

Effective Data-Race Detection for the Kernel

John Erickson, Madanlal Musuvathi,

Sebastian Burckhardt, Kirk Olynyk

Microsoft Research

{jerick, madanm, sburckha, kirko}@microsoft.com

Abstract

Data races are an important class of concurrency errors where two threads erroneously access a shared memory loca-

tion without appropriate synchronization. This paper presents DataCollider, a lightweight and effective technique

for dynamically detecting data races in kernel modules. Unlike existing data-race detection techniques, DataCollider

is oblivious to the synchronization protocols (such as locking disciplines) the program uses to protect shared

memory accesses. This is particularly important for low-level kernel code that uses a myriad of complex architec-

ture/device specific synchronization mechanisms. To reduce the runtime overhead, DataCollider randomly samples

a small percentage of memory accesses as candidates for data-race detection. The key novelty of DataCollider is that

it uses breakpoint facilities already supported by many hardware architectures to achieve negligible runtime over-

heads. We have implemented DataCollider for the Windows 7 kernel and have found 25 confirmed erroneous data

races of which 12 have already been fixed.

1. Introduction

Concurrent systems are hard to design, arguably be-

cause of the difficulties of finding and fixing concur-

rency errors. Data races are an important class of con-

currency errors, where the program fails to use proper

synchronization when accessing shared data. The ef-

fects of an erroneous data race can range from immedi-

ate program crashes to silent lost updates and data cor-

ruptions that are hard to reproduce and debug.

Two memory accesses in a program are said to conflict

if they access the same memory location and at least

one of them is a write. A program contains a data race

if two conflicting accesses can occur concurrently. Fig-

ure 1 shows a variation of a data race we found in the

Windows kernel. The threads appear to be accessing

different fields. However, these bit-fields are mapped to

the same word by the compiler and the concurrent ac-

cesses result in a data race. In this case, an update to the

statistics field possibly hides an update to the status

field.

This paper presents DataCollider, a tool for dynamical-

ly detecting data races in kernel modules. DataCollider

is lightweight. It samples a small number of memory

accesses for data-race detection and uses code-

breakpoint and data-breakpoint
1
 facilities available in

modern hardware architectures to efficiently perform

this sampling. As a result, DataCollider has no runtime

overhead for non-sampled memory accesses allowing

the tool to run with negligible overheads for low sam-

pling rates.

We have implemented DataCollider for the 32-bit Win-

dows kernel running on the x86 architecture, and used it

to detect data races in the core kernel and several mod-

ules such as the filesystem, the networking stack, the

storage drivers, and a network file system. We have

found a total of 25 erroneous data races of which 12

have already been fixed at the time of writing. In our

experiments, the tool is able to find erroneous data rac-

es for sampling rates that incur runtime overheads of

less than 5%.

Researchers have proposed multitude of dynamic data-

race detectors [1,2,3,4,5,6,7] for user-mode programs.

In essence, these tools work by dynamically monitoring

the memory accesses and synchronizations performed

during a concurrent execution. As data races manifest

rarely at runtime, these tools attempt to infer conflicting

accesses that could have executed concurrently. The

tools differ in how they perform this inference, either

1
 Data breakpoints are also called hardware watchpoints.

using the happens-before [8] ordering induced by the

synchronization operations [4,5,6] or a lock-set based

reasoning [1] or a combination of the two [2,3,7]

There are several challenges in engineering a data-race

detection tool for the kernel based on previous ap-

proaches. First, the kernel-mode code operates at a low-

er concurrency abstraction than user-mode code, which

can rely on clean abstractions of threads and synchroni-

zations provided by the kernel. In the kernel, the same

thread context can execute code from a user-mode pro-

cess, a device interrupt service routine, or a deferred

procedure call (DPC). In addition, it is an onerous task

to understand the semantics of complex synchronization

primitives in order to infer the happens-before relation

or lock-sets. For instance, Windows supports more than

a dozen locks with different semantics on how the lock

holder synchronizes with hardware interrupts, the

scheduler, and the DPCs. It is also common for kernel

modules to roll-out custom implementations of syn-

chronization primitives.

Second, hardware-facing kernel modules need to syn-

chronize with hardware devices that concurrently modi-

fy device state and memory. It is important to design a

data-race detection tool that can find these otherwise

hard-to-find data races between the hardware and the

kernel.

Finally, existing dynamic data-race detectors add pro-

hibitive run-time overheads. It is not uncommon for

such tools to incur up to 200x slowdowns [9]. The

overhead is primarily due to the need to monitor and

process all memory and synchronization operations at

run time. Significant engineering effort in building da-

ta-race detectors goes in reducing the runtime overhead

and the associated memory and log management [9,3].

Replicating these efforts within the constraints of kernel

programming is an arduous, if not impossible, task.

Moreover, these tools rely on invasive instrumentation

techniques that are difficult to get right on low-level

kernel code.

DataCollider uses a different approach to overcome

these challenges. The crux of the algorithm is shown in

Figure 2. DataCollider samples a small number of

memory accesses at runtime by inserting code break-

points at randomly chosen memory access instructions.

When a code breakpoint fires, DataCollider detects data

races involving the sampled memory access for a small

time window. It simultaneously employs two strategies

 struct{

 int status:4;

 int pktRcvd:28;

} st;

 Thread 1

 st.status = 1;

 Thread 2

 st.pktRcvd ++;

Figure 1: An example of data race. Even though the

threads appear to be modifying different variables in

the source code, the variables are bit fields mapping

to the same integer

AtPeriodicIntervals() {

 // determine k based on desired

 // memory access sampling rate

 repeat k times {

 pc = RandomlyChosenMemoryAccess();

 SetCodeBreakpoint(pc);

 }

}

OnCodeBreakpoint(pc) {

 // disassemble the instruction at pc

 (loc, size, isWrite) = disasm(pc);

 DetectConflicts(loc, size, isWrite);

 // set another code break point

 pc = RandomlyChosenMemoryAccess();

 SetCodeBreakpoint(pc);

}

DetectConflicts(loc, size, isWrite) {

 temp = read(loc, size);

 if (isWrite)

 SetDataBreakpointRW(loc, size);

 else

 SetDataBreakpointW(loc, size);

 delay();

 ClearDataBreakpoint(loc, size);

 temp’ = read(loc, size);

 if(temp != temp’ ||

 data breakpoint fired)

 ReportDataRace();

}

Figure 2: The basics of the DataCollider algo-

rithm. Right before a read or write access to shared

memory location, chosen at random, DataCollider

monitors for any concurrent accesses that conflict

with the current access.

to do so. First, DataCollider sets a data breakpoint to

trap conflicting accesses by other threads. To detect

conflicting writes performed by hardware devices and

by processors accessing the memory location through a

different virtual address, DataCollider use a repeated-

read strategy. It reads the value once before and once

after the delay. A change in value is an indication of a

conflicting write, and hence a data race.

The DataCollider algorithm has two features that make

it suitable for kernel data-race detection. First and

foremost, it is easy to implement. Barring some imple-

mentation details (Section 3), the entire algorithm is

shown in Figure 2. In addition, it is entirely oblivious to

the synchronization protocols used by the kernel and

the hardware, a welcome design point as DataCollider

does not have to understand the complex semantics of

kernel synchronization primitives.

When the DataCollider finds a data race through the

data-breakpoint strategy, it catches both threads “red-

handed,” as they are about to execute conflicting ac-

cesses. This greatly simplifies the debugging of data

race reports from DataCollider as the tool can collect

useful debugging information, such as the stack trace of

the racing threads along with their context information,

without incurring this overhead on non-sampled or non-

racy accesses.

Not all data races are erroneous. Such benign races in-

clude races that do not affect the program outcome,

such as updates to logging/debugging variables, and

races that affect the program outcome in a manner ac-

ceptable to the programmer, such as conflicting updates

to a low-fidelity counter. DataCollider uses a post-

processing phase that prunes and prioritizes the data-

race reports before showing them to the user. In our

experience with DataCollider, we have observed that

only around 10% percentage of data-race reports corre-

spond to real errors, making the post-processing step

absolutely crucial for the usability of the tool.

2. Background and Motivation

Shared memory multiprocessors are specifically built to

allow concurrent access to shared data. So why do data

races represent a problem at all?

The key motivation for data race detection is the empir-

ic fact that programmers most often use synchroniza-

tion to restrict accesses to shared memory. Data races

can thus be an indication of incorrect or insufficient

synchronization in the program. In addition, data races

can also reveal programming mistakes not directly re-

lated to concurrency, such as buffer overruns or use-

after-free, which indirectly result in inadvertent sharing

of memory.

Another important reason for avoiding data races is to

protect the program from the weak memory models of

the compiler and the hardware. Both the compiler and

hardware can reorder instructions and change the be-

havior of racy programs in complex and confusing

ways [10,11]. Even if a racy program works correctly

for the current compiler and hardware configuration, it

might fail on future configurations that implement more

aggressive memory-model relaxations.

While bugs caused by data races may of course be

found using more conventional testing approaches such

as stress testing, the latter often fails to provide actiona-

ble information to the programmer. Clearly, a data race

report including stack traces or data values (or even

better, including a core dump that is demonstrating the

actual data race) is easier to understand and fix than a

silent data corruption that leads to an obscure failure at

some later point during program execution.

2.1. Definition of Data Race

There is no “gold standard” for defining data races;

several researchers have used the term to mean different

things. For our definition, we consulted two respected

standards (Posix threads [12] and the drafts of the C++

and C memory model standards [11,10]) and general-

ized their definitions to account for the particularities of

kernel code. Our definition of data race is:

 Two operations that access main memory are

called conflicting if

o the physical memory they access is not

disjoint,

o at least one of them is a write, and

o they are not both synchronization access-

es.

 A program has a data race if it can be executed on

a multiprocessor in such a way that two conflicting

memory accesses are performed simultaneously

(by processors or any other device).

This definition is a simplification of [11,10] insofar we

replaced the tricky notion of “not ordered before” with

the unambiguous “performed simultaneously” (which

refers to real time).

An important part of our definition is the distinction

between synchronization and data accesses. Clearly,

some memory accesses participate in perfectly desirable

races: for example, a mutex implementation may per-

form a “release” by storing the value 0 in a shared loca-

tion, while another thread is performing an acquire and

reads the same memory location. However, this is not a

data race because we categorize both of these accesses

as synchronization accesses. Synchronization accesses

either involve hardware synchronization primitives

such as interlocked instructions or use volatile or atom-

ic annotations supported by the compiler.

Note that our definition is general enough to apply to

code running in the kernel, which poses some unique

problems not found in user-mode code. For example, in

some cases data races can be avoided by turning off

interrupts; also, processes can exhibit a data race when

accessing different virtual addresses that map to the

same physical address. We talk more about these topics

in Section 2.3.4.

2.2. Precision of Detection

Clearly, we would like data race detection tools to re-

port as many data races as possible without inundating

the user with false error reports. We use the following

terminology to discuss the precision and completeness

of data race detectors. A missed race is a data race that

the tool does not warn about. A benign data race is a

data race that does not adversely affect the behavior of

the program. Common examples of benign data races

include threads racing on updates to logging or statistics

variables and threads concurrently updating a shared

counter where the occasional incorrect update of the

counter does not affect the outcome of the program. On

the other hand, a false data race is an error report that

does not correspond to a data race in the program. Stat-

ic data-race detection techniques commonly produce

false data races due to their inherent inability to precise-

ly reason about program paths, aliased heap objects,

and function pointers. Dynamic data-race detectors can

report false data races if they do not identify or do not

understand the semantics of all the synchronizations

used by the program.

2.3. Related Work

Researchers have proposed and built a plethora of race

detection tools. We now discuss the major approaches

and implementation techniques appearing in related

work. We describe both happens-before-based and

lock-set-based tracking in some detail (Sections 2.3.2

and 2.3.3), before explaining why neither one is very

practical for data race detection in the kernel (Section

2.3.4).

2.3.1. Static vs. Dynamic

Data race detection can be broadly categorized into

static race detection [13,14,15,16,17], which typically

analyzes source or byte code without directly executing

the program, and dynamic race detection [1,2,3,4,5,6,7],

which instruments the program and monitors its execu-

tion online or offline.

Static race detectors have been successfully applied to

large code bases [13,14]. However, as they rely on ap-

proximate information, such as pointer aliasing, they

are prone to excessive false warnings. Some tools, es-

pecially those targeting large code bases, approach this

issue by filtering the reported warnings using heuristics

[13]. Such heuristics can successfully reduce the false

warnings to a tolerable level, but may unfortunately

also eliminate correct warnings and lead to missed rac-

es. Other tools, targeted towards highly motivated users

that wish to interactively prove absence of data races,

report all potential races to the user and rely on user-

supplied annotations that indicate synchronization dis-

ciplines [16,17].

Dynamic data race detectors are less prone to false

warnings than static techniques because they monitor

an actual execution of the program. However, they may

miss races because successful detection might require

an error-inducing input and/or an appropriate thread

schedule. Also, many dynamic detectors employ several

heuristics and approximations that can lead to false

alarms.

Dynamic data race detectors can be classified into cate-

gories based on whether they model a happens-before

relation [6,5,7] (see Section 2.3.2), lock sets [1] (see

Section 2.3.3), or both [2,18].

2.3.2. Happens-Before Tracking

Dynamic data race detectors do not just detect data rac-

es that actually took place (in the sense that the conflict-

ing accesses were truly simultaneous during the execu-

tion), but look for evidence that such a schedule would

have been possible for a slightly different timing.

Tracking a happens-before relation on program events

[8] is one way to infer the existence of a racy schedule.

This transitive relation is constructed by recording both

the ordering of events within a thread and the ordering

effects of synchronization operations across threads.

Once we can properly track the happens-before relation,

race detection is straightforward: For any two conflict-

ing accesses A and B, we simply check whether A hap-

pens-before B, or B happens-before A, or neither. If

neither, we know there exists a schedule where A and B

are simultaneous. If properly tracked, happens-before

does not lead to any false alarms. However, precise

tracking can be difficult to achieve in practice, as dis-

cussed in Section 2.3.4.

2.3.3. Lock Sets

When detecting races in programs that follow a strict

and consistent locking discipline, using a lock-set ap-

proach can provide some benefits. The basic idea is to

examine the lock set of each data access (that is, the set

of locks held during the access) and then to take for

each memory location the intersection of the lock sets

of all accesses to it. If that intersection is empty, the

variable is not consistently protected by any one lock

and a warning is issued.

The main limitation of the lock set approach is that it

does not check for true data races but for violations of a

specific locking discipline. Unfortunately, many appli-

cations (and in particular kernel code) use locking dis-

ciplines that are complex and use synchronization other

than locks.

Whenever a program departs from a simple locking

scheme in any of the above ways, lock-set-based race

detectors will be forced to either issue false warnings,

or to use heuristics to suppress these warnings. The

latter approach is common, especially in the form of

state machines that track the “sharing status” of a varia-

ble [1,3]. Such heuristics are necessarily imperfect

compromises, however (they always fail to suppress

some false warnings and always suppress some correct

warnings), and it is not clear how to tune them to be

useful for a wide range of applications.

2.3.4. Problems with Tracking Synchroni-

zations

Both lock-set and happens-before tracking require a

thorough understanding of the synchronization seman-

tics, lest they produce false alarms or miss races. There

are two fundamental difficulties we encountered when

trying to apply these techniques in the kernel:

 Abstractions that we take for granted in user mode

(such as threads) are no longer clearly defined in

kernel mode.

 The synchronization vocabulary of kernel code is

much richer and may include complicated se-

quences and ordering mechanisms provided by the

hardware.

For example, interrupts and interrupt handlers break the

thread abstraction, as the handler code may execute in a

thread context without being part of that thread in a

logical sense. Similar problems arise when a thread

calls into the kernel scheduler. The code executing in

the scheduler is not logically part of that same thread.

Another example illustrating the difficulty of modeling

synchronization inside the kernel are DMA accesses.

Such accesses are not executing inside a thread (in fact,

they are not even executing on a processor). Clearly,

traditional monitoring techniques have a problem be-

cause they cannot “instrument” the DMA access.

Similar case holds for interrupt processing. For exam-

ple, code may first write some data and then raise an

interrupt, and then the same data is read by an interrupt

handler. Lock sets would report a false alarm because

the data is not locked. But even happens-before tech-

niques are problematic, because they would need to

precisely track the causality between the instruction that

set the interrupt and the interrupt handler.

For these reasons, we decided to employ a design that

entirely avoids modeling the happens-before ordering

or lock-sets. As our results show, somewhat surprising-

ly, neither one is required to build an effective data race

detector.

2.3.5. Sampling to Reduce Overhead

To detect races, dynamic data race detectors need to

monitor the synchronizations and memory accesses

performed at runtime. This is typically done by instru-

menting the code and inserting extra monitoring code

for each data access. As the monitoring code executes

at every memory access, the overhead can be quite sub-

stantial.

One way to ameliorate this issue is to exclude some

data accesses from processing. Prior work has identi-

fied several promising strategies: adaptive sampling

that backs off hot locations [5] (the idea is that for such

locations the monitoring can be less frequent and still

detect races), or perform the full monitoring only for a

fixed fraction of the time [4] (the idea is that the proba-

bility of catching a race is roughly proportional to this

fraction multiplied by the number of times the race re-

peats). But these techniques still suffer from the cost of

sampling, performed at every memory access. DataCol-

lider avoids this problem by using hardware breakpoint

mechanisms.

3. DataCollider Implementation

This section describes the implementation of the

DataCollider algorithm for the Windows kernel on the

x86 architecture. The implementation heavily uses the

code and data breakpoint mechanisms available on x86.

The techniques described in this paper can be extended

to other architectures and to user-mode code. But we

have not pursued this direction in this paper.

Figure 2 describes the basics of the DataCollider algo-

rithm. DataCollider uses the sampling algorithm, de-

scribed in Section 3.1, to process a small percentage of

memory accesses for data-race detection. For each of

the sampled memory accesses, DataCollider uses a con-

flict detection mechanism, described in Section 3.2, to

find data races involving the sampled access. After de-

tecting data races, DataCollider uses several heuristics,

described in Section 3.3, to prune benign data races.

3.1. The Sampling Algorithm

There are several challenges in designing a good sam-

pling algorithm for data-race detection. First, data races

involve two memory accesses both of which need to be

sampled to detect the race. If memory accesses are

sampled independently, then the probability of finding

the data race is a product of the individual sampling

probabilities. DataCollider avoids this multiplicative

effect by sampling the first access and using a data

breakpoint to trap the second access. This allows

DataCollider to be effective at low sampling rates.

Second, data races are rare events – most executed in-

structions do not result in a data race. The sampling

algorithm should weed out the small percentage of rac-

ing accesses from the majority of non-racing accesses.

The key intuition behind the sampling algorithm is that

if a program location is buggy and fails to use the right

synchronization when accessing shared data, then every

dynamic execution of that buggy code is likely to par-

ticipate in a data race. Accordingly, DataCollider per-

forms static sampling of program locations rather than

dynamic sampling of executed instructions. A static

sampler provides equal preference to rarely execution

instructions (which are likely to have bugs hidden in

them) and frequently executed instructions.

3.1.1. Static Sampling Using Code Break-

points

The static sampling algorithm works as follows. Given

a program binary, DataCollider disassembles the binary

to generate a sampling set consisting of all program

locations that access memory. The tool currently re-

quires the debugging symbols of the program binary to

perform this disassembly. This requirement can be re-

laxed by using sophisticated disassemblers [19] in the

future.

DataCollider performs a simple static analysis to identi-

fy instructions that are guaranteed to only touch thread-

local stack locations and removes them from the sam-

pling set. Similarly, DataCollider removes synchroniz-

ing instructions from the sampling set by removing

instructions that accesses memory locations tagged as

“volatile” or those that use hardware synchronization

primitives, such as interlocked. This prevents DataCol-

lider from reporting races on synchronization variables.

However, DataCollider can still detect a data race be-

tween a synchronization access and a regular data ac-

cess, if the latter is in the sampling set.

DataCollider samples program locations from the sam-

pling set by inserting code breakpoints. The initial

breakpoints are set at a small number of program loca-

tions chosen uniformly randomly from the sampling set.

If and when a code breakpoint fires, DataCollider per-

forms conflict detection for the memory access at that

breakpoint. Then, DataCollider choses another program

location uniformly randomly from the sampling set and

sets a breakpoint at that location.

This algorithm uniformly samples all program locations

in the sampling set irrespective of the frequency with

which the program executes these locations. This is

because the choice of inserting a code breakpoint is

performed uniformly at random for all locations in the

sampling set. Over a period of time, the breakpoints

will tend to reside at rarely executed program locations,

increasing the likelihood that those locations are sam-

pled the next time they execute.

If DataCollider has information on which program loca-

tions are likely to participate in a race, either through

user annotations or through prior analysis [20] then the

tool can prioritize those locations by biasing their selec-

tion from the sampling set.

3.1.2. Controlling the Sampling Rate

While the program cannot affect the sampling distribu-

tion over program locations, the sampling rate is inti-

mately tied to how frequently the program executes

locations with a code breakpoint. In the worst case, if

all of the breakpoints are set on dead code, DataCollider

will stop performing data-race detection altogether. To

avoid this and to better control the sampling rate,

DataCollider periodically checks the number of break-

points fired every second, and adjusts the number of

breakpoints set in the program based on whether the

experienced sampling rate is higher or lower than the

target rate.

3.2. Conflict-Detection

As described in the previous section, DataCollider picks

a small percentage of memory accesses as likely candi-

dates for data-race detection. For these sampled access-

es, DataCollider pauses the current thread waiting to

see if another thread makes a conflicting access to the

same memory location. It uses two strategies: data

breakpoints and repeated-reads. DataCollider uses these

two strategies simultaneously as each complements the

weaknesses of the other.

3.2.1. Detecting Conflicts with Data Break-

points

Modern hardware architectures provide a facility to trap

when a processor reads or writes a particular memory

location. This is crucial for efficient support for data

breakpoints in debuggers. The x86 hardware supports

four data breakpoint registers. DataCollider uses them

to effectively monitor possible conflicting accesses to

the currently sampled access.

When the current access is a write, DataCollider in-

structs the processor to trap on a read or write to the

memory location. If the current access is a read,

DataCollider instructs the processor to trap only on a

write, as concurrent reads to the same location do not

conflict. If no conflicting accesses are detected,

DataCollider resumes the execution of the current

thread after clearing the data breakpoint registers.

Each processor has a separate data breakpoint register.

DataCollider uses an inter-processor interrupt to update

the break points on all processors atomically. This also

synchronizes multiple threads attempting to sample

different memory locations concurrently.

An x86 instruction can access variable sized memory.

For 8, 16, or 32-bit accesses, DataCollider sets a break-

point of the appropriate size. The x86 processor traps if

another instruction accesses a memory location that

overlaps with a given breakpoint. Luckily, this is pre-

cisely the semantics required for data-race detection.

For accesses that span more than 32 bits, DataCollider

uses more than one breakpoint up to the maximum

available of four. If DataCollider runs out of breakpoint

registers, it simply resorts to the repeated-read strategy

discussed below.

When a data breakpoint fires, DataCollider has success-

fully detected a race. More importantly, it has caught

the racing threads “red handed” – the two threads are at

the point of executing conflicting accesses to the same

memory location.

One particular shortcoming of data breakpoint support

in x86 that we had to work around was the fact that,

when paging is enabled, x86 performs the breakpoint

comparisons based on the virtual address and has no

mechanism to modify this behavior. Two concurrent

accesses to the same virtual addresses but different

physical addresses do not race. In Windows, most of

the kernel resides in the same address space with two

exceptions.

Kernel threads accessing the user address space cannot

conflict if the threads are executing in the context of

different processes. If a sampled access lies in the user

address space, DataCollider does not use breakpoints

and defaults to the repeated-read strategy.

Similarly, a range of kernel-address space, called ses-

sion memory, is mapped to different address spaces

based on the session the process belongs to. When a

sampled access lies in the session memory space,

DataCollider sets a data breakpoint but checks if the

conflicting accesses belong to the same session before

reporting the conflict to the user.

Finally, a data breakpoint will miss conflicts if a pro-

cessor uses a different virtual address mapped to the

same physical address as the sampled access. Similarly,

data breakpoints cannot detect conflicts arising from

hardware devices directly accessing memory. The re-

peated-read strategy discussed below covers all these

cases.

3.2.2. Detecting Conflicts with Repeated

Reads

The repeated-read strategy relies on a simple insight: if

a conflicting write changes the value of a memory loca-

tion, DataCollider can detect this by repeatedly reading

the memory location checking for value changes. An

obvious disadvantage of this approach is that it cannot

detect conflicting reads. Similarly, it cannot detect mul-

tiple conflicting writes the last of which writes the same

value as the initial value. Despite these shortcomings,

we have found this strategy to be very useful in prac-

tice. This is the first strategy we implemented (as it is

easier to implement than using data breakpoints) and

we were able to find several kernel bugs with this ap-

proach.

However, repeated-reads strategy catches only one of

the two threads “red-handed.” This makes it harder to

debug data races, as one does not know which thread or

device was responsible for the conflicting write. This

was our prime motivation for using data breakpoints.

3.2.3. Inserting Delays

For a sampled memory access, DataCollider attempts to

detect a conflicting access to the same memory location

by delaying the thread for a short amount of time. For

DataCollider to be successful, this delay has to be long

enough for the conflicting access to occur. On the other

hand, delaying the thread for too long can be dangerous

especially if the thread holds some resource crucial for

the proper functioning of the entire system. In general,

it is impossible to predict how long to insert the delay.

After experimenting with many values, we chose the

following delay algorithm.

Depending on the IRQL (Interrupt Request Level) of

the executing thread, DataCollider delays the thread for

a preset maximum amount of time. At IRQLs higher

than the DISPATCH level (the level at which the kernel

scheduler operates), DataCollider does not insert any

delay. We considered inserting a small window of delay

at this level to identify possible data races between in-

terrupt service routines. But we did not expect that

DataCollider would be effective at short delays.

Threads running at the DISPATCH level cannot yield

the processor to another thread. As such, the delay is

simply a busy loop. We currently delay threads at this

level for a random amount of time less than 1 ms. For

lower IRQLs, DataCollider delays the thread for a max-

imum of 15 ms by spinning in a loop that yields the

current time quantum. During this loop, the thread re-

peatedly checks to see if other threads are making pro-

gress by inspecting the rate at which breakpoints fire. If

progress is not detected, the waiting thread prematurely

stops its wait.

3.3. Dealing with Benign Data Races

Research on data-race detection has amply noted the

fact that not all data races are erroneous. A practical

data-race detection tool should effectively prune or

deprioritize these benign data races when reporting to

the user. However, inferring whether or not a data race

is benign can be tricky and might require deep under-

standing of the program. For instance, a data race be-

tween two concurrent non-atomic counter updates

might be benign if the counter is a statistic variable

whose fidelity is not important to the behavior of the

program. However, if the counter is used to maintain

the number of references to a shared object, then the

data race could lead to a memory leak or a premature

free of the object.

During the initial runs of the tool, we found that around

90% of the data-race reports are benign. Inspecting the-

se we identified the following patterns that can be iden-

tified through simple static and/or dynamic analysis and

incorporated them in a post-process pruning phase.

Statistics Counters: Around half of the benign data

races involved conflicting updates to counters that

maintain various statistics about the program behavior

[21]. These counters are not necessarily write-only and

could affect the control flow of the program. A com-

mon scenario is to use these counter value to perform

periodic computation such as flushing a log buffer. If

DataCollider reports several data races involving an

increment instruction and the value of the memory loca-

tion consistently increases across these reports, then the

pruning phase tags these data races as statistics-counter

races. Checking for an increase in memory values helps

the pruning phase in distinguishing these statistics

counters from reference counters that are usually both

incremented and decremented.

Safe Flag Updates: The next prominent class of benign

races involves a thread reading a flag bit in a memory

location while another thread updates a different bit in

the same memory location. By analyzing few memory

instructions before and after the memory access, the

pruning phase identifies read-write conflicts that in-

volve different bits. On the other hand, write-write con-

flicts can result in lost updates (as shown in Figure 1)

and are not tagged as benign.

Special Variables: Some of the data races reported by

DataCollider involve special variables in the kernel

where races are expected. For instance, Windows main-

tains the current time in a variable, which is read by

many threads while being updated by the timer inter-

rupt. The pruning phase has a database of such varia-

bles and prunes races involving these variables.

While it is possible to design other patterns that identify

benign data races, one has to tradeoff the benefit of the

pruning achieved with the risk of missing real data rac-

es. For instance, we initially designed a pattern to clas-

sify two writes that write the same value as benign.

However, very few data-race reports matched this prop-

erty. On the other hand, Figure 4 shows an example of a

harmful data-race that we found involving two such

writes.

Also, we have made an explicit decision to make the

benign data races available to the user, but deprioritized

against races that are less likely to be benign. Some of

our users are interested in browsing through the pruned

benign races to identify potential portability problems

and memory-model issues in their code. We also found

an instance where a benign race, despite being harm-

less, indicated unintended sharing in the code and re-

sulted in a design change.

4. Evaluation

There are two metrics for measuring the success of a

data-race detection tool. First, is it able to find data rac-

es that programmers deem important enough to fix?

Second, is it able to scale to a large system, which in

our case is the Windows operating system, with reason-

able runtime overheads? This section presents a case for

an affirmative claim on these two metrics.

4.1. Experimental Setup

For the discussion in this section, we applied DataCol-

lider on several modules in the Windows operating sys-

tem. DataCollider has been has been used on class driv-

ers, various PnP drivers, local and remote file system

drivers, storage drivers, and the core kernel executive

itself. We are successfully able to boot the operating

system with DataCollider and run existing kernel stress

tests.

4.2. Bugs Found

Figure 3 presents the data race reports produced by the

different versions of DataCollider during its entire de-

velopment. We reported a total 38 data-race reports to

the developers. This figure does not reflect the number

of benign data races pruned heuristically and manually.

We defer the discussion of benign data races to Section

4.4.

Of these 38 reports, 25 have been confirmed as bugs

and 12 of which have already been fixed. The develop-

ers indicated that 5 of these are indeed harmless. For

instance, one of the benign data races results in a driver

issuing an idempotent request to the device. While this

could result in a performance loss, the expected fre-

quency of the data race did not justify the cost of add-

ing synchronization in the common case. Identifying

such benign races requires intimate knowledge of the

code and would not be possible without the program-

mers help.

As DataCollider naturally delays the racing access that

temporally occurs first, it is likely to explore both out-

comes of the race. Despite this, only one of the 38 data

races crashed the kernel in our experiments. This indi-

cates that the effects of an erroneous data race are not

immediately apparent for the particular input or the

hardware configuration of the current run.

We discuss two interesting error reports below

4.2.1. A Boot Hang Caused by a Data Race

A hardware vendor was consistently seeing a kernel

hang at boot-up time. This was not reproducible in any

of the in-house machine configurations, till the vendor

actually shipped the hardware to the developers. After

inspecting the hang, a developer noticed a memory cor-

ruption in a driver that could be a result of a race condi-

tion. When analyzing the driver in question, DataCol-

lider found the data race in an hour of testing on a regu-

lar in-house machine (in which the kernel did not hang).

Once the source of the corruption was found (perform-

ing a status update non-atomically), the bug was imme-

diately fixed.

Data Races Reported Count

Fixed 12

Confirmed and Being Fixed 13

Under Investigation 8

Harmless 5

Total 38

Figure 3: Bugs reported to the developers after

excluding benign data-race reports.

4.2.2. A Not-So-Benign Data Race

Figure 4 shows an erroneous data race. The function

AddToCache performs two non-atomic updates to the

flag variable. DataCollider produced an error report

with two threads simultaneously updating the flag at

location B. Usually, two instructions writing the same

values is a good hint that the data race is benign. How-

ever, the presence of the memory barrier indicated that

this report required further attention – the developer

was well aware of consequences of concurrency and the

rest of the code relied on crucial invariants on the flag

updates. When we reported this data race to the devel-

oper he initially tagged it as benign. On further discus-

sion, we discovered that the code relied on the invariant

that the CACHED bit is set after a call to AddToCache.

The data race can break this invariant when a concur-

rent thread overwrites CACHED bit when performing the

update at A, but gets preempted before setting the bit at

B.

4.2.3. How Fixed

While data races can be hard to find and result in mys-

terious crashes, our experience is that most are relative-

ly easy to fix. Of the 12 bugs, 3 were the result of miss-

ing locks. The developer could easily identify the lock-

ing discipline that was meant to be followed, and could

decide which lock to add without the fear of a deadlock.

6 data races were the fixed by using an atomic instruc-

tions, such as interlocked increment, to make a read-

modify-write to a shared variable. 2 bugs were a result

of unintended sharing and were fixed by making the

particular variable thread local. Finally, one bug indi-

cated a broken design due to a recent refactoring and

resulted in a design change.

4.3. Runtime Overhead

Users have an inherent aversion to dynamic analysis

tools that add prohibitive runtime overheads. The obvi-

ous reason is the associated wastage of test resources –

a slowdown of ten means that only one-tenth the

amount of testing can be done with a given amount of

resources. More importantly, runtime overheads intro-

duced by a tool can affect the real-time execution of the

void AddToCache() {

 // ...

 A: x &= ~(FLAG_NOT_DELETED);

 B: x |= FLAG_CACHED;

 MemoryBarrier();

 // ...

}

AddToCache();

assert(x & FLAG_CACHED);

Figure 4: An erroneous data race when the

AddToCache function is called concurrently.

Though the data race appears benign, as the con-

flicting accesses “write the same values,” the as-

sert can fail on some thread schedules.

Figure 5: Runtime overhead of DataCollider with in-

creasing sampling rate, measured in terms of the num-

ber of code breakpoints firing per second. The over-

head tends to zero as the sampling rate is reduced, in-

dicating that the tool has negligible base overhead.

Figure 6: The number of data races, uniquely identi-

fied by the pair of racing program locations, with the

runtime overhead. DataCollider is able to report data

race even under overheads under 5%

program. The operating system could start a recovery

action if a device interrupt takes too long to finish. Or a

test harness can incorrectly tag a kernel-build faulty if it

takes too long to boot.

To measure the runtime overhead of DataCollider, we

repeatedly measured the time taken for the boot-

shutdown sequence for different sampling rates and

compared against a baseline Windows kernel running

without DataCollider. These experiments where done

on the x86 version of Windows 7 running on a virtual

machine with 2 processors and 512 MB memory. The

host machine is an Intel Core2-Quad 2.4 GHz machine

with 4 GB memory running Windows Server 2008.

The guest machine was limited to 50% of the pro-

cessing resources of the host. This was done to prevent

any background activity on the host from perturbing the

performance of the guest.

Figure 5 shows the runtime overhead of DataCollider

for different sampling rates, measured by the average

number of code breakpoints fired per second during the

run. As expected, the overhead increases roughly line-

arly with the sampling rate. More interestingly, as the

sampling rate tends to zero, DataCollider’s overhead

reaches zero. This indicates that DataCollider can be

“always on” in various testing and deployment scenari-

os, allowing the user to tune the overhead to any ac-

ceptable limit.

Figure 6 shows the number of data races detected for

different runtime costs. DataCollider is able to detect

data races even for overheads less than 5% indicating

the utility of the tool at low overheads.

4.4. Benign Data Races

Finally, we performed an experiment to measure the

efficacy of our pruning algorithm for benign data races.

The results are shown in Figure 7. We enabled

DataCollider while running kernel stress tests for 2

hours sampling at approximately 1000 code breakpoints

per second. DataCollider found a total of 113 unique

data races. The patterns described in Section 3.3 can

identify 86 (76%) of these as benign errors. We manu-

ally (and painfully) triaged these reports to ensure that

these races were truly benign. Of the remaining races,

we manually identified 18 as not erroneous. 8 of them

involved the double-checked locking idiom, where a

thread performs a racy read of a flag without holding a

lock, but reconfirms the value after acquiring the lock.

8 were accesses to volatile variables that DataCollider’s

analysis was unable to infer the type of. These reports

can be avoided with a more sophisticated analysis for

determining the program types. This table demonstrates

that a significant percentage of benign data races can be

heuristically pruned without risks of missing real data

races. During this process, we found 9 potentially harm-

ful data races of which 5 have already been confirmed

as bugs.

5. Conclusion

This paper describes DataCollider, a lightweight and

effective data-race detector specifically designed for

low-level systems code. Using our implementation of

DataCollider for the Windows operating system, we

have found to date 25 erroneous data races of which 12

are already fixed.

We would like to thank our shepherd Junfeng Yang and

all our anonymous reviewers for valuable feedback on

the paper.

References

[1] Stefan Savage, Michael Burrows, Greg Nelson,

and Patrick Sobalvarro, "Eraser: A Dynamic Data

Race Detector for Multithreaded Programs," ACM

Transactions on Computer Systems, vol. 15, no. 4,

pp. 391-411, 1997.

[2] Robert O'Callahan and Jong-Deok Choi, "Hybrid

Dynamic Data Race Detection," SIGPLAN Not.,

vol. 38, no. 10, pp. 167-178, 2003.

[3] Yuan Yu, Tom Rodeheffer, and Wei Chen,

"RaceTrack: Efficient Detection of Data Race

Conditions via Adaptive Tracking," in Symposium

on Operating System Principles (SOSP), 2005, pp.

221-234.

Data Race Category Count

Benign –

Heuristically

Pruned

Statistic Counter 52

Safe Flag Update 29

Special Variable 5

Subtotal 86

Benign –

Manually

Pruned

Double-check locking 8

Volatile 8

Write Same Value 1

Other 1

Subtotal 18

Real Confirmed 5

Investigating 4

Subtotal 9

Total 113

Figure 7: Categorization of data races found by

DataCollider during kernel stress.

[4] Michael D Bond, Katherine E Coons, and Kathryn

S McKinley, "PACER: Proportional Detection of

Data Races," in Programming Languages Design

and Implementation (PLDI), 2010.

[5] Daniel Marino, Madanlal Musuvathi, and Satish

Narayanasami, "LiteRace: Effective Sampling for

Lightweight Data-Race Detection," in

Programming Language Design and

Implementation, 2009, pp. 134-143.

[6] Cormac Flanagan and Stephen N Freund,

"FastTrack: Efficient and Precise Dynamic Race

Detection," in Programming Language Design and

Implementation, 2009, pp. 121-133.

[7] E Pozniansky and A Schuster, "MultiRace:

Efficient on-the-fly data race detection in

multithreaded C++ programs," Concurrency and

Computation: ractice and Experience, vol. 19, no.

3, pp. 327-340, 2007.

[8] Leslie Lamport, "Time, clocks, and the ordering of

events in a distributed system," Communications

of the ACM, vol. 21, no. 7, pp. 558-565, 1978.

[9] Paul Sack, Brian E Bliss, Zhiqiang Ma, Paul

Petersen, and Josep Torrellas, "Accurate and

Efficient Filtering for the Intel Thread Checker

Race Detector," in Workshop on Architectural and

System Support for Improving Software

Dependability, 2006, pp. 34-41.

[10] Hans Boehm and Sarita Adve, "Foundations of the

C++ Concurrency Memory Model," HP Labs,

Technical Report HPL-2008-56 , 2008.

[11] Hans Boehm. (2009, Sep.) N1411: Memory Model

Rationale. [Online]. http://www.open-

std.org/JTC1/SC22/WG14/www/docs/n1411.htm

[12] IEEE, POSIX.1c, Threads extensions, 1995, IEEE

Std 1003.1c.

[13] Dawson Engler and Ken Ashcraft, "RacerX:

Effective, Static Detection of Race Conditions and

Deadlocks," in Symposium on Operating Systems

Principles (SOSP), 2003, pp. 237-252.

[14] Mayur Naik, Alex Aiken, and John Whaley,

"Effective Static Race Detection for Java," in

Programming Language Design and

Implementation (PLDI), 2006, pp. 308-319.

[15] Cormac Flanagan and Stephen Freund, "Type-

Based Race Detection for Java," in Programming

Language Design and Implementation (PLDI),

Vancouver, 2000, pp. 219-232.

[16] Zachary Anderson, David Gay, and Mayur Naik,

"Lightweight Annotations for Controlling Sharing

in Concurrent Data Structures," in Programming

Language Design and Implementation (PLDI),

Dublin, 2009.

[17] Chandrasekhar Boyapati, Robert Lee, and Martin

Rinard, "Ownership Types for Safe Programming:

Preventing Data Races and Deadlocks," in Object-

Oriented Programming, Systems, Languages and

Applications (OOPSLA), 2002, pp. 211-230.

[18] A Dinning and E Schonberg, "Detecting access

anomalies in programs with critical sections," in

Workshop on Parallel and Distributed Debugging,

1991, pp. 85-96.

[19] The IDA Pro Disassembler and Debugger.

[Online]. http://www.hex-rays.com/idapro/

[20] Koushik Sen, "Race Directed Random Testing of

Concurrent Programs," in Programming Language

Design and Implementation (PLDI'08), 2008, pp.

11-21.

[21] Satish Narayanasamy, Zhenghao Wang, Jordan

Tigani, Andrew Edwards, and Brad Calder,

"Automatically Classifying Benign and Harmful

Data Races Using Replay Analysis," in

Programming Language Design and

Implementation (PLDI '07), 2007, pp. 22-31.

[22] Donald E. Knuth, The Art of Computer

Programming, Volume 2.: Addison-Wesley

Longman, 1997.

[23] Steven C. Woo, Moriyoshi Ohara, Evan Torrie,

Jaswinder P. Singh, and Anoop Gupta, "The

SPLASH-2 Programs: Characterization and

Methodological Considerations," in ISCA '95:

International Symposium on Computer

architecture, 1995, pp. 24-26.

[24] Amitabh Srivastava and Alan Eustace, "ATOM: A

System for Building Customized Program

Analysis Tools," in Proceedings of the ACM

SIGPLAN 1994 Conference on Programming

Language Design and Implementation, 1994, pp.

196-205.

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1411.htm
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1411.htm
http://www.hex-rays.com/idapro/

