we note that there are a num-

ber of tasks where the Best-Trace fails on all VMs. This

occurs when all test VMs are widely different from the

two VMs where the recordings were performed.

10.3 Understanding KarDo Errors

While KarDo successfully plays back in the vast major-

ity of the cases, it still fails to playback successfully on

16% of the VM-task pairs. There are three main causes

of these errors: classifier mistakes, incorrect navigation

steps, and missing navigation steps. Fig. 7 shows the

breakdown of these errors. Specifically it shows that

eliminating classification errors results in a 91% success

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
a
g
e
 o

f
V

M
s
 S

u
c
c
e
e
d
in

g
 o

n
 R

e
p
la

y

(Ordered) TaskId

Oracle Classifier-Oracle Navigation
Oracle Classifier-Standard Navigation

KarDo (SVM Classifier-Standard Navigation)

Figure 7: Cause of KarDo Errors: This figure shows the breakdown
of the KarDo playback errors by showing the playback success when
various parts of the KarDo algorithms are replaced by oracle versions.
Recall that the success rate is the area under the curve. Based on the
figure, replacing KarDo’s classifiers with oracle classifiers increases the
playback success rate from 84% to 91%. Additionally, eliminating all
mistakes in the navigation database by using an oracle for navigation
increases the playback success rate from 91% to 95%. The remaining
5% failure cases result frommissing navigation steps that did not appear
in any of the input traces.

rate while eliminating incorrect navigation steps results

in a 95% success rate. We observe that the remaining 5%

of the errors result mostly from missing navigation steps.

The following discusses each of these in detail.

(a) ML Classification Errors: To evaluate our ML clas-

sifier, we manually labeled each of the actions performed

by the users for the 57 tasks as a COMMIT action, an UP-

DATE action, both or neither. We then split this labeled

data into half training and half test data. As described

in §4.3 we run two separate classifiers on the data, one

for UPDATE actions, and one for COMMIT actions. Since

KarDo’s generalization algorithm (from §5) retains only
COMMITS and UPDATES as necessary actions, false neg-

ative misclassifications will cause KarDo to skip one of

these necessary UPDATES or COMMITS during playback.

False positives on the other hand will cause unneces-

sary actions to be retained, requiring KarDo to attempt

to playback irrelevant actions which may be unavailable

on a test VM. We calculate the false positive rate for each

of the two classifiers as the percentage of actions in the

COMMIT/UPDATE class that should not be in it, and the

false negative rate as the percentage of actions not in the

COMMIT/UPDATE class but should be in it.

The resulting performance of the KarDo classifiers is

shown in Table 2. As we can see, the ML classifiers per-

form quite well even though classification mistakes ac-

count for almost half of the playback failures. Specifi-

cally, the COMMIT classifier has a false positive rate of

only 2% and a false negative rate of only 3%. The COM-

MIT classifier performs so well because COMMITS follow

very predictable patterns, i.e., they almost always occur

when a button is pressed, and very frequently cause the

associated window to close. The UPDATE classifier per-

False Positive Rate False Negative Rate

COMMITS 2% 3%

UPDATES 6% 5%

Table 2: Performance of the COMMIT and UPDATE Classifiers.

forms slightly worse with a 6% false positive rate and a

5% false negative rate. The higher false positive rate for

UPDATES is caused by actions using widgets like combo

boxes and edit boxes which are typically used for UP-

DATES, but are sometimes used just for navigational pur-

poses. Occasionally when an action uses one of these

widgets only for navigation (i.e., it’s not an UPDATE),

KarDo will misclassify the action as an UPDATE action.

The higher false negative rate stems from actions which

are both UPDATES and COMMITS. These actions tend to

look much more like COMMITS than UPDATES and as a

result the COMMIT classifier typically correctly classifies

them, but the UPDATE classifier occasionally misclassi-

fies them, not realizing they are also UPDATES. One

such example is clicking the button to defragment your

hard drive, which looks very much like a COMMIT ac-

tion as it is a button click, and closes the associated win-

dow, but does not look very much like a typical UPDATE

action since button clicks usually do not update any sys-

tem state. In fact, if we test the UPDATE classifier after

removing actions that are both COMMITS and UPDATES

from the training and test sets the false negative rate drops

to 2% without increasing the false positive rate at all.

Note that a misclassification does not necessarily cause

an error in the resulting canonical trace. In particular,

only misclassifications that result in the eventual discard

of a necessary action produce erroneous task solutions.

For example, one may misclassify an action that is both

COMMIT and UPDATE as only COMMIT. Still, as long as

the mistake removal algorithm keeps this action as neces-

sary, the resulting solution will still perform the UPDATE.

To evaluate the effect of classification mistakes on the

final playback performance, we ran an “Oracle Classi-

fier” version of KarDo where instead of using the output

from the ML classifier to determine whether an action

is an UPDATE or a COMMIT, we directly use the hand

generated labels so that all classifications are correct. As

shown in Fig. 7 this increases the playback success rate

by an additional 7%. More training data would help elim-

inate these mistakes.

(b) Incorrect Navigation Steps: The next cause of play-

back problems comes from limitations in the way we

currently generate the navigation graph. As discussed

in §4.3, KarDo assumes that navigation depends only on

the final action that made a widget visible. In a few cases,

however, navigation depends on other earlier actions in

the trace. A simple example of this is the “Run” dialog

box which allows a user to type in the name of a program

and then click “OK” to run it. In this case, the naviga-

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 5 10 15 20

T
im

e
 (

M
ill

is
e
c
s
)

Number of Windows

Just Main Window
All Windows

Figure 8: Real Time Window System Context Recording: The
figure shows that KarDo’s optimized recording, which limits recording
full context information to only the main window, has a response time
less than 100ms regardless of the number of windows. This is signifi-
cantly below the 200ms threshold at which users perceive the UI to be
sluggish. In contrast, recording the full context of all windows has a
response time that scales with the number of windows, eventually be-
coming very slow.

tion depends not only on clicking “OK”, but also on the

program name filled into the edit box.

To test the effect of incorrect navigation steps on the fi-

nal playback success, we hand labeled all such dependent

navigation actions. We then ran a “Oracle Navigation”

version of KarDo where each navigation step had the full

set of required actions associated with it. As shown in

Fig. 7 this increases the playback success by an additional

4%. These mistakes can be eliminated by the additional

classifier discussed in §12.

(c) Missing Navigation Steps: The final cause of play-

back problems stems from KarDo’s fairly limited view

of the GUI navigation landscape, due to the relatively

small number of input traces in our experiments. Specif-

ically, since many of the traces KarDo uses to generate

its solutions are performed by users that already know

how to perform a task, these traces rarely include navi-

gation information related to incorrect navigations. This

can cause playback to fail in the small fraction of cases

where KarDo navigates in a way that is not appropriate

for a given configuration and thus results in an error di-

alog box or some other GUI widget/window which was

not seen in any trace. In this case, to ensure that it does

not cause any problems, KarDo will immediately abort

playback and roll back the user’s machine to its original

state. These type of errors account for most of the re-

maining 5% of playback errors shown in Fig. 7, and can

be solved by more traces.

10.4 Feasibility Micro-Benchmarks

We want to ensure that KarDo’s design performs well

enough to be feasible in practice. To test this, we ran

three performance tests on a standard 2.4 GHz Intel

Core2 Duo desktop machine.

First, as discussed §9.1, context recording has to be

fast so that it does not cause the user to perceive the UI as

sluggish. Fig. 8 shows that even with many windows on

the screen, KarDo can grab the relevant windowing sys-

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
e
c
o
n
d
s
)

Number of Tasks Merged

Figure 9: Performance of Solution Merging: The figure graphs the
time that KarDo takes to merge a given number of traces, showing that
KarDo can scale to quickly merge a large number of traces for a given
task.

tem context in well less than 100ms, and the overhead is

relatively constant regardless of the number of windows.

Since users only start to notice delay when it is greater

than 200ms [17], this additional delay should be accept-

able to users. In contrast a scheme which records the

context of all windows reaches an unacceptable delay of

more than 1 second with even just 15 windows open.

Next, we check the performance of solution merging.

Fig. 9 shows that merging up to 50 traces takes only 15

seconds, and it takes less than a second to merge 5 traces.

This result shows that KarDo can easily scale to merging

a large number of traces for each task.

Finally, KarDo’s playback is relatively fast. For the 57

tasks in Table 3, playing a KarDo solution takes on av-

erage 52 seconds with a standard deviation of 9 seconds.

The maximum replay time was 125 seconds, which was

mostly spent waiting for the virus scanner to finish.

10.5 Working with Users

We evaluate KarDo’s ability to improve on the status quo

of using text instructions to perform computer tasks. We

asked 12 CS students to perform 5 computer tasks within

1 hour, based on instructions from our lab website. We

also used KarDo to automate each task by merging the

students’ traces into a single canonical solution.

We find three important results. First, as shown in

Fig. 10(a), even with detailed instructions, the students

fail to correctly complete the tasks in 20% of the cases.

In contrast, KarDo always succeeded in generating a so-

lution that automated the task on all 12 user machines.

Second, as shown in Fig. 10(b), even when the stu-

dents did complete the tasks they performed on average

84% more GUI actions than necessary, and sometimes

more than three times the necessary number of actions.

KarDo’s automation removes most of these irrelevant ac-

tions, performing only 11% more actions than necessary.

Third, as shown in Fig. 10(c), KarDo reduced the per-

task required number of times the user had to interact

with the machine from 25 to 2 times, on average. This

reduction is because KarDo requires manual entry only

for user-specific inputs, and automates everything else.

����

����	ABCDE	��

F�B�����	���

�C	�E	�A

��E	��

F	C��E�C�

�	CB� ��D� �	� �	C����

��CE	�	�DE�

�DCF� ��� ��� ��� ��� ���

������ ��� ��� ��� ��� ���

������ ��� 	A ��� ��� ���

�����B ��� ��� ��� ��� ���

�����C ��� 	A 	A ��� ���

�����D 	A 	A ��� ��� ���

�����E 	A ��� 	A ��� ���

�����F ��� ��� ��� ��� ���

������ ��� 	A ��� ��� ���

������ ��� 	A ��� ��� ���

������� 	A 	A ��� ��� ���

������� ��� ��� ��� ��� ���

������� ��� ��� ��� ��� ���

(a) Task successes and failures.

���

C
F

�

��

���

���

���

���

���� 	AB�CDEF �	 ����E ��CF

�
�
�
�
��
��
�	
	�
A�
B
�
C
D�
�
ED
��
C
F

���CB���C��� ��C	�

(b) Percentage irrelevant actions performed by users and KarDo

�

��

��

��

��

��

��	A BCDAEF�� 	B ����� ��E�

�
�
�
�
��
�
�
	A
B
�

������ ��EB�

(c) User manual inputs with and without KarDo.

Figure 10: Working with Users: The figures shows that (a) KarDo
performs the task correctly, even when many users fail, (b) KarDo fil-
ters most irrelevant actions, and (c) with KarDo users need to manually
perform very few steps, typically only those which require user-specific
information.

These results show that KarDo can help users reduce the

time and effort spent on IT tasks.

11 Related Work

While there are many tools to help automate computer

tasks, most either do not support recording and must

be scripted by programmers (e.g., AutoIt [2] and Auto-

HotKey [1]), or allow recording only by relying on appli-

cation specific APIs and thus cannot be used to automate

generic computer tasks (e.g., macros, DocWizards [14]).

Apple’s Automator [3], Sikuli [13] and AutoBash [18]

are the only exceptions as far as we know. However, nei-

ther Automator nor Sikuli can automatically produce a

canonical GUI solution that works on different machine

configurations. AutoBash covers only tasks which are

entirely contained on the local machine, which is increas-

ingly infrequent with today’s networked computer sys-

tems. Additionally, it requires modifying the kernel to

track dependencies across applications and then taking

diffs of the affected files. Such kernel modifications are a

deployment barrier, and file diffs are ineffective on binary

file formats.

Some tools support recording and check pointing, such

as DejaView [16], but they do not actually playback a

task, instead only returning to a checkpointed state.

Lastly, there are tools that leverage shared information

across a large user population [21, 20, 15, 19, 12, 11].

Strider [21] and PeerPressure [20] diagnose configura-

tion problems by comparing entries in Windows registry

on the affected machine against their values on a healthy

machine or their default values in the population. FTN

addresses the privacy problem in sharing configuration

state by resorting to social networks [15]. [19] and [12]

track kernel calls similar to AutoBash to determine prob-

lem signatures and their solutions. NetPrints [11] collects

examples of good and bad network configurations, builds

a decision tree, and determines the set of configuration

changes needed to change a configuration from bad to

good. All of these tools compare potentially problematic

state information against a healthy state to address com-

puter problems and failures. KarDo focuses on a com-

plementary issue where the existing machine state maybe

perfectly functional but the user wants to perform a new

task. KarDo addresses such how-to tasks by working at

the GUI level, which allows it to handle any general task

the user can perform.

12 Addressing KarDo’s Limitations

While our system represents a first step towards provid-

ing a system for automating a task by doing it, our cur-

rent implementation has multiple limitations we expect

to explore in future work. First, our model of labeling

all actions as COMMITS, UPDATES and NAVIGATE ac-

tions is not exhaustive. Specifically, it does not cover

tasks which simply show something on the screen. For

example, a task like “Find my IP Address” will look to

KarDo like it does nothing, and so all actions will be re-

moved. This can be addressed by extending the model.

Second, as discussed in §10.1, it does not handle tasks

containing complex navigation actions. For example if

navigation requires typing the name of a program in an

edit box and then clicking “Run” then KarDo will only

click the “Run” button. This can be solved using an addi-

tional classifier to detect these dependent navigation ac-

tions. Finally, KarDo requires unnecessary manual steps

when entering the same user specific information across

many tasks. For example, a user will have to manually

enter his Google username every time he wants to run any

task that accesses Google services.To handle this, we’d

like to build a profile for each user which will remember

previous inputs by a user and reuse them across tasks.

13 Concluding Remarks

This paper presents a system for enabling automation of

computer tasks, by recording traces of low-level user ac-

tions, and then generalizing these traces for playback on

other machine configurations through the use of machine

learning and static analysis. We show that automated

tasks produced by our system work on 84% of config-

urations, while baseline automation techniques work on

only 18% of configurations.

This paper has focused on use of our system for build-

ing an on-line repository of automated IT tasks which

would include both local configuration and setup as well

as remote tasks such as configuring a wireless router. We

note, however, that our system is useful for many other

applications as well, including replacing IT knowledge-

bases, automated software testing, and even use by expert

users as an easy way to automate repetitive tasks.

Acknowledgments

We’d like to thank Steve Bauer and Neil Van Dyke for

their help implementing an early version of the system,

and Micah Brodsky and Martin Rinard for help with the

mistake removal algorithm. Also, we greatly appreciate

Hariharan Rahul’s help editing an early draft of this pa-

per, and Sam Perli and Nabeel Ahmed’s help generating

early results. Lastly we’d like to thank Regina Barzilay,

S.R.K. Branavan, James Cowling, Evan Jones, Ramesh

Chandra, Jue Wang, Carlo Curino, Lewis Girod and our

shepherd Michael Isard for their feedback on the paper.

This work was supported by NSF grant IIS-0835652.

References

[1] AutoHotkey. http://www.autohotkey.com/.
[2] AutoIt, a freeware Windows automation language.

http://www.autoitscript.com/.
[3] Automator. http://developer.apple.com/macosx/automator.-html.
[4] eHow. http://www.ehow.com.
[5] IAcessibility2. http://www.linuxfoundation.org/en/Accessibility/-

IAccessible2.
[6] KVM. http://www.linux-kvm.org.
[7] Mac OS X Accessibility Framework . http://developer.apple-

.com/documentation/Accessibility/Conceptual/AccessibilityMac-
OSX/AccessibilityMacOSX.pdf.

[8] Microsoft Active Accessibility. http://en.wikipedia.org/wiki/-
Microsoft Active Accessibility.

[9] Microsoft Help. http://windows.microsoft.com/en-
us/windows/help.

[10] Security Garden Blog. http://securitygarden.blogspot.com/2009/-
04/microsoft-fix-it-gadget.html.

[11] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padman-
abhan, and G. M. Voelker. Netprints: Diagnosing home network
misconfigurations using shared knowledge. In NSDI, 2009.

[12] M. Attariyan and J. Flinn. Using causality to diagnose configura-
tion bugs. USENIX, 2008.

[13] T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using computer
vision. In CHI, 2010.

[14] L. D. B. et. al. DocWizards: A System For Authoring Follow-me
Documentation Wizards. In UIST, 2005.

E-mail

Sending/

Receiving

Turn off E-mail Read Receipts (54, 27)

Automatically forward e-mail to another address (35, 30)

Viewing

Restore the unread mail folder (16, 8)

Highlight all messages sent only to me (31, 24)

Change an e-mail filtering rule (18, 19)

Add an e-mail filter rule (46, 26)

Make the recipient column visible in the Inbox (27, 11)

Order e-mail message by sender (19, 73)

Create an Outlook Search Folder (12, 12)

Turn on threaded message viewing in Outlook (16, 9)

Mark all messages as read (44, 48)

Automatically empty deleted items folder (22, 24)

Junkmail
Empty junk e-mail folder (9, 9)

Turn off Junk e-mail filtering (22, 14)

Security
Consider people e-mailed to be safe senders (19, 25)

Send an e-mail with a receipt request (20, 12)

Contacts/

Calendar

File Outlook contacts by last name (25, 13)

Set Outlook to start in Calendar mode (15, 23)

RSS

Feeds

Add a new RSS feed (14, 15)

Change the Name of an RSS feed (12, 23)

Other

Turn off Outlook Desktop Alerts (24, 35)

Reduce the size of a .pst file (26, 39)

Turn off notification sound (22, 66)

Switch calendar view to 24-hour clock (20, 14)

Office Applications

Excel
Delete a worksheet in Excel (8, 8)

Turn on AutoSave in Excel (33, 111)

Word Disable add-ins in Word (25, 23)

Web

Browser Install Firefox (23, 21)

Proxy
Manually Configure IE SSL Proxy (61, 83)

Set Default Http Proxy (7, 7)

Networking

Security

and

Privacy

Enable firewall exceptions (9, 9)

Enable Windows firewall (6, 6)

Disable Windows firewall notifications (8, 9)

Disable Windows firewall (6, 9)

IPv6

Disable IPv6 to IPv4 tunnel (8, 7)

Show the current IPv4 routing table (10, 17)

Show the current IPv6 routing table (13, 10)

DNS

Use OpenDNS (44, 38)

Stop caching DNS replies (6, 9)

Use Google’s Public DNS servers (32, 32)

Use DNS server from DHCP (22, 22)

Routing
Configure system to pick routes based on link speed (22, 17)

Set routing interface metric (18, 19)

System

Utilities

Analyze hard drive for errors (7, 13)

Defragment hard drive (10, 13)

Enable Automatic Updates (7, 6)

Set Up Remote Desktop (12, 10)

User

Interface

Settings

Hide the Outlook icon in the System tray (21, 18)

Change to Classic UI (15, 13)

Delete an Item from the Task Bar (13, 9)

Change desktop background color (35, 26)

Enable Accessibility Options (20, 20)

Auto-Hide the Taskbar (52, 41)

Change date to Long Format (33, 19)

Set Visual Effects for Performance (13, 13)

Other
Set Outlook as default E-mail program (26, 15)

Enable Password on Screen Saver and Resume (22, 29)

Table 3: 57 tasks used to evaluate KarDo. Each task is listed with the
number of actions performed in each of the two traces.

[15] Q. Huang, H. Wang, and N. Borisov. Privacy-Preserving Friends
TroubleShooting Network. In NDSS, 2005.

[16] O. Laadan, R. A. Baratto, D. B. Phung, S. Potter, and J. Nieh.
Dejaview: A personal virtual computer recorder. In SOSP, 2007.

[17] Olsen. Developing User Interfaces. Morgan Kaufmann, 1998.
[18] Y. Su, M.A., and J. F. Autobash: improving configuration man-

agement with operating system causality analysis. SOSP, 2007.
[19] Y.-Y. Su and J. Flinn. Automatically generating predicates and

solutions for configuration troubleshooting. USENIX, 2009.
[20] H. J. Wang, J.P., Y.C., R.Z., and Y.-M. Wang. Automatic miscon-

figuration troubleshooting with peerpressure. In OSDI, 2004.
[21] Y.-M.Wang and et. al. Strider: A black-box, state-based approach

to change and configuration management and support. In LISA,
2003.

