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Abstract 

Data races are an important class of concurrency errors where two threads erroneously access a shared memory loca-

tion without appropriate synchronization. This paper presents DataCollider, a lightweight and effective technique 

for dynamically detecting data races in kernel modules. Unlike existing data-race detection techniques, DataCollider 

is oblivious to the synchronization protocols (such as locking disciplines) the program uses to protect shared 

memory accesses. This is particularly important for low-level kernel code that uses a myriad of complex architec-

ture/device specific synchronization mechanisms. To reduce the runtime overhead, DataCollider randomly samples 

a small percentage of memory accesses as candidates for data-race detection. The key novelty of DataCollider is that 

it uses breakpoint facilities already supported by many hardware architectures to achieve negligible runtime over-

heads. We have implemented DataCollider for the Windows 7 kernel and have found 25 confirmed erroneous data 

races of which 12 have already been fixed.  

 

1. Introduction 

Concurrent systems are hard to design, arguably be-

cause of the difficulties of finding and fixing concur-

rency errors. Data races are an important class of con-

currency errors, where the program fails to use proper 

synchronization when accessing shared data. The ef-

fects of an erroneous data race can range from immedi-

ate program crashes to silent lost updates and data cor-

ruptions that are hard to reproduce and debug. 

Two memory accesses in a program are said to conflict 

if they access the same memory location and at least 

one of them is a write. A program contains a data race 

if two conflicting accesses can occur concurrently. Fig-

ure 1 shows a variation of a data race we found in the 

Windows kernel. The threads appear to be accessing 

different fields. However, these bit-fields are mapped to 

the same word by the compiler and the concurrent ac-

cesses result in a data race. In this case, an update to the 

statistics field possibly hides an update to the status 

field. 

This paper presents DataCollider, a tool for dynamical-

ly detecting data races in kernel modules. DataCollider 

is lightweight. It samples a small number of memory 

accesses for data-race detection and uses code-

breakpoint and data-breakpoint
1
 facilities available in 

modern hardware architectures to efficiently perform 

this sampling. As a result, DataCollider has no runtime 

overhead for non-sampled memory accesses allowing 

the tool to run with negligible overheads for low sam-

pling rates.  

We have implemented DataCollider for the 32-bit Win-

dows kernel running on the x86 architecture, and used it 

to detect data races in the core kernel and several mod-

ules such as the filesystem, the networking stack, the 

storage drivers, and a network file system. We have 

found a total of 25 erroneous data races of which 12 

have already been fixed at the time of writing. In our 

experiments, the tool is able to find erroneous data rac-

es for sampling rates that incur runtime overheads of 

less than 5%. 

Researchers have proposed multitude of dynamic data-

race detectors [1,2,3,4,5,6,7] for user-mode programs. 

In essence, these tools work by dynamically monitoring 

the memory accesses and synchronizations performed 

during a concurrent execution. As data races manifest 

rarely at runtime, these tools attempt to infer conflicting 

accesses that could have executed concurrently. The 

tools differ in how they perform this inference, either 
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 Data breakpoints are also called hardware watchpoints. 



 

 

using the happens-before [8] ordering induced by the 

synchronization operations [4,5,6] or a lock-set based 

reasoning [1] or a combination of the two [2,3,7] 

There are several challenges in engineering a data-race 

detection tool for the kernel based on previous ap-

proaches. First, the kernel-mode code operates at a low-

er concurrency abstraction than user-mode code, which 

can rely on clean abstractions of threads and synchroni-

zations provided by the kernel. In the kernel, the same 

thread context can execute code from a user-mode pro-

cess, a device interrupt service routine, or a deferred 

procedure call (DPC). In addition, it is an onerous task 

to understand the semantics of complex synchronization 

primitives in order to infer the happens-before relation 

or lock-sets. For instance, Windows supports more than 

a dozen locks with different semantics on how the lock 

holder synchronizes with hardware interrupts, the 

scheduler, and the DPCs. It is also common for kernel 

modules to roll-out custom implementations of syn-

chronization primitives.  

Second, hardware-facing kernel modules need to syn-

chronize with hardware devices that concurrently modi-

fy device state and memory. It is important to design a 

data-race detection tool that can find these otherwise 

hard-to-find data races between the hardware and the 

kernel. 

Finally, existing dynamic data-race detectors add pro-

hibitive run-time overheads. It is not uncommon for 

such tools to incur up to 200x slowdowns [9]. The 

overhead is primarily due to the need to monitor and 

process all memory and synchronization operations at 

run time. Significant engineering effort in building da-

ta-race detectors goes in reducing the runtime overhead 

and the associated memory and log management [9,3]. 

Replicating these efforts within the constraints of kernel 

programming is an arduous, if not impossible, task. 

Moreover, these tools rely on invasive instrumentation 

techniques that are difficult to get right on low-level 

kernel code. 

DataCollider uses a different approach to overcome 

these challenges. The crux of the algorithm is shown in 

Figure 2. DataCollider samples a small number of 

memory accesses at runtime by inserting code break-

points at randomly chosen memory access instructions. 

When a code breakpoint fires, DataCollider detects data 

races involving the sampled memory access for a small 

time window. It simultaneously employs two strategies 

 struct{ 

   int status:4; 

   int pktRcvd:28; 

} st; 

 

     Thread 1 

 

   st.status = 1; 

 

     Thread 2 

 

   st.pktRcvd ++; 

 

Figure 1: An example of data race. Even though the 

threads appear to be modifying different variables in 

the source code, the variables are bit fields mapping 

to the same integer  

AtPeriodicIntervals() { 

  // determine k based on desired 

  // memory access sampling rate  

  repeat k times { 

    pc = RandomlyChosenMemoryAccess(); 

    SetCodeBreakpoint( pc ); 

  } 

} 

 

OnCodeBreakpoint( pc ) { 

  // disassemble the instruction at pc 

  (loc, size, isWrite) = disasm( pc ); 

 

  DetectConflicts(loc, size, isWrite); 

 

  // set another code break point 

  pc = RandomlyChosenMemoryAccess();    

  SetCodeBreakpoint( pc ); 

} 

 

DetectConflicts( loc, size, isWrite) { 

  temp = read( loc, size ); 

 

  if ( isWrite ) 

    SetDataBreakpointRW( loc, size ); 

  else 

    SetDataBreakpointW( loc, size );  

 

  delay(); 

 

  ClearDataBreakpoint( loc, size ); 

 

  temp’ = read( loc, size );  

 

  if( temp != temp’ || 

      data breakpoint fired ) 

    ReportDataRace( );  

} 

 

Figure 2: The basics of the DataCollider algo-

rithm. Right before a read or write access to shared 

memory location, chosen at random, DataCollider 

monitors for any concurrent accesses that conflict 

with the current access.  



 

 

to do so. First, DataCollider sets a data breakpoint to 

trap conflicting accesses by other threads. To detect 

conflicting writes performed by hardware devices and 

by processors accessing the memory location through a 

different virtual address, DataCollider use a repeated-

read strategy. It reads the value once before and once 

after the delay. A change in value is an indication of a 

conflicting write, and hence a data race.  

The DataCollider algorithm has two features that make 

it suitable for kernel data-race detection. First and 

foremost, it is easy to implement. Barring some imple-

mentation details (Section 3), the entire algorithm is 

shown in Figure 2. In addition, it is entirely oblivious to 

the synchronization protocols used by the kernel and 

the hardware, a welcome design point as DataCollider 

does not have to understand the complex semantics of 

kernel synchronization primitives.  

When the DataCollider finds a data race through the 

data-breakpoint strategy, it catches both threads “red-

handed,” as they are about to execute conflicting ac-

cesses. This greatly simplifies the debugging of data 

race reports from DataCollider as the tool can collect 

useful debugging information, such as the stack trace of 

the racing threads along with their context information, 

without incurring this overhead on non-sampled or non-

racy accesses.   

Not all data races are erroneous. Such benign races in-

clude races that do not affect the program outcome, 

such as updates to logging/debugging variables, and 

races that affect the program outcome in a manner ac-

ceptable to the programmer, such as conflicting updates 

to a low-fidelity counter. DataCollider uses a post-

processing phase that prunes and prioritizes the data-

race reports before showing them to the user. In our 

experience with DataCollider, we have observed that 

only around 10% percentage of data-race reports corre-

spond to real errors, making the post-processing step 

absolutely crucial for the usability of the tool. 

2. Background and Motivation 

Shared memory multiprocessors are specifically built to 

allow concurrent access to shared data. So why do data 

races represent a problem at all? 

The key motivation for data race detection is the empir-

ic fact that programmers most often use synchroniza-

tion to restrict accesses to shared memory. Data races 

can thus be an indication of incorrect or insufficient 

synchronization in the program. In addition, data races 

can also reveal programming mistakes not directly re-

lated to concurrency, such as buffer overruns or use-

after-free, which indirectly result in inadvertent sharing 

of memory.  

Another important reason for avoiding data races is to 

protect the program from the weak memory models of 

the compiler and the hardware. Both the compiler and 

hardware can reorder instructions and change the be-

havior of racy programs in complex and confusing 

ways [10,11]. Even if a racy program works correctly 

for the current compiler and hardware configuration, it 

might fail on future configurations that implement more 

aggressive memory-model relaxations.  

While bugs caused by data races may of course be 

found using more conventional testing approaches such 

as stress testing, the latter often fails to provide actiona-

ble information to the programmer. Clearly, a data race 

report including stack traces or data values (or even 

better, including a core dump that is demonstrating the 

actual data race) is easier to understand and fix than a 

silent data corruption that leads to an obscure failure at 

some later point during program execution.  

2.1. Definition of Data Race  

There is no “gold standard” for defining data races; 

several researchers have used the term to mean different 

things. For our definition, we consulted two respected 

standards (Posix threads [12] and the drafts of the C++ 

and C memory model standards [11,10]) and general-

ized their definitions to account for the particularities of 

kernel code. Our definition of data race is:  

 Two operations that access main memory are 

called conflicting if  

o the physical memory they access is not 

disjoint,  

o at least one of them is a write, and 

o they are not both synchronization access-

es.  

 A program has a data race if it can be executed on 

a multiprocessor in such a way that two conflicting 

memory accesses are performed simultaneously 

(by processors or any other device).  

This definition is a simplification of [11,10] insofar we 

replaced the tricky notion of “not ordered before” with 

the unambiguous “performed simultaneously” (which 

refers to real time).  

An important part of our definition is the distinction 

between synchronization and data accesses. Clearly, 

some memory accesses participate in perfectly desirable 

races: for example, a mutex implementation may per-

form a “release” by storing the value 0 in a shared loca-



 

 

tion, while another thread is performing an acquire and 

reads the same memory location. However, this is not a 

data race because we categorize both of these accesses 

as synchronization accesses. Synchronization accesses 

either involve hardware synchronization primitives 

such as interlocked instructions or use volatile or atom-

ic annotations supported by the compiler. 

Note that our definition is general enough to apply to 

code running in the kernel, which poses some unique 

problems not found in user-mode code. For example, in 

some cases data races can be avoided by turning off 

interrupts; also, processes can exhibit a data race when 

accessing different virtual addresses that map to the 

same physical address. We talk more about these topics 

in Section 2.3.4.  

2.2. Precision of Detection 

Clearly, we would like data race detection tools to re-

port as many data races as possible without inundating 

the user with false error reports. We use the following 

terminology to discuss the precision and completeness 

of data race detectors. A missed race is a data race that 

the tool does not warn about. A benign data race is a 

data race that does not adversely affect the behavior of 

the program. Common examples of benign data races 

include threads racing on updates to logging or statistics 

variables and threads concurrently updating a shared 

counter where the occasional incorrect update of the 

counter does not affect the outcome of the program. On 

the other hand, a false data race is an error report that 

does not correspond to a data race in the program. Stat-

ic data-race detection techniques commonly produce 

false data races due to their inherent inability to precise-

ly reason about program paths, aliased heap objects, 

and function pointers. Dynamic data-race detectors can 

report false data races if they do not identify or do not 

understand the semantics of all the synchronizations 

used by the program. 

2.3. Related Work 

Researchers have proposed and built a plethora of race 

detection tools. We now discuss the major approaches 

and implementation techniques appearing in related 

work. We describe both happens-before-based and 

lock-set-based tracking in some detail (Sections 2.3.2 

and 2.3.3), before explaining why neither one is very 

practical for data race detection in the kernel (Section 

2.3.4). 

2.3.1. Static vs. Dynamic 

Data race detection can be broadly categorized into 

static race detection [13,14,15,16,17], which typically 

analyzes source or byte code without directly executing 

the program, and dynamic race detection [1,2,3,4,5,6,7], 

which instruments the program and monitors its execu-

tion online or offline. 

Static race detectors have been successfully applied to 

large code bases [13,14]. However, as they rely on ap-

proximate information, such as pointer aliasing, they 

are prone to excessive false warnings. Some tools, es-

pecially those targeting large code bases, approach this 

issue by filtering the reported warnings using heuristics 

[13]. Such heuristics can successfully reduce the false 

warnings to a tolerable level, but may unfortunately 

also eliminate correct warnings and lead to missed rac-

es. Other tools, targeted towards highly motivated users 

that wish to interactively prove absence of data races, 

report all potential races to the user and rely on user-

supplied annotations that indicate synchronization dis-

ciplines [16,17]. 

Dynamic data race detectors are less prone to false 

warnings than static techniques because they monitor 

an actual execution of the program. However, they may 

miss races because successful detection might require 

an error-inducing input and/or an appropriate thread 

schedule. Also, many dynamic detectors employ several 

heuristics and approximations that can lead to false 

alarms. 

Dynamic data race detectors can be classified into cate-

gories based on whether they model a happens-before 

relation  [6,5,7] (see Section 2.3.2), lock sets [1] (see 

Section 2.3.3), or both  [2,18]. 

2.3.2. Happens-Before Tracking 

Dynamic data race detectors do not just detect data rac-

es that actually took place (in the sense that the conflict-

ing accesses were truly simultaneous during the execu-

tion), but look for evidence that such a schedule would 

have been possible for a slightly different timing. 

Tracking a happens-before relation on program events 

[8] is one way to infer the existence of a racy schedule. 

This transitive relation is constructed by recording both 

the ordering of events within a thread and the ordering 

effects of synchronization operations across threads.   

Once we can properly track the happens-before relation, 

race detection is straightforward: For any two conflict-

ing accesses A and B, we simply check whether A hap-

pens-before B, or B happens-before A, or neither. If 



 

 

neither, we know there exists a schedule where A and B 

are simultaneous. If properly tracked, happens-before 

does not lead to any false alarms. However, precise 

tracking can be difficult to achieve in practice, as dis-

cussed in Section 2.3.4.  

2.3.3. Lock Sets 

When detecting races in programs that follow a strict 

and consistent locking discipline, using a lock-set ap-

proach can provide some benefits. The basic idea is to 

examine the lock set of each data access (that is, the set 

of locks held during the access) and then to take for 

each memory location the intersection of the lock sets 

of all accesses to it. If that intersection is empty, the 

variable is not consistently protected by any one lock 

and a warning is issued. 

The main limitation of the lock set approach is that it 

does not check for true data races but for violations of a 

specific locking discipline. Unfortunately, many appli-

cations (and in particular kernel code) use locking dis-

ciplines that are complex and use synchronization other 

than locks.  

Whenever a program departs from a simple locking 

scheme in any of the above ways, lock-set-based race 

detectors will be forced to either issue false warnings, 

or to use heuristics to suppress these warnings. The 

latter approach is common, especially in the form of 

state machines that track the “sharing status” of a varia-

ble [1,3]. Such heuristics are necessarily imperfect 

compromises, however (they always fail to suppress 

some false warnings and always suppress some correct 

warnings), and it is not clear how to tune them to be 

useful for a wide range of applications. 

2.3.4. Problems with Tracking Synchroni-

zations 

Both lock-set and happens-before tracking require a 

thorough understanding of the synchronization seman-

tics, lest they produce false alarms or miss races. There 

are two fundamental difficulties we encountered when 

trying to apply these techniques in the kernel: 

 Abstractions that we take for granted in user mode 

(such as threads) are no longer clearly defined in 

kernel mode.  

 The synchronization vocabulary of kernel code is 

much richer and may include complicated se-

quences and ordering mechanisms provided by the 

hardware. 

For example, interrupts and interrupt handlers break the 

thread abstraction, as the handler code may execute in a 

thread context without being part of that thread in a 

logical sense. Similar problems arise when a thread 

calls into the kernel scheduler. The code executing in 

the scheduler is not logically part of that same thread.  

Another example illustrating the difficulty of modeling 

synchronization inside the kernel are DMA accesses. 

Such accesses are not executing inside a thread (in fact, 

they are not even executing on a processor). Clearly, 

traditional monitoring techniques have a problem be-

cause they cannot “instrument” the DMA access. 

Similar case holds for interrupt processing. For exam-

ple, code may first write some data and then raise an 

interrupt, and then the same data is read by an interrupt 

handler. Lock sets would report a false alarm because 

the data is not locked.  But even happens-before tech-

niques are problematic, because they would need to 

precisely track the causality between the instruction that 

set the interrupt and the interrupt handler. 

For these reasons, we decided to employ a design that 

entirely avoids modeling the happens-before ordering 

or lock-sets. As our results show, somewhat surprising-

ly, neither one is required to build an effective data race 

detector.  

2.3.5. Sampling to Reduce Overhead 

To detect races, dynamic data race detectors need to 

monitor the synchronizations and memory accesses 

performed at runtime. This is typically done by instru-

menting the code and inserting extra monitoring code 

for each data access. As the monitoring code executes 

at every memory access, the overhead can be quite sub-

stantial.  

One way to ameliorate this issue is to exclude some 

data accesses from processing.  Prior work has identi-

fied several promising strategies: adaptive sampling 

that backs off hot locations [5] (the idea is that for such 

locations the monitoring can be less frequent and still 

detect races), or perform the full monitoring only for a 

fixed fraction of the time [4] (the idea is that the proba-

bility of catching a race is roughly proportional to this 

fraction multiplied by the number of times the race re-

peats).  But these techniques still suffer from the cost of 

sampling, performed at every memory access. DataCol-

lider avoids this problem by using hardware breakpoint 

mechanisms.  



 

 

3. DataCollider Implementation 

This section describes the implementation of the 

DataCollider algorithm for the Windows kernel on the 

x86 architecture. The implementation heavily uses the 

code and data breakpoint mechanisms available on x86. 

The techniques described in this paper can be extended 

to other architectures and to user-mode code. But we 

have not pursued this direction in this paper.   

Figure 2 describes the basics of the DataCollider algo-

rithm. DataCollider uses the sampling algorithm, de-

scribed in Section 3.1, to process a small percentage of 

memory accesses for data-race detection. For each of 

the sampled memory accesses, DataCollider uses a con-

flict detection mechanism, described in Section 3.2, to 

find data races involving the sampled access. After de-

tecting data races, DataCollider uses several heuristics, 

described in Section 3.3, to prune benign data races. 

3.1. The Sampling Algorithm  

There are several challenges in designing a good sam-

pling algorithm for data-race detection. First, data races 

involve two memory accesses both of which need to be 

sampled to detect the race. If memory accesses are 

sampled independently, then the probability of finding 

the data race is a product of the individual sampling 

probabilities. DataCollider avoids this multiplicative 

effect by sampling the first access and using a data 

breakpoint to trap the second access. This allows 

DataCollider to be effective at low sampling rates.  

Second, data races are rare events – most executed in-

structions do not result in a data race. The sampling 

algorithm should weed out the small percentage of rac-

ing accesses from the majority of non-racing accesses. 

The key intuition behind the sampling algorithm is that 

if a program location is buggy and fails to use the right 

synchronization when accessing shared data, then every 

dynamic execution of that buggy code is likely to par-

ticipate in a data race. Accordingly, DataCollider per-

forms static sampling of program locations rather than 

dynamic sampling of executed instructions. A static 

sampler provides equal preference to rarely execution 

instructions (which are likely to have bugs hidden in 

them) and frequently executed instructions.   

3.1.1. Static Sampling Using Code Break-

points 

The static sampling algorithm works as follows. Given 

a program binary, DataCollider disassembles the binary 

to generate a sampling set consisting of all program 

locations that access memory. The tool currently re-

quires the debugging symbols of the program binary to 

perform this disassembly. This requirement can be re-

laxed by using sophisticated disassemblers [19] in the 

future.   

DataCollider performs a simple static analysis to identi-

fy instructions that are guaranteed to only touch thread-

local stack locations and removes them from the sam-

pling set. Similarly, DataCollider removes synchroniz-

ing instructions from the sampling set by removing 

instructions that accesses memory locations tagged as 

“volatile” or those that use hardware synchronization 

primitives, such as interlocked. This prevents DataCol-

lider from reporting races on synchronization variables. 

However, DataCollider can still detect a data race be-

tween a synchronization access and a regular data ac-

cess, if the latter is in the sampling set.  

DataCollider samples program locations from the sam-

pling set by inserting code breakpoints. The initial 

breakpoints are set at a small number of program loca-

tions chosen uniformly randomly from the sampling set. 

If and when a code breakpoint fires, DataCollider per-

forms conflict detection for the memory access at that 

breakpoint. Then, DataCollider choses another program 

location uniformly randomly from the sampling set and 

sets a breakpoint at that location.  

This algorithm uniformly samples all program locations 

in the sampling set irrespective of the frequency with 

which the program executes these locations. This is 

because the choice of inserting a code breakpoint is 

performed uniformly at random for all locations in the 

sampling set. Over a period of time, the breakpoints 

will tend to reside at rarely executed program locations, 

increasing the likelihood that those locations are sam-

pled the next time they execute.  

If DataCollider has information on which program loca-

tions are likely to participate in a race, either through 

user annotations or through prior analysis [20] then the 

tool can prioritize those locations by biasing their selec-

tion from the sampling set. 

3.1.2. Controlling the Sampling Rate 

While the program cannot affect the sampling distribu-

tion over program locations, the sampling rate is inti-

mately tied to how frequently the program executes 

locations with a code breakpoint. In the worst case, if 

all of the breakpoints are set on dead code, DataCollider 

will stop performing data-race detection altogether. To 

avoid this and to better control the sampling rate, 

DataCollider periodically checks the number of break-

points fired every second, and adjusts the number of 



 

 

breakpoints set in the program based on whether the 

experienced sampling rate is higher or lower than the 

target rate.  

3.2. Conflict-Detection  

As described in the previous section, DataCollider picks 

a small percentage of memory accesses as likely candi-

dates for data-race detection. For these sampled access-

es, DataCollider pauses the current thread waiting to 

see if another thread makes a conflicting access to the 

same memory location. It uses two strategies: data 

breakpoints and repeated-reads. DataCollider uses these 

two strategies simultaneously as each complements the 

weaknesses of the other.  

3.2.1. Detecting Conflicts with Data Break-

points 

Modern hardware architectures provide a facility to trap 

when a processor reads or writes a particular memory 

location. This is crucial for efficient support for data 

breakpoints in debuggers. The x86 hardware supports 

four data breakpoint registers. DataCollider uses them 

to effectively monitor possible conflicting accesses to 

the currently sampled access.  

When the current access is a write, DataCollider in-

structs the processor to trap on a read or write to the 

memory location. If the current access is a read, 

DataCollider instructs the processor to trap only on a 

write, as concurrent reads to the same location do not 

conflict. If no conflicting accesses are detected, 

DataCollider resumes the execution of the current 

thread after clearing the data breakpoint registers.  

Each processor has a separate data breakpoint register. 

DataCollider uses an inter-processor interrupt to update 

the break points on all processors atomically. This also 

synchronizes multiple threads attempting to sample 

different memory locations concurrently.  

An x86 instruction can access variable sized memory. 

For 8, 16, or 32-bit accesses, DataCollider sets a break-

point of the appropriate size. The x86 processor traps if 

another instruction accesses a memory location that 

overlaps with a given breakpoint. Luckily, this is pre-

cisely the semantics required for data-race detection. 

For accesses that span more than 32 bits, DataCollider 

uses more than one breakpoint up to the maximum 

available of four. If DataCollider runs out of breakpoint 

registers, it simply resorts to the repeated-read strategy 

discussed below.  

When a data breakpoint fires, DataCollider has success-

fully detected a race. More importantly, it has caught 

the racing threads “red handed” – the two threads are at 

the point of executing conflicting accesses to the same 

memory location.  

One particular shortcoming of data breakpoint support 

in x86 that we had to work around was the fact that, 

when paging is enabled, x86 performs the breakpoint 

comparisons based on the virtual address and has no 

mechanism to modify this behavior. Two concurrent 

accesses to the same virtual addresses but different 

physical addresses do not race. In Windows, most of 

the kernel resides in the same address space with two 

exceptions.  

Kernel threads accessing the user address space cannot 

conflict if the threads are executing in the context of 

different processes. If a sampled access lies in the user 

address space, DataCollider does not use breakpoints 

and defaults to the repeated-read strategy. 

Similarly, a range of kernel-address space, called ses-

sion memory, is mapped to different address spaces 

based on the session the process belongs to. When a 

sampled access lies in the session memory space, 

DataCollider sets a data breakpoint but checks if the 

conflicting accesses belong to the same session before 

reporting the conflict to the user.  

Finally, a data breakpoint will miss conflicts if a pro-

cessor uses a different virtual address mapped to the 

same physical address as the sampled access. Similarly, 

data breakpoints cannot detect conflicts arising from 

hardware devices directly accessing memory. The re-

peated-read strategy discussed below covers all these 

cases.   

3.2.2. Detecting Conflicts with Repeated 

Reads 

The repeated-read strategy relies on a simple insight: if 

a conflicting write changes the value of a memory loca-

tion, DataCollider can detect this by repeatedly reading 

the memory location checking for value changes. An 

obvious disadvantage of this approach is that it cannot 

detect conflicting reads. Similarly, it cannot detect mul-

tiple conflicting writes the last of which writes the same 

value as the initial value. Despite these shortcomings, 

we have found this strategy to be very useful in prac-

tice. This is the first strategy we implemented (as it is 

easier to implement than using data breakpoints) and 

we were able to find several kernel bugs with this ap-

proach.  



 

 

However, repeated-reads strategy catches only one of 

the two threads “red-handed.” This makes it harder to 

debug data races, as one does not know which thread or 

device was responsible for the conflicting write. This 

was our prime motivation for using data breakpoints.  

3.2.3. Inserting Delays 

For a sampled memory access, DataCollider attempts to 

detect a conflicting access to the same memory location 

by delaying the thread for a short amount of time. For 

DataCollider to be successful, this delay has to be long 

enough for the conflicting access to occur. On the other 

hand, delaying the thread for too long can be dangerous 

especially if the thread holds some resource crucial for 

the proper functioning of the entire system. In general, 

it is impossible to predict how long to insert the delay. 

After experimenting with many values, we chose the 

following delay algorithm.  

Depending on the IRQL (Interrupt Request Level) of 

the executing thread, DataCollider delays the thread for 

a preset maximum amount of time. At IRQLs higher 

than the DISPATCH level (the level at which the kernel 

scheduler operates), DataCollider does not insert any 

delay. We considered inserting a small window of delay 

at this level to identify possible data races between in-

terrupt service routines. But we did not expect that 

DataCollider would be effective at short delays.  

Threads running at the DISPATCH level cannot yield 

the processor to another thread.  As such, the delay is 

simply a busy loop.  We currently delay threads at this 

level for a random amount of time less than 1 ms. For 

lower IRQLs, DataCollider delays the thread for a max-

imum of 15 ms by spinning in a loop that yields the 

current time quantum. During this loop, the thread re-

peatedly checks to see if other threads are making pro-

gress by inspecting the rate at which breakpoints fire. If 

progress is not detected, the waiting thread prematurely 

stops its wait.  

3.3. Dealing with Benign Data Races  

Research on data-race detection has amply noted the 

fact that not all data races are erroneous. A practical 

data-race detection tool should effectively prune or 

deprioritize these benign data races when reporting to 

the user. However, inferring whether or not a data race 

is benign can be tricky and might require deep under-

standing of the program. For instance, a data race be-

tween two concurrent non-atomic counter updates 

might be benign if the counter is a statistic variable 

whose fidelity is not important to the behavior of the 

program. However, if the counter is used to maintain 

the number of references to a shared object, then the 

data race could lead to a memory leak or a premature 

free of the object.  

During the initial runs of the tool, we found that around 

90% of the data-race reports are benign. Inspecting the-

se we identified the following patterns that can be iden-

tified through simple static and/or dynamic analysis and 

incorporated them in a post-process pruning phase.  

Statistics Counters: Around half of the benign data 

races involved conflicting updates to counters that 

maintain various statistics about the program behavior 

[21]. These counters are not necessarily write-only and 

could affect the control flow of the program. A com-

mon scenario is to use these counter value to perform 

periodic computation such as flushing a log buffer. If 

DataCollider reports several data races involving an 

increment instruction and the value of the memory loca-

tion consistently increases across these reports, then the 

pruning phase tags these data races as statistics-counter 

races. Checking for an increase in memory values helps 

the pruning phase in distinguishing these statistics 

counters from reference counters that are usually both 

incremented and decremented.  

Safe Flag Updates: The next prominent class of benign 

races involves a thread reading a flag bit in a memory 

location while another thread updates a different bit in 

the same memory location. By analyzing few memory 

instructions before and after the memory access, the 

pruning phase identifies read-write conflicts that in-

volve different bits. On the other hand, write-write con-

flicts can result in lost updates (as shown in Figure 1) 

and are not tagged as benign.  

Special Variables: Some of the data races reported by 

DataCollider involve special variables in the kernel 

where races are expected. For instance, Windows main-

tains the current time in a variable, which is read by 

many threads while being updated by the timer inter-

rupt.  The pruning phase has a database of such varia-

bles and prunes races involving these variables.  

While it is possible to design other patterns that identify 

benign data races, one has to tradeoff the benefit of the 

pruning achieved with the risk of missing real data rac-

es. For instance, we initially designed a pattern to clas-

sify two writes that write the same value as benign. 

However, very few data-race reports matched this prop-

erty. On the other hand, Figure 4 shows an example of a 

harmful data-race that we found involving two such 

writes.  

Also, we have made an explicit decision to make the 

benign data races available to the user, but deprioritized 



 

 

against races that are less likely to be benign. Some of 

our users are interested in browsing through the pruned 

benign races to identify potential portability problems 

and memory-model issues in their code. We also found 

an instance where a benign race, despite being harm-

less, indicated unintended sharing in the code and re-

sulted in a design change.  

4. Evaluation 

There are two metrics for measuring the success of a 

data-race detection tool. First, is it able to find data rac-

es that programmers deem important enough to fix? 

Second, is it able to scale to a large system, which in 

our case is the Windows operating system, with reason-

able runtime overheads? This section presents a case for 

an affirmative claim on these two metrics.  

4.1. Experimental Setup 

For the discussion in this section, we applied DataCol-

lider on several modules in the Windows operating sys-

tem. DataCollider has been has been used on class driv-

ers, various PnP drivers, local and remote file system 

drivers, storage drivers, and the core kernel executive 

itself. We are successfully able to boot the operating 

system with DataCollider and run existing kernel stress 

tests.  

4.2. Bugs Found 

Figure 3 presents the data race reports produced by the 

different versions of DataCollider during its entire de-

velopment. We reported a total 38 data-race reports to 

the developers. This figure does not reflect the number 

of benign data races pruned heuristically and manually. 

We defer the discussion of benign data races to Section 

4.4.  

Of these 38 reports, 25 have been confirmed as bugs 

and 12 of which have already been fixed. The develop-

ers indicated that 5 of these are indeed harmless. For 

instance, one of the benign data races results in a driver 

issuing an idempotent request to the device. While this 

could result in a performance loss, the expected fre-

quency of the data race did not justify the cost of add-

ing synchronization in the common case. Identifying 

such benign races requires intimate knowledge of the 

code and would not be possible without the program-

mers help. 

As DataCollider naturally delays the racing access that 

temporally occurs first, it is likely to explore both out-

comes of the race. Despite this, only one of the 38 data 

races crashed the kernel in our experiments. This indi-

cates that the effects of an erroneous data race are not 

immediately apparent for the particular input or the 

hardware configuration of the current run.  

We discuss two interesting error reports below 

4.2.1. A Boot Hang Caused by a Data Race 

A hardware vendor was consistently seeing a kernel 

hang at boot-up time. This was not reproducible in any 

of the in-house machine configurations, till the vendor 

actually shipped the hardware to the developers. After 

inspecting the hang, a developer noticed a memory cor-

ruption in a driver that could be a result of a race condi-

tion. When analyzing the driver in question, DataCol-

lider found the data race in an hour of testing on a regu-

lar in-house machine (in which the kernel did not hang). 

Once the source of the corruption was found (perform-

ing a status update non-atomically), the bug was imme-

diately fixed.  

Data Races Reported Count 

Fixed 12 

Confirmed and Being Fixed 13 

Under Investigation 8 

Harmless 5 

Total 38 

Figure 3: Bugs reported to the developers after 

excluding benign data-race reports.  

 



 

 

4.2.2. A Not-So-Benign Data Race 

Figure 4 shows an erroneous data race. The function 

AddToCache performs two non-atomic updates to the 

flag variable. DataCollider produced an error report 

with two threads simultaneously updating the flag at 

location B. Usually, two instructions writing the same 

values is a good hint that the data race is benign. How-

ever, the presence of the memory barrier indicated that 

this report required further attention – the developer 

was well aware of consequences of concurrency and the 

rest of the code relied on crucial invariants on the flag 

updates. When we reported this data race to the devel-

oper he initially tagged it as benign. On further discus-

sion, we discovered that the code relied on the invariant 

that the CACHED bit is set after a call to AddToCache. 

The data race can break this invariant when a concur-

rent thread overwrites CACHED bit when performing the 

update at A, but gets preempted before setting the bit at 

B.  

4.2.3. How Fixed 

While data races can be hard to find and result in mys-

terious crashes, our experience is that most are relative-

ly easy to fix. Of the 12 bugs, 3 were the result of miss-

ing locks. The developer could easily identify the lock-

ing discipline that was meant to be followed, and could 

decide which lock to add without the fear of a deadlock. 

6 data races were the fixed by using an atomic instruc-

tions, such as interlocked increment, to make a read-

modify-write to a shared variable. 2 bugs were a result 

of unintended sharing and were fixed by making the 

particular variable thread local. Finally, one bug indi-

cated a broken design due to a recent refactoring and 

resulted in a design change.   

4.3. Runtime Overhead 

Users have an inherent aversion to dynamic analysis 

tools that add prohibitive runtime overheads. The obvi-

ous reason is the associated wastage of test resources – 

a slowdown of ten means that only one-tenth the 

amount of testing can be done with a given amount of 

resources. More importantly, runtime overheads intro-

duced by a tool can affect the real-time execution of the 

void AddToCache() { 

   // ...  

   A: x &= ~(FLAG_NOT_DELETED); 

   B: x |= FLAG_CACHED; 

 

   MemoryBarrier(); 

   // ... 

} 

 

AddToCache(); 

assert( x & FLAG_CACHED ); 

 

Figure 4: An erroneous data race when the 

AddToCache function is called concurrently. 

Though the data race appears benign, as the con-

flicting accesses “write the same values,” the as-

sert can fail on some thread schedules.   

 

 

Figure 5: Runtime overhead of DataCollider with in-

creasing sampling rate, measured in terms of the num-

ber of code breakpoints firing per second. The over-

head tends to zero as the sampling rate is reduced, in-

dicating that the tool has negligible base overhead. 

 

Figure 6: The number of data races, uniquely identi-

fied by the pair of racing program locations, with the 

runtime overhead. DataCollider is able to report data 

race even under overheads under 5% 



 

 

program. The operating system could start a recovery 

action if a device interrupt takes too long to finish. Or a 

test harness can incorrectly tag a kernel-build faulty if it 

takes too long to boot. 

To measure the runtime overhead of DataCollider, we 

repeatedly measured the time taken for the boot-

shutdown sequence for different sampling rates and 

compared against a baseline Windows kernel running 

without DataCollider. These experiments where done 

on the x86 version of Windows 7 running on a virtual 

machine with 2 processors and 512 MB memory. The 

host machine is an Intel Core2-Quad 2.4 GHz machine 

with 4 GB memory running Windows Server 2008.  

The guest machine was limited to 50% of the pro-

cessing resources of the host.  This was done to prevent 

any background activity on the host from perturbing the 

performance of the guest. 

Figure 5 shows the runtime overhead of DataCollider 

for different sampling rates, measured by the average 

number of code breakpoints fired per second during the 

run. As expected, the overhead increases roughly line-

arly with the sampling rate. More interestingly, as the 

sampling rate tends to zero, DataCollider’s overhead 

reaches zero. This indicates that DataCollider can be 

“always on” in various testing and deployment scenari-

os, allowing the user to tune the overhead to any ac-

ceptable limit.  

Figure 6 shows the number of data races detected for 

different runtime costs. DataCollider is able to detect 

data races even for overheads less than 5% indicating 

the utility of the tool at low overheads.  

4.4. Benign Data Races 

Finally, we performed an experiment to measure the 

efficacy of our pruning algorithm for benign data races. 

The results are shown in Figure 7. We enabled 

DataCollider while running kernel stress tests for 2 

hours sampling at approximately 1000 code breakpoints 

per second. DataCollider found a total of 113 unique 

data races. The patterns described in Section 3.3 can 

identify 86 (76%) of these as benign errors. We manu-

ally (and painfully) triaged these reports to ensure that 

these races were truly benign. Of the remaining races, 

we manually identified 18 as not erroneous. 8 of them 

involved the double-checked locking idiom, where a 

thread performs a racy read of a flag without holding a 

lock, but reconfirms the value after acquiring the lock. 

8 were accesses to volatile variables that DataCollider’s 

analysis was unable to infer the type of. These reports 

can be avoided with a more sophisticated analysis for 

determining the program types. This table demonstrates 

that a significant percentage of benign data races can be 

heuristically pruned without risks of missing real data 

races. During this process, we found 9 potentially harm-

ful data races of which 5 have already been confirmed 

as bugs. 

5. Conclusion 

This paper describes DataCollider, a lightweight and 

effective data-race detector specifically designed for 

low-level systems code. Using our implementation of 

DataCollider for the Windows operating system, we 

have found to date 25 erroneous data races of which 12 

are already fixed.  

We would like to thank our shepherd Junfeng Yang and 

all our anonymous reviewers for valuable feedback on 

the paper.  

References 

[1] Stefan Savage, Michael Burrows, Greg Nelson, 

and Patrick Sobalvarro, "Eraser: A Dynamic Data 

Race Detector for Multithreaded Programs," ACM 

Transactions on Computer Systems, vol. 15, no. 4, 

pp. 391-411, 1997. 

[2] Robert O'Callahan and Jong-Deok Choi, "Hybrid 

Dynamic Data Race Detection," SIGPLAN Not., 

vol. 38, no. 10, pp. 167-178, 2003. 

[3] Yuan Yu, Tom Rodeheffer, and Wei Chen, 

"RaceTrack: Efficient Detection of Data Race 

Conditions via Adaptive Tracking," in Symposium 

on Operating System Principles (SOSP), 2005, pp. 

221-234. 

Data Race Category Count 

Benign – 

Heuristically 

Pruned  

Statistic Counter  52 

Safe Flag Update 29 

Special Variable 5 

Subtotal 86 

Benign –  

Manually  

Pruned 

 

Double-check locking 8 

Volatile 8 

Write Same Value 1 

Other 1 

Subtotal 18 

Real Confirmed 5 

Investigating 4 

Subtotal 9 

Total 113 

Figure 7: Categorization of data races found by 

DataCollider during kernel stress. 

 



 

 

[4] Michael D Bond, Katherine E Coons, and Kathryn 

S McKinley, "PACER: Proportional Detection of 

Data Races," in Programming Languages Design 

and Implementation (PLDI), 2010. 

[5] Daniel Marino, Madanlal Musuvathi, and Satish 

Narayanasami, "LiteRace: Effective Sampling for 

Lightweight Data-Race Detection," in 

Programming Language Design and 

Implementation, 2009, pp. 134-143. 

[6] Cormac Flanagan and Stephen N Freund, 

"FastTrack: Efficient and Precise Dynamic Race 

Detection," in Programming Language Design and 

Implementation, 2009, pp. 121-133. 

[7] E Pozniansky and A Schuster, "MultiRace: 

Efficient on-the-fly data race detection in 

multithreaded C++ programs," Concurrency and 

Computation: ractice and Experience, vol. 19, no. 

3, pp. 327-340, 2007. 

[8] Leslie Lamport, "Time, clocks, and the ordering of 

events in a distributed system," Communications 

of the ACM, vol. 21, no. 7, pp. 558-565, 1978. 

[9] Paul Sack, Brian E Bliss, Zhiqiang Ma, Paul 

Petersen, and Josep Torrellas, "Accurate and 

Efficient Filtering for the Intel Thread Checker 

Race Detector," in Workshop on Architectural and 

System Support for Improving Software 

Dependability, 2006, pp. 34-41. 

[10] Hans Boehm and Sarita Adve, "Foundations of the 

C++ Concurrency Memory Model," HP Labs, 

Technical Report HPL-2008-56 , 2008. 

[11] Hans Boehm. (2009, Sep.) N1411: Memory Model 

Rationale. [Online]. http://www.open-

std.org/JTC1/SC22/WG14/www/docs/n1411.htm 

[12] IEEE, POSIX.1c, Threads extensions, 1995, IEEE 

Std 1003.1c. 

[13] Dawson Engler and Ken Ashcraft, "RacerX: 

Effective, Static Detection of Race Conditions and 

Deadlocks," in Symposium on Operating Systems 

Principles (SOSP), 2003, pp. 237-252. 

[14] Mayur Naik, Alex Aiken, and John Whaley, 

"Effective Static Race Detection for Java," in 

Programming Language Design and 

Implementation (PLDI), 2006, pp. 308-319. 

[15] Cormac Flanagan and Stephen Freund, "Type-

Based Race Detection for Java," in Programming 

Language Design and Implementation (PLDI), 

Vancouver, 2000, pp. 219-232. 

[16] Zachary Anderson, David Gay, and Mayur Naik, 

"Lightweight Annotations for Controlling Sharing 

in Concurrent Data Structures," in Programming 

Language Design and Implementation (PLDI), 

Dublin, 2009. 

[17] Chandrasekhar Boyapati, Robert Lee, and Martin 

Rinard, "Ownership Types for Safe Programming: 

Preventing Data Races and Deadlocks," in Object-

Oriented Programming, Systems, Languages and 

Applications (OOPSLA), 2002, pp. 211-230. 

[18] A Dinning and E Schonberg, "Detecting access 

anomalies in programs with critical sections," in 

Workshop on Parallel and Distributed Debugging, 

1991, pp. 85-96. 

[19] The IDA Pro Disassembler and Debugger. 

[Online]. http://www.hex-rays.com/idapro/ 

[20] Koushik Sen, "Race Directed Random Testing of 

Concurrent Programs," in Programming Language 

Design and Implementation (PLDI'08), 2008, pp. 

11-21. 

[21] Satish Narayanasamy, Zhenghao Wang, Jordan 

Tigani, Andrew Edwards, and Brad Calder, 

"Automatically Classifying Benign and Harmful 

Data Races Using Replay Analysis," in 

Programming Language Design and 

Implementation (PLDI '07), 2007, pp. 22-31. 

[22] Donald E. Knuth, The Art of Computer 

Programming, Volume 2.: Addison-Wesley 

Longman, 1997. 

[23] Steven C. Woo, Moriyoshi Ohara, Evan Torrie, 

Jaswinder P. Singh, and Anoop Gupta, "The 

SPLASH-2 Programs: Characterization and 

Methodological Considerations," in ISCA '95: 

International Symposium on Computer 

architecture, 1995, pp. 24-26. 

[24] Amitabh Srivastava and Alan Eustace, "ATOM: A 

System for Building Customized Program 

Analysis Tools," in Proceedings of the ACM 

SIGPLAN 1994 Conference on Programming 

Language Design and Implementation, 1994, pp. 

196-205. 

 

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1411.htm
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1411.htm
http://www.hex-rays.com/idapro/

