
Nectar: Automatic Management of Data and Computation in Datacenters

Pradeep Kumar Gunda, Lenin Ravindranath∗, Chandramohan A. Thekkath, Yuan Yu, Li Zhuang

Microsoft Research Silicon Valley

Abstract
Managing data and computation is at the heart of data-

center computing. Manual management of data can lead
to data loss, wasteful consumption of storage, and labo-
rious bookkeeping. Lack of proper management of com-
putation can result in lost opportunities to share common
computations across multiple jobs or to compute results
incrementally.

Nectar is a system designed to address the aforemen-
tioned problems. It automates and unifies the manage-
ment of data and computation within a datacenter. In
Nectar, data and computation are treated interchange-
ably by associating data with its computation. De-
rived datasets, which are the results of computations, are
uniquely identified by the programs that produce them,
and together with their programs, are automatically man-
aged by a datacenter wide caching service. Any derived
dataset can be transparently regenerated by re-executing
its program, and any computation can be transparently
avoided by using previously cached results. This en-
ables us to greatly improve datacenter management and
resource utilization: obsolete or infrequently used de-
rived datasets are automatically garbage collected, and
shared common computations are computed only once
and reused by others.

This paper describes the design and implementation of
Nectar, and reports on our evaluation of the system using
analytic studies of logs from several production clusters
and an actual deployment on a 240-node cluster.

1 Introduction

Recent advances in distributed execution engines (Map-
Reduce [7], Dryad [18], and Hadoop [12]) and high-level
language support (Sawzall [25], Pig [24], BOOM [3],
HIVE [17], SCOPE [6], DryadLINQ [29]) have greatly

∗L. Ravindranath is affiliated with the Massachusetts Institute of
Technology and was a summer intern on the Nectar project.

simplified the development of large-scale, data-intensive,
distributed applications. However, major challenges still
remain in realizing the full potential of data-intensive
distributed computing within datacenters. In current
practice, a large fraction of the computations in a dat-
acenter is redundant and many datasets are obsolete or
seldom used, wasting vast amounts of resources in a dat-
acenter.

As one example, we quantified the wasted storage in
our 240-node experimental Dryad/DryadLINQ cluster.
We crawled this cluster and noted the last access time
for each data file. We discovered that around 50% of the
files was not accessed in the last 250 days.

As another example, we examined the execution statis-
tics of 25 production clusters running data-parallel ap-
plications. We estimated that, on one such cluster, over
7000 hours of redundant computation can be eliminated
per day by caching intermediate results. (This is approx-
imately equivalent to shutting off 300 machines daily.)
Cumulatively, over all clusters, this figure is over 35,000
hours per day.

Many of the resource issues in a datacenter arise due
to lack of efficient management of either data or compu-
tation, or both. This paper describes Nectar: a system
that manages the execution environment of a datacenter
and is designed to address these problems.

A key feature of Nectar is that it treats data and com-
putation in a datacenter interchangeably in the following
sense. Data that has not been accessed for a long pe-
riod may be removed from the datacenter and substituted
by the computation that produced it. Should the data be
needed in the future, the computation is rerun. Similarly,
instead of executing a user’s program, Nectar can par-
tially or fully substitute the results of that computation
with data already present in the datacenter. Nectar relies
on certain properties of the programming environment
in the datacenter to enable this interchange of data and
computation.

Computations running on a Nectar-managed datacen-

ter are specified as programs in LINQ [20]. LINQ com-
prises a set of operators to manipulate datasets of .NET
objects. These operators are integrated into high level
.NET programming languages (e.g., C#), giving pro-
grammers direct access to .NET libraries as well tradi-
tional language constructs such as loops, classes, and
modules. The datasets manipulated by LINQ can contain
objects of an arbitrary .NET type, making it easy to com-
pute with complex data such as vectors, matrices, and
images. All of these operators are functional: they trans-
form input datasets to new output datasets. This property
helps Nectar reason about programs to detect program
and data dependencies. LINQ is a very expressive and
flexible language, e.g., the MapReduce class of compu-
tations can be trivially expressed in LINQ.

Data stored in a Nectar-managed datacenter are di-
vided into one of two classes: primary or derived. Pri-
mary datasets are created once and accessed many times.
Derived datasets are the results produced by computa-
tions running on primary and other derived datasets. Ex-
amples of typical primary datasets in our datacenters
are click and query logs. Examples of typical derived
datasets are the results of thousands of computations per-
formed on those click and query logs.

In a Nectar-managed datacenter, all access to a derived
dataset is mediated by Nectar. At the lowest level of the
system, a derived dataset is referenced by the LINQ pro-
gram fragment or expression that produced it. Program-
mers refer to derived datasets with simple pathnames that
contain a simple indirection (much like a UNIX symbolic
link) to the actual LINQ programs that produce them. By
maintaining this mapping between a derived dataset and
the program that produced it, Nectar can reproduce any
derived dataset after it is automatically deleted. Primary
datasets are referenced by conventional pathnames, and
are not automatically deleted.

A Nectar-managed datacenter offers the following ad-
vantages.

1. Efficient space utilization. Nectar implements a
cache server that manages the storage, retrieval, and
eviction of the results of all computations (i.e., de-
rived datasets). As well, Nectar retains the de-
scription of the computation that produced a de-
rived dataset. Since programmers do not directly
manage datasets, Nectar has considerable latitude
in optimizing space: it can remove unused or in-
frequently used derived datasets and recreate them
on demand by rerunning the computation. This is a
classic trade-off of storage and computation.

2. Reuse of shared sub-computations. Many appli-
cations running in the same datacenter share com-
mon sub-computations. Since Nectar automatically
caches the results of sub-computations, they will be

computed only once and reused by others. This sig-
nificantly reduces redundant computations, result-
ing in better resource utilization.

3. Incremental computations. Many datacenter ap-
plications repeat the same computation on a slid-
ing window of an incrementally augmented dataset.
Again, caching in Nectar enables us to reuse the re-
sults of old data and only compute incrementally for
the newly arriving data.

4. Ease of content management. With derived datasets
uniquely named by LINQ expressions, and auto-
matically managed by Nectar, there is little need for
developers to manage their data manually. In par-
ticular, they do not have to be concerned about re-
membering the location of the data. Executing the
LINQ expression that produced the data is sufficient
to access the data, and incurs negligible overhead in
almost all cases because of caching. This is a sig-
nificant advantage because most datacenter applica-
tions consume a large amount of data from diverse
locations and keeping track of the requisite filepath
information is often a source of bugs.

Our experiments show that Nectar, on average, could
improve space utilization by at least 50%. As well, in-
cremental and sub-computations managed by Nectar pro-
vide an average speed up of 30% for the programs run-
ning on our clusters. We provide a detailed quantitative
evaluation of the first three benefits in Section 4. We
have not done a detailed user study to quantify the fourth
benefit, but the experience from our initial deployment
suggests that there is evidence to support the claim.

Some of the techniques we used such as dividing
datasets into primary and derived and reusing the re-
sults of previous computations via caching are reminis-
cent of earlier work in version management systems [15],
incremental database maintenance [5], and functional
caching [16, 27]. Section 5 provides a more detailed
analysis of our work in relation to prior research.

This paper makes the following contributions to the
literature:

• We propose a novel and promising approach that
automates and unifies the management of data and
computation in a datacenter, leading to substantial
improvements in datacenter resource utilization.

• We present the design and implementation of our
system, including a sophisticated program rewriter
and static program dependency analyzer.

• We present a systematic analysis of the performance
of our system from a real deployment on 240-nodes
as well as analytical measurements.

Nectar Cluster-Wide Services

Program Rewriter

Nectar Client-Side Library

Cache Server

Garbage Collector

DryadLINQ/Dryad

Distributed FS

DryadLINQ Program

P

P’

Nectar Data StoreNectar Program Store

Lookup

Hits

Figure 1: Nectar architecture. The system consists of a
client-side library and cluster-wide services. Nectar re-
lies on the services of DryadLINQ/Dryad and TidyFS, a
distributed file system.

The rest of this paper is organized as follows. Sec-
tion 2 provides a high-level overview of the Nectar sys-
tem. Section 3 describes the implementation of the sys-
tem. Section 4 evaluates the system using real work-
loads. Section 5 covers related work and Section 6 dis-
cusses future work and concludes the paper.

2 System Design Overview

The overall Nectar architecture is shown in Figure 1.
Nectar consists of a client-side component that runs on
the programmer’s desktop, and two services running in
the datacenter.

Nectar is completely transparent to user programs and
works as follows. It takes a DryadLINQ program as in-
put, and consults the cache service to rewrite it to an
equivalent, more efficient program. Nectar then hands
the resulting program to DryadLINQ which further com-
piles it into a Dryad computation running in the clus-
ter. At run time, a Dryad job is a directed acyclic graph
where vertices are programs and edges represent data
channels. Vertices communicate with each other through
data channels. The input and output of a DryadLINQ
program are expected to be streams. A stream consists of
an ordered sequence of extents, each storing a sequence
of object of some data type. We use an in-house fault-
tolerant, distributed file system called TidyFS to store
streams.

Nectar makes certain assumptions about the underly-
ing storage system. We require that streams be append-
only, meaning that new contents are added by either ap-
pending to the last extent or adding a new extent. The
metadata of a stream contains Rabin fingerprints [4] of
the entire stream and its extents.

Nectar maintains and manages two namespaces in

TidyFS. The program store keeps all DryadLINQ pro-
grams that have ever executed successfully. The data
store is used to store all derived streams generated by
DryadLINQ programs. The Nectar cache server pro-
vides cache hits to the program rewriter on the client
side. It also implements a replacement policy that deletes
cache entries of least value. Any stream in the data
store that is not referenced by any cache entry is deemed
to be garbage and deleted permanently by the Nectar
garbage collector. Programs in the program store are
never deleted and are used to recreate a deleted derived
stream if it is needed in the future.

A simple example of a program is shown in Ex-
ample 2.1. The program groups identical words in a
large document into groups and applies an arbitrary user-
defined function Reduce to each group. This is a typ-
ical MapReduce program. We will use it as a running
example to describe the workings of Nectar. TidyFS,
Dryad, and DryadLINQ are described in detail else-
where [8, 18, 29]. We only discuss them briefly below
to illustrate their relationships to our system.

In the example, we assume that the input D is a large
(replicated) dataset partitioned as D1, D2 ... Dn in the
TidyFS distributed file system and it consists of lines of
text. SelectMany is a LINQ operator, which first pro-
duces a single list of output records for each input record
and then “flattens” the lists of output records into a sin-
gle list. In our example, the program applies the function
x => x.Split(’ ’) to each line in D to produce
the list of words in D.

The program then uses the GroupBy operator to
group the words into a list of groups, putting the same
words into a single group. GroupBy takes a key-selector
function as the argument, which when applied to an
input record returns a collating “key” for that record.
GroupBy applies the key-selector function to each input
record and collates the input into a list of groups (multi-
sets), one group for all the records with the same key.

The last line of the program applies a transforma-
tion Reduce to each group. Select is a simpler ver-
sion of SelectMany. Unlike the latter, Select pro-
duces a single output record (determined by the function
Reduce) for each input record.

Example 2.1 A typical MapReduce job expressed in
LINQ. (x => x.Split(’ ’)) produces a list of
blank-separated words; (x => x) produces a key for
each input; Reduce is an arbitrary user supplied func-
tion that is applied to each input.

words = D.SelectMany(x => x.Split(’ ’));
groups = words.GroupBy(x => x);
result = groups.Select(x => Reduce(x));

D1

GB+
S

SM
+D

R1

D2

GB+
S

SM
+D

R2

Dn

GB+
S

SM
+D

Rn

AER

Figure 2: Execution graph produced by Nectar given
the input LINQ program in Example 2.1. The nodes
named SM+D executes SelectMany and distributes the
results. GB+S executes GroupBy and Select.

When the program in Example 2.1 is run for the first
time, Nectar, by invoking DryadLINQ, produces the dis-
tributed execution graph shown in Figure 2, which is then
handed to Dryad for execution. (For simplicity of exposi-
tion, we assume for now that there are no cache hits when
Nectar rewrites the program.) The SM+D vertex performs
the SelectMany and distributes the results by parti-
tioning them on a hash of each word. This ensures that
identical words are destined to the same GB+S vertex
in the graph. The GB+S vertex performs the GroupBy
and Select operations together. The AE vertex adds a
cache entry for the final result of the program. Notice
that the derived stream created for the cache entry shares
the same set of extents with the result of the computa-
tion. So, there is no additional cost of storage space. As
a rule, Nectar always creates a cache entry for the final
result of a computation.

2.1 Client-Side Library

On the client side, Nectar takes advantage of cached re-
sults from the cache to rewrite a program P to an equiv-
alent, more efficient program P ′. It automatically inserts
AddEntry calls at appropriate places in the program so
new cache entries can be created when P ′ is executed.
The AddEntry calls are compiled into Dryad vertices that
create new cache entries at runtime. We summarize the
two main client-side components below.

Cache Key Calculation
A computation is uniquely identified by its program

and inputs. We therefore use the Rabin fingerprint of

the program and the input datasets as the cache key for
a computation. The input datasets are stored in TidyFS
and their fingerprints are calculated based on the actual
stream contents. Nectar calculates the fingerprint of the
program and combines it with the fingerprints of the in-
put datasets to form the cache key.

The fingerprint of a DryadLINQ program must be able
to detect any changes to the code the program depends
on. However, the fingerprint should not change when
code the program does not depend on changes. This
is crucial for the correctness and practicality of Nectar.
(Fingerprints can collide but the probability of a colli-
sion can be made vanishingly small by choosing long
enough fingerprints.) We implement a static dependency
analyzer to compute the transitive closure of all the code
that can be reached from the program. The fingerprint is
then formed using all reachable code. Of course, our an-
alyzer only produces an over-approximation of the true
dependency.

Rewriter
Nectar rewrites user programs to use cached results

where possible. We might encounter different entries
in the cache server with different sub-expressions and/or
partial input datasets. So there are typically multiple al-
ternatives to choose from in rewriting a DryadLINQ pro-
gram. The rewriter uses a cost estimator to choose the
best one from multiple alternatives (as discussed in Sec-
tion 3.1).

Nectar supports the following two rewriting scenarios
that arise very commonly in practice.

Common sub-expressions. Internally, a DryadLINQ
program is represented as a LINQ expression tree. Nec-
tar treats all prefix sub-expressions of the expression tree
as candidates for caching and looks up in the cache for
possible cache hits for every prefix sub-expression.

Incremental computations. Incremental computation
on datasets is a common occurrence in data intensive
computing. Typically, a user has run a program P on in-
put D. Now, he is about to compute P on input D + D′,
the concatenation of D and D′. The Nectar rewriter finds
a new operator to combine the results of computing on
the old input and the new input separately. See Sec-
tion 2.3 for an example.

A special case of incremental computation that occurs
in datacenters is a computation that executes on a sliding
window of data. That is, the same program is repeatedly
run on the following sequence of inputs:

Input1 = d1 + d2 + ... + dn,

Input2 = d2 + d3 + ... + dn+1,

Input3 = d3 + d4 + ... + dn+2,

......

Here di is a dataset that (potentially) consists of mul-
tiple extents distributed over many computers. So suc-
cessive inputs to the program (Inputi) are datasets with
some old extents removed from the head of the previous
input and new extents appended to the tail of it. Nec-
tar generates cache entries for each individual dataset di,
and can use them in subsequent computations.

In the real world, a program may belong to a combina-
tion of the categories above. For example, an application
that analyzes logs of the past seven days is rewritten as
an incremental computation by Nectar, but Nectar may
use sub-expression results of log preprocessing on each
day from other applications.

2.2 Datacenter-Wide Service

The datacenter-wide service in Nectar comprises two
separate components: the cache service and the garbage
collection service. The actual datasets are stored in
the distributed storage system and the datacenter-wide
services manipulate the actual datasets by maintaining
pointers to them.

Cache Service
Nectar implements a distributed datacenter-wide

cache service for bookkeeping information about Dryad-
LINQ programs and the location of their results. The
cache service has two main functionalities: (1) serving
the cache lookup requests by the Nectar rewriter; and (2)
managing derived datasets by deleting the cache entries
of least value.

Programs of all successful computations are uploaded
to a dedicated program store in the cluster. Thus, the
service has the necessary information about cached re-
sults, meaning that it has a recipe to recreate any de-
rived dataset in the datacenter. When a derived dataset
is deleted but needed in the future, Nectar recreates it us-
ing the program that produced it. If the inputs to that
program have themselves been deleted, it backtracks re-
cursively till it hits the immutable primary datasets or
cached derived datasets. Because of this ability to recre-
ate datasets, the cache server can make informed deci-
sions to implement a cache replacement policy, keeping
the cached results that yield the most hits and deleting the
cached results of less value when storage space is low.

Garbage Collector
The Nectar garbage collector operates transparently to

the users of the cluster. Its main job is to identify datasets
unreachable from any cache entry and delete them. We
use a standard mark-and-sweep collector. Actual content
deletion is done in the background without interfering
with the concurrent activities of the cache server and job
executions. Section 3.2 has additional detail.

D1

GB

SM
+D

R1

D2

GB

SM
+D

Dn

GB

SM
+D

S

R2

S

Rn

S

AER

AEG

Figure 3: Execution graph produced by Nectar on the
program in Example 2.1 after it elects to cache the results
of computations. Notice that the GroupBy and Select
are now encapsulated in separate nodes. The new AE
vertex creates a cache entry for the output of GroupBy.

2.3 Example: Program Rewriting

Let us look at the interesting case of incremental compu-
tation by continuing Example 2.1.

After the program has been executed a sufficient num-
ber of times, Nectar may elect to cache results from some
of its subcomputations based on the usage information
returned to it from the cache service. So subsequent runs
of the program may cause Nectar to create different exe-
cution graphs than those created previously for the same
program. Figure 3 shows the new execution graph when
Nectar chooses to cache the result of GroupBy (c.f. Fig-
ure 2). It breaks the pipeline of GroupBy and Select
and creates an additional AddEntry vertex (denoted by
AE) to cache the result of GroupBy. During the exe-
cution, when the GB stage completes, the AE vertex will
run, creating a new TidyFS stream and a cache entry for
the result of GroupBy. We denote the stream by GD,
partitioned as GD1

, GD2
, .. GDn

.
Subsequently, assume the program in Example 2.1 is

run on input (D + X), where X is a new dataset parti-
tioned as X1, X2,.. Xk. The Nectar rewriter would get a
cache hit on GD. So it only needs to perform GroupBy
on X and merge with GD to form new groups. Figure 4
shows the new execution graph created by Nectar.

There are some subtleties involved in the rewriting
process. Nectar first determines that the number of par-
titions (n) of GD. It then computes GroupBy on X the
same way as GD, generating n partitions with the same
distribution scheme using the identical hash function as
was used previously (see Figures 2 and 3). That is, the
rewritten execution graph has k SM+D vertices, but n GB

vertices. The MG vertex then performs a pairwise merge
of the output GB with the cached result GD. The result
of MG is again cached for future uses, because Nectar
notices the pattern of incremental computation and ex-
pects that the same computation will happen on datasets
of form GD+X+Y in the future.

X1

SM
+D

Xk

SM
+D GD1 GD2 GDn

MG

R1

MG MG

S

R2

S

Rn

S

AER

AEMG

GB GB GB

AEG

Figure 4: The execution graph produced by Nectar on
the program in Example 2.1 on the dataset D + X . The
dataset X consists of k partitions. The MG vertex merges
groups with the same key. Both the results of GB and MG
are cached. There are k SM+D vertices, but n GB, MG,
and S vertices. GD1, ..., GDn are the partitions of the
cached result.

Similar to MapReduce’s combiner optimization [7]
and Data Cube computation [10], DryadLINQ can de-
compose Reduce into the composition of two associa-
tive and commutative functions if Reduce is determined
to be decomposable. We handle this by first applying the
decomposition as in [28] and then the caching and rewrit-
ing as described above.

3 Implementation Details

We now present the implementation details of the two
most important aspects of Nectar: Section 3.1 describes
computation caching and Section 3.2 describes the auto-
matic management of derived datasets.

3.1 Caching Computations
Nectar rewrites a DryadLINQ program to an equivalent
but more efficient one using cached results. This gen-
erally involves: 1) identifying all sub-expressions of the
expression, 2) probing the cache server for all cache hits
for the sub-expressions, 3) using the cache hits to rewrite
the expression into a set of equivalent expressions, and 4)

choosing one that gives us the maximum benefit based on
some cost estimation.

Cache and Programs
A cache entry records the result of executing a pro-

gram on some given input. (Recall that a program may
have more than one input depending on its arity.) The
entry is of the form:

〈FPPD, FPP , Result, Statistics, FPList〉

Here, FPPD is the combined fingerprint of the pro-
gram and its input datasets, FPP is the fingerprint of the
program only, Result is the location of the output, and
Statistics contains execution and usage information of
this cache entry. The last field FPList contains a list
of fingerprint pairs each representing the fingerprints of
the first and last extents of an input dataset. We have one
fingerprint pair for every input of the program. As we
shall see later, it is used by the rewriter to search amongst
cache hits efficiently. Since the same program could have
been executed on different occasions on different inputs,
there can be multiple cache entries with the same FPP .

We use FPPD as the primary key. So our caching
is sound only if FPPD can uniquely determine the re-
sult of the computation. The fingerprint of the inputs is
based on the actual content of the datasets. The finger-
print of a dataset is formed by combining the fingerprints
of its extents. For a large dataset, the fingerprints of its
extents are efficiently computed in parallel by the data-
center computers.

The computation of the program fingerprint is tricky,
as the program may contain user-defined functions that
call into library code. We implemented a static depen-
dency analyzer to capture all dependencies of an ex-
pression. At the time a DryadLINQ program is in-
voked, DryadLINQ knows all the dynamic linked li-
braries (DLLs) it depends on. We divide them into two
categories: system and application. We assume system
DLLs are available and identical on all cluster machines
and therefore are not included in the dependency. For
an application DLL that is written in native code (e.g.,
C or assembler), we include the entire DLL as a depen-
dency. For soundness, we assume that there are no call-
backs from native to managed code. For an application
DLL that is in managed code (e.g., C#), our analyzer tra-
verses the call graph to compute all the code reachable
from the initial expression.

The analyzer works at the bytecode level. It uses stan-
dard .NET reflection to get the body of a method, finds
all the possible methods that can be called in the body,
and traverses those methods recursively. When a virtual
method call is encountered, we include all the possible
call sites. While our analysis is certainly a conservative
approximation of the true dependency, it is reasonably

precise and works well in practice. Since dynamic code
generation could introduce unsoundness into the analy-
sis, it is forbidden in managed application DLLs, and is
statically enforced by the analyzer.

The statistics information kept in the cache entry is
used by the rewriter to find an optimal execution plan. It
is also used to implement the cache insertion and eviction
policy. It contains information such as the cumulative ex-
ecution time, the number of hits on this entry, and the last
access time. The cumulative execution time is defined as
the sum of the execution time of all upstream Dryad ver-
tices of the current execution stage. It is computed at the
time of the cache entry insertion using the execution logs
generated by Dryad.

The cache server supports a simple client interface.
The important operations include: (1) Lookup(fp)
finds and returns the cache entry that has fp as the pri-
mary key (FPPD); (2) Inquire(fp) returns all cache
entries that have fp as their FPP ; and (3) AddEntry
inserts a new cache entry. We will see their uses in the
following sections.

The Rewriting Algorithm
Having explained the structure and interface of the

cache, let us now look at how Nectar rewrites a program.
For a given expression, we may get cache hits on

any possible sub-expression and subset of the input
dataset, and considering all of them in the rewriting
is not tractable. We therefore only consider cache
hits on prefix sub-expressions on segments of the input
dataset. More concretely, consider a simple example
D.Where(P).Select(F). The Where operator ap-
plies a filter to the input dataset D, and the Select op-
erator applies a transformation to each item in its input.
We will only consider cache hits for the sub-expressions
S.Where(P) and S.Where(P).Select(F) where
S is a subsequence of extents in D.

Our rewriting algorithm is a simple recursive proce-
dure. We start from the largest prefix sub-expression, the
entire expression. Below is an outline of the algorithm.
For simplicity of exposition, we assume that the expres-
sions have only one input.

Step 1. For the current sub-expression E, we probe the
cache server to obtain all the possible hits on it. There
can be multiple hits on different subsequences of the in-
put D. Let us denote the set of hits by H . Note that each
hit also gives us its saving in terms of cumulative exe-
cution time. If there is a hit on the entire input D, we use
that hit and terminate because it gives us the most sav-
ings in terms of cumulative execution time. Otherwise
we execute Steps 2-4.

Step 2. We compute the best execution plan for E using
hits on its smaller prefixes. To do that, we first compute
the best execution plan for each immediate successor

prefix of E by calling our procedure recursively, and
then combine them to form a single plan for E. Let us
denote this plan by (P1, C1) where C1 is its saving in
terms of cumulative execution time.

Step 3. For the H hits on E (from Step 1), we choose
a subset of them such that (a) they operate on disjoint
subsequence of D, and (b) they give us the most saving
in terms of cumulative execution time. This boils down
to the well-known problem of computing the maxi-
mum independent sets of an interval graph, which has
a known efficient solution using dynamic programming
techniques [9]. We use this subset to form another ex-
ecution plan for E on D. Let us denote this plan by
(P2, C2).

Step 4. The final execution plan is the one from P1 and
P2 that gives us more saving.

In Step 1, the rewriter calls Inquire to compute H .
As described before, Inquire returns all the possible
cache hits of the program with different inputs. A useful
hit means that its input dataset is identical to a subse-
quence of extents of D. A brute force search is inefficient
and requires to check every subsequence. As an opti-
mization, we store in the cache entry the fingerprints of
the first and last extents of the input dataset. With that
information, we can compute H in linear time.

Intuitively, in rewriting a program P on incremental
data Nectar tries to derive a combining operator C such
that P (D+D′) = C(P (D), D′), where C combines the
results of P on the datasets D and D′. Nectar supports
all the LINQ operators DryadLINQ supports.

The combining functions for some LINQ opera-
tors require the parallel merging of multiple streams,
and are not directly supported by DryadLINQ. We
introduced three combining functions: MergeSort,
HashMergeGroups, and SortMergeGroups,
which are straightforward to implement using Dryad-
LINQ’s Apply operator [29]. MergeSort takes
multiple sorted input streams, and merge sorts them.
HashMergeGroups and SortMergeGroups take
multiple input streams and merge groups of the same
key from the input streams. If all the input streams are
sorted, Nectar chooses to use SortMergeGroups,
which is streaming and more efficient. Otherwise,
Nectar uses HashMergeGroups. The MG vertex in
Figure 4 is an example of this group merge.

The technique of reusing materialized views in
database systems addresses a similar problem. One im-
portant difference is that a database typically does not
maintain views for multiple versions of a table, which
would prevent it from reusing results computed on old
incarnations of the table. For example, suppose we have
a materialized view V on D. When D is changed to
D + D1, the view is also updated to V ′. So for any fu-

ture computation on D + D2, V is no longer available
for use. In contrast, Nectar maintains both V and V ′, and
automatically tries to reuse them for any computation, in
particular the ones on D + D2.

Cache Insertion Policy

We consider every prefix sub-expression of an expres-
sion to be a candidate for caching. Adding a cache entry
incurs additional cost if the entry is not useful. It requires
us to store the result of the computation on disk (instead
of possibly pipelining the result to the next stage), incur-
ring the additional disk IO and space overhead. Obvi-
ously it is not practical to cache everything. Nectar im-
plements a simple strategy to determine what to cache.

First of all, Nectar always creates a cache entry for
the final result of a computation as we get it for free: it
does not involve a break of the computation pipeline and
incurs no extra IO and space overhead.

For sub-expression candidates, we wish to cache them
only when they are predicted to be useful in the future.
However, determining the potential usefulness of a cache
entry is generally difficult. So we base our cache inser-
tion policy on heuristics. The caching decision is made
in the following two phases.

First, when the rewriter rewrites an expression, it de-
cides on the places in the expression to insert AddEntry
calls. This is done using the usage statistics maintained
by the cache server. The cache server keeps statistics for
a sub-expression based on request history from clients.
In particular, it records the number of times it has been
looked up. On response to a cache lookup, this number
is included in the return value. We insert an AddEntry
call for an expression only when the number of lookups
on it exceeds a predefined threshold.

Second, the decision made by the rewriter may still be
wrong because of the lack of information about the sav-
ing of the computation. Information such as execution
time and disk consumption are only available at run time.
So the final insertion decision is made based on the run-
time information of the execution of the sub-expression.
Currently, we use a simple benefit function that is propor-
tional to the execution time and inversely proportional to
storage overhead. We add the cache entry when the ben-
efit exceeds a threshold.

We also make our cache insertion policy adaptive to
storage space pressure. When there is no pressure, we
choose to cache more aggressively as long as it saves
machine time. This strategy could increase the useless
cache entries in the cache. But it is not a problem because
it is addressed by Nectar’s garbage collection, discussed
further below.

3.2 Managing Derived Data

Derived datasets can take up a significant amount of stor-
age space in a datacenter, and a large portion of it could
be unused or seldom used. Nectar keeps track of the us-
age statistics of all derived datasets and deletes the ones
of the least value. Recall that Nectar permanently stores
the program of every derived dataset so that a deleted de-
rived can be recreated by re-running its program.

Data Store for Derived Data
As mentioned before, Nectar stores all derived

datasets in a data store inside a distributed, fault-tolerant
file system. The actual location of a derived dataset is
completely opaque to programmers. Accessing an ex-
isting derived dataset must go through the cache server.
We expose a standard file interface with one important
restriction: New derived datasets can only be created as
results of computations.

Nectar Cluster-Wide Services

Nectar Client
Cache Server

DryadLINQ/Dryad

Distributed FS

P = q.ToTable(“lenin/foo.pt”)

P

P’

Nectar Data Store

FP(P)

FP(P)
lenin/foo.pt

Actual data

A31E4.pt

Figure 5: The creation of a derived dataset. The actual
dataset is stored in the Nectar data store. The user file
contains only the primary key of the cache entry associ-
ated with the derived.

Our scheme to achieve this is straightforward. Fig-
ure 5 shows the flow of creating a derived dataset by a
computation and the relationship between the user file
and the actual derived dataset. In the figure, P is a user
program that writes its output to lenin/foo.pt. Af-
ter applying transformations by Nectar and DryadLINQ,
it is executed in the datacenter by Dryad. When the ex-
ecution succeeds, the actual derived dataset is stored in
the data store with a unique name generated by Nectar. A
cache entry is created with the fingerprint of the program
(FP(P)) as the primary key and the unique name as a
field. The content of lenin/foo.pt just contains the
primary key of the cache entry.

To access lenin/foo.pt, Nectar simply uses
FP(P) to look up the cache to obtain the location of
the actual derived dataset (A31E4.pt). The fact that all
accesses go through the cache server allows us to keep

track of the usage history of every derived dataset and
to implement automatic garbage collection for derived
datasets based on their usage history.

Garbage Collection
When the available disk space falls below a thresh-

old, the system automatically deletes derived datasets
that are considered to be least useful in the future. This
is achieved by a combination of the Nectar cache server
and garbage collector.

A derived dataset is protected from garbage collection
if it is referenced by any cache entry. So, the first step
is to evict from the cache, entries that the cache server
determines to have the least value.

The cache server uses information stored in the cache
entries to do a cost-benefit analysis to determine the use-
fulness of the entries. For each cache entry, we keep
track of the size of the resulting derived dataset (S), the
elapsed time since it was last used (∆T), the number of
times (N) it has been used and the cumulative machine
time (M) of the computation that created it. The cache
server uses these values to compute the cost-to-benefit
ratio

CBRatio = (S ×∆T)/(N ×M)

of each cache entry and deletes entries that have the
largest ratios so that the cumulative space saving reaches
a predefined threshold.

Freshly created cache entries do not contain informa-
tion for us to compute a useful cost/benefit ratio. To give
them a chance to demonstrate their usefulness, we ex-
clude them from deletion by using a lease on each newly
created cache entry.

The entire cache eviction operation is done in the
background, concurrently with any other cache server
operations. When the cache server completes its evic-
tion, the garbage collector deletes all derived datasets
not protected by a cache entry using a simple mark-and-
sweep algorithm. Again, this is done in the background,
concurrently with any other activities in the system.

Other operations can run concurrently with the
garbage collector and create new cache entries and de-
rived datasets. Derived datasets pointed to by cache en-
tries (freshly created or otherwise) are not candidates for
garbage collection. Notice however that freshly created
derived datasets, which due to concurrency may not yet
have a cache entry, also need to protected from garbage
collection. We do this with a lease on the dataset.

With these leases in place, garbage collection is quite
straightforward. We first compute the set of all derived
datasets (ignoring the ones with unexpired leases) in our
data store, exclude from it the set of all derived datasets
referenced by cache entries, and treat the remaining as
garbage.

Our system could mistakenly delete datasets that are
subsequently requested, but these can be recreated by re-
executing the appropriate program(s) from the program
store. Programs are stored in binary form in the pro-
gram store. A program is a complete Dryad job that can
be submitted to the datacenter for execution. In particu-
lar, it includes the execution plan and all the application
DLLs. We exclude all system DLLs, assuming that they
are available on the datacenter machines. For a typical
datacenter that runs 1000 jobs daily, our experience sug-
gests it would take less than 1TB to store one year’s pro-
gram (excluding system DLLs) in uncompressed form.
With compression, it should take up roughly a few hun-
dreds of gigabytes of disk space, which is negligible even
for a small datacenter.

4 Experimental Evaluation
We evaluate Nectar running on our 240-node research
cluster as well as present analytic results of execution
logs from 25 large production clusters that run jobs sim-
ilar to those on our research cluster. We first present our
analytic results.

4.1 Production Clusters

We use logs from 25 different clusters to evaluate the
usefulness of Nectar. The logs consist of detailed execu-
tion statistics for 33182 jobs in these clusters for a recent
3-month period. For each job, the log has the source pro-
gram and execution statistics such as computation time,
bytes read and written and the actual time taken for ev-
ery stage in a job. The log also gives information on the
submission time, start time, end time, user information,
and job status.

Programs from the production clusters work with mas-
sive datasets such as click logs and search logs. Programs
are written in a language similar to DryadLINQ in that
each program is a sequence of SQL-like queries [6]. A
program is compiled into an expression tree with various
stages and modeled as a DAG with vertices representing
processes and edges representing data flows. The DAGs
are executed on a Dryad cluster, just as in our Nectar
managed cluster. Input data in these clusters is stored as
append-only streams.

Benefits from Caching
We parse the execution logs to recreate a set of DAGs,

one for each job. The root of the DAG represents the
input to the job and a path through the DAG starting at
the root represents a partial (i.e., a sub-) computation of
the job. Identical DAGs from different jobs represent an
opportunity to save part of the computation time of a later
job by caching results from the earlier ones. We simulate

the effect of Nectar’s caching on these DAGs to estimate
cache hits.

Our results show that on average across all clusters,
more than 35% of the jobs could benefit from caching.
More than 30% of programs in 18 out of 25 clusters
could have at least one cache hit, and there were even
some clusters where 65% of programs could have cache
hits.

The log contains detailed computation time informa-
tion for each node in the DAG for a job. When there is
a cache hit on a sub-computation of a job, we can there-
fore calculate the time saved by the cache hit. We show
the result of this analysis in two different ways: Figure 6
shows the percentage of computing time saved and Ta-
ble 1 shows the minimum number of hours of computa-
tion saved in each cluster.

Figure 6 shows that significant percentage of computa-
tion time can be saved in each cluster with Nectar. Most
clusters can save a minimum of 20% to 40% of com-
putation time and in some clusters the savings are up to
50%. Also, as an example, Table 1 shows a minimum of
7143 hours of computation per day can be saved using
Nectar in Cluster C5. This is roughly equivalent to say-
ing that about 300 machines in that cluster were doing
wasteful computations all day that caching could elimi-
nate. Across all 25 clusters, 35078 hours of computation
per day can be saved, which is roughly equivalent to sav-
ing 1461 machines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

C
1
7

C
1
8

C
1
9

C
2
0

C
2
1

C
2
2

C
2
3

C
2
4

C
2
5

Fr
ac

ti
o

n
 o

f
co

m
p

u
ta

ti
o

n
 t

im
e

 s
av

e
d

Cluster

Figure 6: Fraction of compute time saved in each cluster

Ease of Program Development
Our analysis of the caching accounted for both sub-

computation as well as incremental/sliding window hits.
We noticed that the percentage of sliding window hits in
some production clusters was minimal (under 5%). We
investigated this further and noticed that many program-
mers explicitly structured their programs so that they can
reuse a previous computation. This somewhat artificial
structure makes their programs cumbersome, which can
be alleviated by using Nectar.

Computation Computation
Cluster Time Saved Cluster Time Saved

(hours/day) (hours/day)
C1 3898 C14 753
C2 2276 C15 755
C3 977 C16 2259
C4 1345 C17 3385
C5 7143 C18 528
C6 62 C19 4
C7 57 C20 415
C8 590 C21 606
C9 763 C22 2002

C10 2457 C23 1316
C11 1924 C24 291
C12 368 C25 58
C13 105

Table 1: Minimum Computation Time Savings

There are anecdotes of system administrators manu-
ally running a common sub-expression on the daily input
and explicitly notifying programmers to avoid each pro-
gram performing the computation on its own and tying
up cluster resources. Nectar automatically supports in-
cremental computation and programmers do not need to
code them explicitly. As discussed in Section 2, Nectar
tries to produce the best possible query plan using the
cached results, significantly reducing computation time,
at the same time making it opaque to the user.

An unanticipated benefit of Nectar reported by our
users on the research cluster was that it aids in debugging
during program development. Programmers incremen-
tally test and debug pieces of their code. With Nectar the
debugging time significantly improved due to cache hits.
We quantify the effect of this on the production clusters.
We assumed that a program is a debugged version of an-
other program if they had almost the same queries ac-
cessing the same source data and writing the same de-
rived data, submitted by the same user and had the same
program name.

Table 2 shows the amount of debugging time that can
be saved by Nectar in the 90 day period. We present
results for the first 12 clusters due to space constraints.
Again, these are conservative estimates but shows sub-
stantial savings. For instance, in Cluster C1, a minimum
of 3 hours of debugging time can be saved per day. No-
tice that this is actual elapsed time, i.e., each day 3 hours
of computation on the cluster spent on debugging pro-
grams can be avoided with Nectar.

Debugging Debugging
Cluster Time Saved Cluster Time Saved

(hours) (hours)
C1 270 C7 3
C2 211 C8 35
C3 24 C9 84
C4 101 C10 183
C5 94 C11 121
C6 8 C12 49

Table 2: Actual elapsed time saved on debugging in 90
days.

Managing Storage
Today, in datacenters, storage is manually managed.1

We studied storage statistics in our 240-node research
cluster that has been used by a significant number of
users over the last 2 to 3 years. We crawled this clus-
ter for derived objects and noted their last access times.
Of the 109 TB of derived data, we discovered that about
50% (54.5 TB) was never accessed in the last 250 days.
This shows that users often create derived datasets and
after a point, forget about them, leaving them occupying
unnecessary storage space.

We analyzed the production logs for the amount of de-
rived datasets written. When calculating the storage oc-
cupied by these datasets, we assumed that if a new job
writes to the same dataset as an old job, the dataset is
overwritten. Figure 7 shows the growth of derived data
storage in cluster C1. It show an approximately linear
growth with the total storage occupied by datasets cre-
ated in 90 days being 670 TB.

0

100

200

300

400

500

600

700

0 20 40 60 80

St
o

ra
ge

 o
cc

u
p

ie
d

 b
y

d
e

ri
ve

d
 d

at
as

e
ts

(i
n

 T
B

)

Day

Figure 7: Growth of storage occupied by derived datasets
in Cluster C1

1Nectar’s motivation in automatically managing storage partly
stems from the fact that we used to get periodic e-mail messages from
the administrators of the production clusters requesting us to delete our
derived objects to ease storage pressure in the cluster.

Cluster Projected unreferenced
derived data (in TB)

C1 2712
C5 368
C8 863
C13 995
C15 210

Table 3: Projected unreferenced data in 5 production
clusters

Assuming similar trends in data access time in our lo-
cal cluster and on the production clusters, Table 3 shows
the projected space occupied by unreferenced derived
datasets in 5 production clusters that showed a growth
similar to cluster C1. Any object that has not been refer-
enced in 250 days is deemed unreferenced. This result is
obtained by extrapolating the amount of data written by
jobs in 90 days to 2 years based on the storage growth
curve and predicting that 50% of that storage will not be
accessed in the last 250 days (based on the result from
our local cluster). As we see, production clusters cre-
ate a large amount of derived data, which if not properly
managed can create significant storage pressure.

4.2 System Deployment Experience

Each machine in our 240-node research cluster has two
dual-core 2.6GHz AMD Opteron 2218 HE CPUs, 16GB
RAM, four 750GB SATA drives, and runs Windows Ser-
ver 2003 operating system. We evaluate the comparative
performance of several programs with Nectar turned on
and off.

We use three datasets to evaluate the performance of
Nectar:

WordDoc Dataset. The first dataset is a collection of
Web documents. Each document contains a URL and its
content (as a list of words). The data size is 987.4 GB
. The dataset is randomly partitioned into 236 partitions.
Each partition has two replicas in the distributed file sys-
tem, evenly distributed on 240 machines.

ClickLog Dataset. The second dataset is a small sam-
ple from an anonymized click log of a commercial search
engine collected over five consecutive days. The dataset
is 160GB in size, randomly partitioned into 800 parti-
tions, two replicas each, evenly distributed on 240 ma-
chines.

SkyServer Dataset. This database is taken from the
Sloan Digital Sky Survey database [11]. It contains two
data files: 11.8 and 41.8 GBytes of data. Both files were
manually range-partitioned into 40 partitions using the
same keys.

Sub-computation Evaluation
We have four programs: WordAnalysis, TopWord,

MostDoc, and TopRatio that analyze the WordDoc
dataset.

WordAnalysis parses the dataset to generate the num-
ber of occurrences of each word and the number of doc-
uments that it appears in. TopWord looks for the top ten
most commonly used words in all documents. MostDoc
looks for the top ten words appearing in the largest num-
ber of documents. TopRatio finds the percentage of oc-
currences of the top ten mostly used words among all
words. All programs take the entire 987.4 GB dataset as
input.

Program Name Cumulative Time SavingNectar on Nectar off
TopWord 16.1m 21h44m 98.8%
MostDoc 17.5m 21h46m 98.6%
TopRatio 21.2m 43h30m 99.2%

Table 4: Saving by sharing a common sub-computation:
Document analysis

With Nectar on, we can cache the results of executing
the first program, which spends a huge amount of com-
putation analyzing the list of documents to output an ag-
gregated result of much smaller size (12.7 GB). The sub-
sequent three programs share a sub-computation with the
first program, which is satisfied from the cache. Table 4
shows the cumulative CPU time saved for the three pro-
grams. This behavior is not isolated, one of the programs
that uses the ClickLog dataset shows a similar pattern; we
do not report the results here for reasons of space.

Incremental Computation
We describe the performance of a program that stud-

ies query relevance by processing the ClickLog dataset.
When users search a phrase at a search engine, they click
the most relevant URLs returned in the search results.
Monitoring the URLs that are clicked the most for each
search phrase is important to understand query relevance.
The input to the query relevance program is the set of all
click logs collected so far, which increases each day, be-
cause a new log is appended daily to the dataset. This
program is an example where the initial dataset is large,
but the incremental updates are small.

Table 5 shows the cumulative CPU time with Nectar
on and off, the size of datasets and incremental updates
each day. We see that the total size of input data increases
each day, while the computation resource used daily in-
creases much slower when Nectar is on. We observed
similar performance results for another program that cal-
culates the number of active users, who are those that
clicked at least one search result in the past three days.
These results are not reported here for reasons of space.

Data Size(GB) Time (m) SavingTotal Update On Off
Day3 68.20 40.50 93.0 107.5 13.49%
Day4 111.25 43.05 112.9 194.0 41.80%
Day5 152.19 40.94 164.6 325.8 49.66%

Table 5: Cumulative machine time savings for incremen-
tal computation.

Debugging Experience: Sky Server
Here we demonstrate how Nectar saves program de-

velopment time by shortening the debugging cycle. We
select the most time-consuming query (Q18) from the
Sloan Digital Sky Survey database [11]. The query iden-
tifies a gravitational lens effect by comparing the loca-
tions and colors of stars in a large astronomical table,
using a three-way Join over two input tables contain-
ing 11.8 GBytes and 41.8 GBytes of data, respectively.
The query is composed of four steps, each of which is
debugged separately. When debugging the query, the
first step failed and the programmer modified the code.
Within a couple of tries, the first step succeeded, and ex-
ecution continued to the second step, which failed, and
so on.

Table 6 shows the average savings in cumulative time
as each step is successively debugged with Nectar. To-
wards the end of the program, Nectar saves as much 88%
of the time.

Cumulative Time SavingNectar on Nectar off
Step 1 47.4m 47.4m 0%
Steps 1–2 26.5m 62.5m 58%
Steps 1–3 35.5m 122.7m 71%
Steps 1–4 15.0m 129.3m 88%

Table 6: Debugging: SkyServer cumulative time

5 Related Work

Our overall system architecture is inspired by the Vesta
system [15]. Many high-level concepts and techniques
(e.g., the notion of primary and derived data) are directly
taken from Vesta. However, because of the difference in
application domains, the actual design and implementa-
tion of the main system components such as caching and
program rewriting are radically different.

Many aspects of query rewriting and caching in our
work are closely related to incremental view mainte-
nance and materialized views in the database litera-
ture [2, 5, 13, 19]. However, there are some important
differences as discussed in Section 3.1. Also, we are not
aware of the implementation of these ideas in systems

at the scale we describe in this paper. Incremental view
maintenance is concerned with the problem of updating
the materialized views incrementally (and consistently)
when data base tables are subjected to random updates.
Nectar is simpler in that we only consider append-only
updates. On the other hand, Nectar is more challenging
because we must deal with user-defined functions written
in a general-purpose programming language. Many of
the sophisticated view reuses given in [13] require anal-
ysis of the SQL expressions that is difficult to do in the
presence of user-defined functions, which are common
in our environment.

With the wide adoption of distributed execution
platforms like Dryad/DryadLINQ, MapReduce/Sawzall,
Hadoop/Pig [18, 29, 7, 25, 12, 24], recent work has in-
vestigated job patterns and resource utilization in data
centers [1, 14, 22, 23, 26]. These investigation of real
work loads have revealed a vast amount of wastage in
datacenters due to redundant computations, which is
consistent with our findings from logs of a number of
production clusters.

DryadInc [26] represented our early attempt to elim-
inate redundant computations via caching, even before
we started on the DryadLINQ project. The caching ap-
proach is quite similar to Nectar. However, it works at
the level of Dryad dataflow graph, which is too general
and too low-level for the system we wanted to build.

The two systems that are most related to Nectar are the
stateful bulk processing system described by Logothetis
et al. [22] and Comet [14]. These systems mainly fo-
cus on addressing the important problem of incremental
computation, which is also one of the problems Nectar
is designed to address. However, Nectar is a much more
ambitious system, attempting to provide a comprehen-
sive solution to the problem of automatic management
of data and computation in a datacenter.

As a design principle, Nectar is designed to be trans-
parent to the users. The stateful bulk processing sys-
tem takes a different approach by introducing new prim-
itives and hence makes state explicit in the programming
model. It would be interesting to understand the trade-
offs in terms of performance and ease of programming.

Comet, also built on top of Dryad and DryadLINQ,
also attempted to address the sub-computation problem
by co-scheduling multiple programs with common sub-
computations to execute together. There are two inter-
esting issues raised by the paper. First, when multiple
programs are involved in caching, it is difficult to de-
termine if two code segments from different programs
are identical. This is particularly hard in the presence
of user-defined functions, which is very common in the
kind of DryadLINQ programs targeted by both Comet
and Nectar. It is unclear how this determination is made
in Comet. Nectar addresses this problem by building a

sophisticated static program analyzer that allows us to
compute the dependency of user-defined code. Second,
co-scheduling in Comet requires submissions of multi-
ple programs with the same timestamp. It is therefore
not useful in all scenarios. Nectar instead shares sub-
computations across multiple jobs executed at different
times by using a datacenter-wide, persistent cache ser-
vice.

Caching function calls in a functional programming
language is well studied in the literature [15, 21, 27].
Memoization avoids re-computing the same function
calls by caching the result of past invocations. Caching
in Nectar can be viewed as function caching in the con-
text of large-scale distributed computing.

6 Discussion and Conclusions

In this paper, we described Nectar, a system that auto-
mates the management of data and computation in dat-
acenters. The system has been deployed on a 240-node
research cluster, and has been in use by a small number
of developers. Feedback has been quite positive. One
very popular comment from our users is that the system
makes program debugging much more interactive and
fun. Most of us, the Nectar developers, use Nectar to
develop Nectar on a daily basis, and found a big increase
in our productivity.

To validate the effectiveness of Nectar, we performed
a systematic analysis of computation logs from 25 pro-
duction clusters. As reported in Section 4, we have seen
huge potential value in using Nectar to manage the com-
putation and data in a large datacenter. Our next step is
to work on transferring Nectar to Microsoft production
datacenters.

Nectar is a complex distributed systems with multi-
ple interacting policies. Devising the right policies and
fine-tuning their parameters to find the right trade-offs is
essential to make the system work in practice. Our eval-
uation of these tradeoffs has been limited, but we are ac-
tively working on this topic. We hope we will continue to
learn a great deal with the ongoing deployment of Nectar
on our 240-node research cluster.

One aspect of Nectar that we have not explored is that
it maintains the provenance of all the derived datasets
in the datacenter. Many important questions about data
provenance could be answered by querying the Nectar
cache service. We plan to investigate this further in future
work.

What Nectar essentially does is to unify computation
and data, treating them interchangeably by maintaining
the dependency between them. This allows us to greatly
improve the datacenter management and resource utiliza-
tion. We believe that it represents a significant step for-
ward in automating datacenter computing.

Acknowledgments
We would like to thank Dennis Fetterly and Maya Hari-
dasan for their help with TidyFS. We would also like
to thank Martı́n Abadi, Surajit Chaudhuri, Yanlei Diao,
Michael Isard, Frank McSherry, Vivek Narasayya, Doug
Terry, and Fang Yu for many helpful comments. Thanks
also to the OSDI review committee and our shepherd Pei
Cao for their very useful feedback.

References
[1] AGRAWAL, P., KIFER, D., AND OLSTON, C. Scheduling shared

scans of large data files. Proc. VLDB Endow. 1, 1 (2008), 958–
969.

[2] AGRAWAL, S., CHAUDHURI, S., AND NARASAYYA, V. R.
Automated selection of materialized views and indexes in SQL
databases. In VLDB (2000), pp. 496–505.

[3] ALVARO, P., CONDIE, T., CONWAY, N., ELMELEEGY, K.,
HELLERSTEIN, J. M., AND SEARS, R. Boom analytics: ex-
ploring data-centric, declarative programming for the cloud. In
EuroSys ’10: Proceedings of the 5th European conference on
Computer systems (2010), pp. 223–236.

[4] BRODER, A. Z. Some applications of Rabinś fingerprinting
method. In Sequences II: Methods in Communications, Security,
and Computer Science (1993), Springer-Verlag, pp. 143–152.

[5] CERI, S., AND WIDOM, J. Deriving production rules for in-
cremental view maintenance. In VLDB ’91: Proceedings of the
17th International Conference on Very Large Data Bases (1991),
pp. 577–589.

[6] CHAIKEN, R., JENKINS, B., LARSON, P.-A., RAMSEY, B.,
SHAKIB, D., WEAVER, S., AND ZHOU, J. SCOPE: easy and
efficient parallel processing of massive data sets. Proc. VLDB
Endow. 1, 2 (2008), 1265–1276.

[7] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–
113.

[8] FETTERLY, D., HARIDASAN, M., ISARD, M., AND SUN-
DARARAMAN, S. TidyFS: A simple and small distributed filesys-
tem. Tech. Rep. MSR-TR-2010-124, Microsoft Research, Octo-
ber 2010.

[9] GOLUMBIC, M. C. Algorithmic Graph Theory and Perfect
Graphs (Annals of Discrete Mathematics, Vol. 57). North-
Holland Publishing Co., Amsterdam, The Netherlands, The
Netherlands, 2004.

[10] GRAY, J., CHAUDHURI, S., BOSWORTH, A., LAYMAN, A.,
REICHART, D., VENKATRAO, M., PELLOW, F., AND PIRA-
HESH, H. Data cube: A relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery 1, 1 (1997).

[11] GRAY, J., SZALAY, A., THAKAR, A., KUNSZT, P.,
STOUGHTON, C., SLUTZ, D., AND VANDENBERG, J. Data min-
ing the SDSS SkyServer database. In Distributed Data and Struc-
tures 4: Records of the 4th International Meeting (Paris, France,
March 2002), Carleton Scientific, pp. 189–210. Also available as
MSR-TR-2002-01.

[12] The Hadoop project.
http://hadoop.apache.org/.

[13] HALEVY, A. Y. Answering Queries Using Views: A Survey.
VLDB J. 10, 4 (2001), 270–294.

[14] HE, B., YANG, M., GUO, Z., CHEN, R., SU, B., LIN, W., AND
ZHOU, L. Comet: batched stream processing for data intensive
distributed computing. In ACM Symposium on Cloud Computing
(SOCC) (2010), pp. 63–74.

[15] HEYDON, A., LEVIN, R., MANN, T., AND YU, Y. Software
Configuration Management Using Vesta. Springer-Verlag, 2006.

[16] HEYDON, A., LEVIN, R., AND YU, Y. Caching function calls
using precise dependencies. In PLDI ’00: Proceedings of the
ACM SIGPLAN 2000 conference on Programming language de-
sign and implementation (New York, NY, USA, 2000), ACM,
pp. 311–320.

[17] The HIVE project.
http://hadoop.apache.org/hive/.

[18] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: distributed data-parallel programs from se-
quential building blocks. In EuroSys ’07: Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007 (2007), pp. 59–72.

[19] LEE, K. Y., SON, J. H., AND KIM, M. H. Efficient incremental
view maintenance in data warehouses. In CIKM ’01: Proceedings
of the tenth international conference on Information and knowl-
edge management (2001), pp. 349–356.

[20] The LINQ project.
http://msdn.microsoft.com/netframework/
future/linq/.

[21] LIU, Y. A., STOLLER, S. D., AND TEITELBAUM, T. Static
caching for incremental computation. ACM Trans. Program.
Lang. Syst. 20, 3 (1998), 546–585.

[22] LOGOTHETIS, D., OLSTON, C., REED, B., WEBB, K., AND
YOCUM, K. Stateful bulk processing for incremental algorithms.
In ACM Symposium on Cloud Computing (SOCC) (2010).

[23] OLSTON, C., REED, B., SILBERSTEIN, A., AND SRIVASTAVA,
U. Automatic optimization of parallel dataflow programs. In
ATC’08: USENIX 2008 Annual Technical Conference on Annual
Technical Conference (2008), pp. 267–273.

[24] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND
TOMKINS, A. Pig latin: a not-so-foreign language for data pro-
cessing. In SIGMOD ’08: Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data (2008),
pp. 1099–1110.

[25] PIKE, R., DORWARD, S., GRIESEMER, R., AND QUINLAN, S.
Interpreting the data: Parallel analysis with Sawzall. Scientific
Programming 13, 4 (2005).

[26] POPA, L., BUDIU, M., YU, Y., AND ISARD, M. DryadInc:
Reusing work in large-scale computations. In Workshop on Hot
Topics in Cloud Computing (HotCloud) (San Diego, CA, June 15
2009).

[27] PUGH, W., AND TEITELBAUM, T. Incremental computation
via function caching. In POPL ’89: Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (1989), pp. 315–328.

[28] YU, Y., GUNDA, P. K., AND ISARD, M. Distributed aggregation
for data-parallel computing: interfaces and implementations. In
SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles (2009), pp. 247–260.

[29] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON,
Ú., GUNDA, P. K., AND CURREY, J. DryadLINQ: A system
for general-purpose distributed data-parallel computing using a
high-level language. In Proceedings of the 8th Symposium on
Operating Systems Design and Implementation (OSDI) (2008),
pp. 1–14.

