
Static Checking of Dynamically-Varying Security Policies in
Database-Backed Applications

Adam Chlipala
Impredicative LLC

Abstract

We present a system for sound static checking of security
policies for database-backed Web applications. Our tool
checks a combination of access control and information
flow policies, where the policies vary based on database
contents. For instance, one or more database tables may
represent an access control matrix, controlling who may
read or write which cells of these and other tables. Us-
ing symbolic evaluation and automated theorem-proving,
our tool checks these policies statically, requiring no pro-
gram annotations (beyond the policies themselves) and
adding no run-time overhead. Specifications come in the
form of SQL queries as policies: for instance, an appli-
cation’s confidentiality policy is a fixed set of queries,
whose results provide an upper bound on what infor-
mation may be released to the user. To provide user-
dependent policies, we allow queries to depend on what
secrets the user knows. We have used our prototype im-
plementation to check several programs representative of
the data-centric Web applications that are common today.

1 Introduction

Much of today’s most important software exists as
Web applications, and many of these applications are
thin interface layers for relational databases. Real-
world requirements impel developers to implement many
application-specific schemes for access control (“who
can do what?”) and information flow (“who can learn
what?”). To reason about correctness of these implemen-
tations, the programmer must consider all possible flows
of control through a program.

This task is hard enough if a security policy can be
expressed statically, as, for instance, a list of which of
a fixed set of principals is allowed to perform each of a
fixed set of actions. However, the needs of real applica-
tions tend to force use of evolving security policies, and
usually the most convenient place to store a policy is in

the same database where the rest of application data re-
sides. For instance, a database often encodes some kind
of access control matrix, where entries reference rows of
other tables. The peculiar structure of an organization
may require access control based on customized schema
design and checking code. An effective security valida-
tion tool must be able to “understand” these policies.

Many program analysis and instrumentation schemes
have been applied to provide some automatic assurance
of security properties. In this space, the traditional di-
chotomy is between dynamic and static tools, based on
whether checking happens at run time or compile time.
The two extremes have their characteristic advantages.

• Dynamic analysis can often be implemented with-
out requiring any program annotations included
solely to make analysis easier.

• Real developers have an easier time writing spec-
ifications compatible with dynamic analysis, since
these specifications can often be arbitrary code for
inspecting program states.

• Static analysis can provide strong guarantees that
hold for all possible program executions, even those
exercising weird corner cases that may not have
been considered.

• Static analysis adds no run-time overhead.

In this paper, we present a tool UrFlow for static anal-
ysis of database-backed Web applications. We have tried
to reap some of all of the advantages just described. Our
tool requires no program annotations and provides fully
sound static assurance about all possible executions of a
program, and it requires no changes to the run-time be-
havior of programs. We take advantage of the fact that
it is already common for Web applications to be imple-
mented at quite a high level, relying on an SQL engine
to implement the key data structures. Our tool models

1

the semantics of SQL faithfully, at a level that makes for-
mal, automated analysis quite practical. We use popular
ideas from symbolic execution and automated theorem-
proving to build detailed models of program behavior
automatically, which saves developers the trouble of ex-
plaining these models with code annotations.

It is natural for developers to write specifications that
look much like the program code they are already writ-
ing. Traditional assertions (e.g., with the C assert
macro) fall under this heading. In an application that de-
pends on an SQL engine to manage its main data struc-
tures, it seems similarly natural to express security poli-
cies using SQL. Our tool is based on that model, allowing
developers to write detailed statically-checkable specifi-
cations without learning a new language. Queries can
express confidentiality properties by selecting which in-
formation the user may learn, and queries can express
database update properties by selecting allowable state
transitions. We need only one extension to the standard
SQL syntax and semantics: to allow policies to vary by
user, we introduce explicit consideration of which secrets
(e.g., passwords) the user knows.

UrFlow is integrated with the compiler for Ur/Web [3],
a domain-specific language for Web application develop-
ment. Ur/Web presents a very high-level view of the do-
main, with explicit language support for the key elements
of Web applications. For instance, the SQL interface uses
an expressive type system to ensure that any code that
type-checks accesses the SQL database correctly. In the
present project, we have used the first-class SQL support
to avoid the need for program analysis to recover a high-
level view of how an application uses the database.

We begin by introducing our policy model and demon-
strating its versatility. After that, we present our pro-
gram analysis, including its symbolic evaluation and au-
tomated theorem-proving aspects. Next, we discuss the
scope and limitations of our analysis, describe some
case-study applications that we have checked with Ur-
Flow, and compare with related work.

2 SQL Queries as Policies

Consider a simple application that maintains a database
of users and per-user secret strings. We can declare our
schema to Ur/Web with table declarations. Following
standard practice in relational databases, each table in-
cludes a unique integer ID, which provides a convenient
handle to pass to row-specific operations. Besides an ID,
a user record contains a username and password, and
a secret record contains the owning user ID and the
data value.

table user : { Id : int, Nam : string,
Pass : string }

table secret : { Id : int, User : int,
Data : string }

We also declare an HTTP cookie, which acts like a
typed global variable which exists separately on each
Web browser. This cookie tracks the authentication in-
formation for the currently logged-in user. While a more
realistic program would probably rely on unique session
IDs, here we adopt the less secure strategy of storing a
user ID and password pair in each cookie, to simplify the
example.

cookie login : { Id : int, Pass : string }

We can write a function that checks this cookie and
returns its user ID if the password is correct. The code
is written in a functional style, where we collapse “ex-
pressions” and “statements” into a single syntactic class.
Thus, instead of determining the function return value
with explicit return statements, we just say that the
function result is the value of the single expression that
is the function body.

Ur/Web code makes a lot of use of tagged unions, a
safe analogue to C unions that is popular in functional
programming languages. A tagged union value is either a
simple tag, which is like an enum value in C; or a pairing
of a tag and another value, which is like a C union, but
with a convention to ensure that it is always possible to
inspect a value and determine which union alternative is
being used. For tag T, a simple tag expression is written
like T, while the pairing of that tag with expression e is
written T(e). For instance, instead of allowing every
object type to be inhabited by a special value null, we
instead represent null with an explicit tag None, and
we represent non-null object o as Some(o). A pattern-
matching construct case is used to deconstruct tagged
union values.

Here is the code for a function to check the correct-
ness of the information in the login cookie. It is writ-
ten in a compiler intermediate language in which some
higher-order functional programming idioms have been
replaced with more standard imperative code.

fun userId() =
case getCookie(login) of
None => None

| Some(li) =>
let b = query

(SELECT COUNT(*) > 0 AS B
FROM user
WHERE user.Id = {li.Id}
AND user.Pass = {li.Pass})

(r acc => r.B) False in
if b then

Some(li.Id)
else

error("Wrong user ID or password!")

2

Our userId function begins by retrieving the current
value of the login cookie. This will either be None,
if no value of the cookie is set; or Some(li), if the
ID/password record li has been set as the cookie value.
If the cookie is not set, there is no user ID to return. Oth-
erwise, we must consult the database to see if the pass-
word is correct.

We have literal SQL syntax embedded in the code,
with splicing of variable values using curly braces. The
query checks if there are any rows in the user table
matching the cookie contents. In this intermediate lan-
guage, every database read is expressed as a loop over
the results of a query. The body of the loop is written as
an expression with two explicitly-named new local vari-
ables: r, the latest row to process; and acc, an accu-
mulator that is modified as we process rows. The body
expression after the => determines the new accumulator
value after every iteration. We give False as the initial
accumulator value. In our example here, the loop body
ignores the accumulator, and we simply project the one
field of any result row to save as the accumulator. The
error function aborts program execution with an error
message, which we do here when the user provides in-
valid credentials.

We can write the main entry point of our application
to display all of the logged-in user’s secrets.

fun main() =
case userId() of
None => write("You’re not logged in.")

| Some(u) =>
query (SELECT secret.Id, secret.Data

FROM secret
WHERE secret.User = {u})

(r acc =>
write(" <i>");
write(toString(r.Secret.Id));
write("</i>: ");
write(escape(r.Secret.Data));
write("")) ()

In this query loop, the accumulator is still ignored, and
in fact we execute the function body solely for its side
effects, which involve writing HTML to be sent to the
client.

We would like to verify that this application satisfies
a reasonable confidentiality policy. Intuitively, every cell
of the database belongs to a particular user. We want to
ensure that no user is able to read cells belonging to a
different user. This simple policy expresses our intent
for the cells of the user table.

policy sendClient (SELECT *
FROM user
WHERE known(user.Pass))

The informal meaning of this policy is that the user
may learn any value that could be returned from this
query. Every policy statement is followed by a key-
word naming a kind of policy. In this case, that keyword
is sendClient, which is used for confidentiality poli-
cies. Specifically, the user may learn anything about any
row of user whose password he knows. The new pred-
icate known models which information the client is al-
ready aware of. We assume the client knows the text of
the program and the text of the HTTP request it sent. In
our example, when we disclose any secret information,
we know that the user’s own password is known because
it came from the login cookie, which was part of the
incoming HTTP request.

A more complicated policy allows the release of infor-
mation about secrets.

policy sendClient (SELECT *
FROM secret, user
WHERE secret.User = user.Id
AND known(user.Pass))

We use a join between the secret and user tables,
requiring that the client demonstrate knowledge of the
password for the user who owns the secret.

Our tool verifies that the application satisfies these se-
curity policies. That is, every cell of the database whose
value might be disclosed could have been selected by one
of these queries, based on an interpretation of known
drawn from the HTTP request that prompted an execu-
tion.

There are several opportunities for mistakes in imple-
menting the policy. Consider what would happen if we
had implemented userId to always return 17. When
we run the compiler, we get an error message. The com-
piler tells us which secret may be leaked, and (in addition
to the location of the offending write) we are given a first-
order logic characterization of the state of the program at
the time when the leak might occur.

User learns: r.Secret.Data
Hypotheses: secret(x1),

r = {Secret =
{Id = x1.Id, Data = x1.Data}},

x1.User = 17

The hypotheses are generated directly from the SQL
query in main. The first hypothesis tells us that row x1
is in the secret table. Our row variable r is equated
with a record built by projecting the requested fields from
x1, and the last hypothesis represents the WHERE clause.

In the correct implementation, UrFlow explores every
static path through the program, maintaining a logical
state at each point. When the analysis reaches the point
that triggered the error above, we have this more infor-
mative state.

3

c = cookie/login, known(c),
c = Some(c2), user(x1),
x1.Id = c2.Id, x1.Pass = c2.Pass,
secret(x2), x2.User = c2.Id,
r = {Secret = {Id = x2.Id, Data = x2.Data}}

The variable c stands for the cookie value, which is
asserted to be known to the user. The SQL query from
userId is reflected with assertions about a variable x1,
which is the row of user that must have matched the
query for execution to reach this point. The confiden-
tiality policy used a join between secret and user to
describe when information on secrets may be released.
The program code, on the other hand, contains no joins.
UrFlow understands join semantics to the point where it
is able to deduce that the above logical state implies that
a join, performed as in the policy, would authorize the
release of everything included in the record r.

2.1 What is Being Checked?
We can give a simple characterization of exactly what
confidentiality property the analyzer enforces, as a func-
tion of the policy the user specifies. First, we need to
define exactly what we mean by the known predicate. In-
formally, a known piece of data is something that the user
is already aware of, so that no confidentiality require-
ment is violated by echoing back that value or another
value derived from it in a predictable way. More for-
mally, known is the most restrictive predicate satisfying
the following rules:

1. Any constant appearing in the program text is
known.

2. The initial value of every cookie is known. These
cookies may have arbitrary structured types, as in
the record type given to the login cookie in the
last example.

3. The value of every explicit parameter to the appli-
cation is known. For page requests generated by
submission of HTML forms, this includes all form
field values.

4. A record is known iff all of its fields are known.

5. For any union tag T (e.g., Some in our example), a
value v is known iff T(v) is known.

We say that a value v is allowed in a specific database
state D if there exists a sendClient policy that, when
executed in state D, would return v as one of its outputs.
We say that a value v is built from a set S if v is in S
or can be constructed out of the elements of S by com-
bining a subset of them with record and tagged union
operations.

Now we can give a concise description of exactly what
UrFlow checks. For any execution of a program that the
analysis approved:

1. Whenever a write command sends some value v
to the client, v is built from the set of values that are
known or allowed.

2. Whenever the program branches based on the value
v of some test expression, such that the branch cho-
sen influences what might be sent to the client later,
v is built from the set of values that are known or
allowed. This prevents some implicit flows, where
the very fact that a program reaches a particular line
of code may reveal secret information. Since im-
plicit flows are a notorious source of false alarms in
information flow analysis, programmers might want
to turn off this piece of checking, which would be
easy to do via a compiler flag.

The same kind of characterization does not work well
for ruling out implicit flows induced by SQL WHERE
clauses, so we leave additional checking of that kind for
future work. This means that a checked program may
leak information about the existence of rows, based on
tests against arbitrary SQL expressions, but the contents
of those rows will not be leaked directly.

2.2 Authorizing Database Writes
UrFlow also checks every database modification. For
example, consider this page generation function, which
would be given as the action to run upon submission of
an HTML form for adding a new secret.

fun addSecret(fields) =
case userId() of
None => write("You’re not logged in.")

| Some u =>
let id = nextId() in
dml (INSERT INTO secret (Id, User, Data)

VALUES ({id}, {u}, {fields.Data}));
main()

If we do not assert an explicit database update policy,
then UrFlow rejects this program. Here is one policy that
would allow the insertion:

policy mayInsert (SELECT *
FROM secret AS New, user
WHERE New.User = user.Id
AND known(user.Pass)
AND known(New.Data))

We reuse the same SQL query notation for modifica-
tion policies, though the choice of SELECT clause is ig-
nored, so we will always write SELECT *. One of the

4

tables in the FROM clause must be given the name New;
this is the table for which we are authorizing insertion.

UrFlow only allows a row insertion if the new row
could be returned by one of the mayInsert queries,
in a certain sense. In checking against a particular policy
query, we interpret the New relation as the universal rela-
tion, containing all possible tuples. The policy may join
it with other, real database tables and perform filtering
with WHERE, leading to a result set of rows that may be
infinite. The insertion is permitted if the New part of one
of these rows matches the values being inserted.

Our insertion policy lets any user add secrets if he as-
sociates them with his own user. We can also authorize
deletions and updates, based on similar criteria.

policy mayDelete (SELECT *
FROM secret AS Old, user
WHERE Old.User = user.Id
AND known(user.Pass))

policy mayUpdate (SELECT *
FROM secret AS Old, secret AS New, user
WHERE Old.User = user.Id
AND New.User = Old.User
AND New.Id = Old.Id
AND known(user.Pass)
AND known(New.Data))

A mayDelete policy must tag a FROM table as Old,
to stand for the table being deleted from. A mayUpdate
policy needs both Old and New tables, standing for the
part of a table being updated and the new data being writ-
ten into it. Both new policies retain the logic for checking
that the client knows the password for the user whose se-
cret is affected, and the update policy also requires that
the secret ID is not changed. The insertion and update
policies require that the new data value is known, which
provides a simple guard against inadvertent leaking of
privileged information into a part of the database that is
considered to be less privileged.

3 Flexibility of Query-Based Policies

We have found that this approach to writing specifica-
tions leads to natural descriptions of many natural poli-
cies. For instance, we have implemented a simple Web
message forum system. Our implementation contains a
table representing an access-control list. Each entry gives
a user permissions in a specific forum, at a particular nu-
meric level of access.

table acl : { Forum : forumId,
User : userId, Level : int }

One policy allows release of information about any
message in a forum that the current user has been granted
any kind of access to.

policy sendClient (SELECT *
FROM message, acl, user
WHERE acl.Forum = message.Forum
AND acl.User = user.Id
AND known(user.Pass))

Posting a new message requires access at level 2 or
higher.

policy mayInsert (SELECT *
FROM message AS New, user, acl
WHERE New.User = user.Id
AND New.Forum = acl.Forum
AND user.Id = acl.User
AND known(user.Pass)
AND acl.Level >= 2
AND known(New.Subject)
AND known(New.Body))

Regular users may not delete messages from forums.
This right is only granted to admins, who have access
level 3 or higher. The following policy formalizes the
deletion rule.

policy mayDelete (SELECT *
FROM message AS Old, user, acl
WHERE Old.Forum = acl.Forum
AND user.Id = acl.User
AND known(user.Pass)
AND acl.Level >= 3)

Our implementation allows forums to be marked as
public, in which case any visitor may read their contents.
There is also another ACL table which grants users ad-
min access to all forums. Additional policies allow in-
formation flows and updates based on these rules.

The UrFlow policy language supports access control
techniques besides user accounts with passwords. For
example, we have implemented a simple Web-based poll
system without user accounts. Anyone may create a new
poll; at that time, the creator learns a secret code that
grants admin rights to the poll. That code allows him to
add poll questions. After adding all of the questions, the
poll creator may mark the poll as live. After that time,
no further changes to the poll are allowed, and the poll
is added to a list on the application’s front page. Anyone
may vote in a live poll, but no one may vote on a poll that
is not yet live. After submitting his votes, a user receives
a code that allows him to view the results of the poll.
Results should never be released without first checking
that the user has provided a code that matches the poll
admin code or a code associated with a vote that has been
cast.

The policy below controls the conditions under which
a new question may be added to a poll. In particular,
the question must be linked to a valid poll, the user must
know the admin code for the poll, and the poll must not
be live yet.

5

policy mayInsert (SELECT *
FROM question AS New, poll
WHERE New.Poll = poll.Id
AND known(poll.Code)
AND NOT poll.Live
AND known(New.Text))

Anyone with a poll’s admin code may update the poll
only to mark it as live. This policy expresses that re-
quirement with equality assertions between old and new
values of every column besides Live.

policy mayUpdate (SELECT *
FROM poll AS New, poll AS Old
WHERE New.Id = Old.Id
AND New.Nam = Old.Nam
AND New.Code = Old.Code
AND New.Live
AND known(Old.Code))

We allow release of information about answers to a
poll, whenever the user proves he already voted in that
poll by providing a code associated with an appropriate
answer set.

policy sendClient (SELECT *
FROM answer, answers AS Other,
answers AS Self

WHERE answer.Answers = Other.Id
AND Other.Poll = Self.Poll
AND known(Self.Code))

We believe that this specification approach is very
general, while being much more accessible to the av-
erage developer than most specification languages are.
To investigate the potential for static analysis based on
these specifications, we implemented the UrFlow pro-
totype, which handles a restricted subset of all SQL
queries. In particular, in both policies and programs,
we only process queries containing just SELECT, FROM,
and WHERE clauses, where the FROM clauses must be
simple comma-separated lists of tables. We also have
not implemented any analysis optimizations like proce-
dure summaries [19], and the analysis only succeeds at
understanding loops and recursion following a few sim-
ple patterns.

Perhaps surprisingly, this is enough to enable sound
checking of a variety of paradigmatic Web applications.
We will now describe the analysis and then argue for its
effectiveness with statistics about a set of representative
applications that it has validated.

4 An Outline of the Analysis

Sound program checking requires considering all possi-
ble paths of execution. Since most any non-trivial Web

application can effectively follow infinitely many paths,
we must apply some abstraction. In implementing Ur-
Flow, we adopted the strategy associated with tools like
ESC [10], the Extended Static Checker family.

While concrete program evaluation involves program
states consisting of variable values, memory states, and
so on, the kind of symbolic evaluation that we apply
involves program states consisting of formulas of first-
order logic. Such a formula can be thought of as describ-
ing concrete states, so that each abstract state may stand
for infinitely many concrete states. Every basic program
operation can be modeled as a predicate transformer.
Some operations may not always be safe. In the classical
setting, this may be an array dereference, where the in-
dex might be out of bounds. In our case, possibly-unsafe
operations include write commands and database up-
dates. No matter which setting we are in, the safety of
operations is checked by associating each operation with
a logical condition that implies its safety.

This gives us the outline of a sound checking proce-
dure: Start with the abstract state “true.” Explore all pro-
gram paths, extending the abstract state as we go. Each
time we reach an operation with safety condition C while
in state S, ask an automated theorem prover whether
S ⇒ C. The ESC projects used the Simplify prover [8]
for this purpose. Today, the functionality provided by
Simplify is most commonly known by the name SMT,
for satisfiability modulo theories, and there is a rich base
of tools and users in the domain of static program check-
ing.

Our outline omits a critical element of the problem:
Even after abstracting program states with formulas,
there are probably still infinitely many feasible program
paths. The ESC approach requires additional program
annotations that can be used to finitize the path space. In
the design of UrFlow, we have instead taken advantage of
the control-flow simplicity of the average Web applica-
tion. Many interesting applications can be implemented
with just one kind of loop: iteration over writing some
output for every row returned by an SQL query. Such
loops effect no state changes that must be taken into ac-
count in the remainder of the program, so in a sense they
have trivially inferable “loop invariants.” Since loop iter-
ation does not accumulate side effects, it is sound to tra-
verse each loop body just once, which ensures that each
program can be broken into a finite set of finite analysis
paths.

UrFlow thus works by literal exploration of all con-
trol flow paths through a program. The next section goes
into more detail on the exploration strategy, pointing out
the theorem prover operations that will be required. The
following section presents our implementation of those
prover primitives, in an engine that extends the standard
SMT approach with a few new features.

6

5 Symbolic Evaluation

The abstract states of UrFlow are defined in terms of a
simple language of logical expressions and predicates.
We write c for constants (drawn from integer, floating
point, and string literals), T for union tags, x for logi-
cal variables, X for program variables, F for record field
names, and R for SQL table names. The following gram-
mar describes the syntax of program states. For a token
sequence t, we write t for a comma-separated list of zero
or more ts.

Expression e ::= c | x | T (e) | {F = e} | e.F
Predicate p ::= known(e) | R(e) | e = e | . . .

State S ::= (p,X 7→ e)

A state is a pair of a variable assignment and a set
of predicates. For a particular program point, a variable
assignment maps every in-scope program variable into a
logical expression. The predicates are expressed only in
terms of logical variables, not the program variables.

Since we inline all function calls, every execution path
to analyze begins at the entry point of some function
that has been registered to be called in response to a
particular URL pattern. The arguments to this func-
tion stand for explicit parameters and form field val-
ues, extracted from an HTTP request. Where the func-
tion arguments are named Xi, we create an initial state
(known(xi), Xi 7→ xi), for fresh, distinct variables xi.
At many other points in path exploration, we will gen-
erate fresh logical variables, which we always assume to
be distinct from any previously-chosen variables.

For each function, we explore all paths through it.
Most program expression forms are easy to process, as
they admit direct translation into logical expressions.
The more interesting cases come from branching and
database interaction.

Our single branching construct is case expressions,
which test a value against a number of patterns, which
may bind new variables if they match. We model if
expressions as a special case of case expressions, where
the patterns to match against are true and false.

As an example, consider an expression like the follow-
ing:

case e of None => e1 | Some(X) => e2

If e is just the tag None, then we continue with eval-
uating e1. Otherwise, e is Some v for some v, and we
evaluate e2 with X set to v. To capture this with sym-
bolic evaluation, we consider both e1 and e2 as starts of
separate execution paths. For the e1 case, we extend the
state with the predicate v = None, where v is the result
of evaluating e. For the e2 case, we choose a fresh vari-
able x, add the variable mapping X 7→ x, and add the
predicate v = Some(x).

With case, it is easy to write code with exponentially
many control-flow paths, but where all but a few are log-
ically impossible. For instance, we can sequence several
case expressions that analyze the same program vari-
able with the same patterns. Variables are immutable, so
each case must choose the same pattern, reducing the
number of feasible paths to the number of patterns. We
want our automated theorem prover to detect the infeasi-
bility of the other paths as early as possible. Concretely,
this will happen on a path where two cases lead to as-
sertions like v = None and v = Some(x), on a path
that assumes matching of a None pattern the first time
and a Some pattern the second time. The prover knows
that values built with different union tags are disjoint, so
it can signal a contradiction here. Whenever a contra-
diction is detected at some point on a path, we can skip
exploring the rest of that path.

A number of primitive operations send output to the
client. The simplest of these is write, which appends a
piece of HTML to the page being generated. UrFlow en-
forces that the value being sent can be constructed from
known and allowable pieces of data. Recall that allow-
able values are those that could be produced by execut-
ing sendClient policies in the current database state.
Consider this line of our earlier example program:

write(escape(r.Secret.Data));

The record r has come out of a database query. To
verify that this write conforms to the policy, we must
check that r.Secret.Data is known, allowable, or
built from such values out of record and union opera-
tions. At this point in symbolic execution, the variable
mapping will map the program variable r to some logi-
cal variable r, and our predicate set will be:

c = cookie/login, known(c), c = Some(c′), user(x1),
x1.Id = c′.Id, x1.Pass = c′.Pass,
secret(x2), x2.User = c′.Id,
r = {Secret = {Id = x2.Id,Data = x2.Data}}

The state tells us that we know of two rows that must
exist in the database: x1 from table user and x2 from
table secret. Each of our declared confidentiality poli-
cies is phrased as a SELECT query whose FROM clause
mentions one or more tables. To check if a value may be
written, we need to consider ways of matching the pol-
icy queries with the logical state. The same table may
be mentioned multiple times in one policy or one state,
so, in general, there may be many ways to match a pol-
icy’s FROM clause with the table predicates of a state. In
UrFlow, we apply the heuristic of considering at most
one matching per policy. The analysis enumerates every
matching of policies with row variables, subject to that
constraint.

Our running example included these two policies:

7

policy sendClient (SELECT *
FROM user
WHERE known(user.Pass))

policy sendClient (SELECT *
FROM secret, user
WHERE secret.User = user.Id
AND known(user.Pass))

They can be expressed in logical form, where each is
a set of predicates that, if all are true, implies the allowa-
bility of a set of values.

Predicates: user(r1), known(r1.Pass)
Values: r1.Id, r1.Nam, r1.Pass

Predicates: user(r1), secret(r2), known(r1.Pass),
r2.User = r1.Id

Values: r1.Id, r1.Nam, r1.Pass, r2.Id,
r2.User, r2.Data

Matching a policy against a state is a two-step process.
First, we consider a mapping of the policy’s ri row vari-
ables to variables appearing in the state. For any table
predicate R(ri) appearing in the policy, we try setting ri
to x, for any R(x) appearing in the state. Once we have
found a plausible mapping for every policy row variable,
we apply that mapping to the remaining predicates in the
policy. If the theorem prover verifies that the state im-
plies every one of these predicates, then we have found a
viable policy instantiation, and we can continue match-
ing the remaining policies. We repeat the process to try
every combination of instantiating every policy at most
once.

For every set of policy instantiations, we compute the
set of expressions that those policies say are fair game
to write. Our running example has exactly one feasible
instantiation per policy: every policy variable in user
unifies with x1, and every policy variable in secret
unifies with x2. The remaining predicates are all implied
by the state. Most interestingly, we must verify that the
state implies known(x1.Pass), which follows by reason-
ing from this subset of the state predicates:

known(c), c = Some(c′), x1.Pass = c′.Pass

The reasoning goes like this: Because the union value
c is known, its contents c′ are known, too. Because the
record c′ is known, its field Pass is known. That field is
asserted equal to the value x1.Pass that we want to prove
known, so we are done. The theorem prover provides a
complete decision procedure for reasoning chains of this
kind.

Having verified correct instantiation of each policy, we
arrive at this set of allowable expressions:

x1.Id, x1.Nam, x1.Pass, x2.Id, x2.User, x2.Data

We are trying to prove that the expression
r.Secret.Data is allowable, which requires proving
that it is equal to one of the above expressions. It turns
out that our state implies that the written value equals
x2.Data, because the state contains this predicate:

r = {Secret = {Id = x2.Id,Data = x2.Data}}

That completes the check for this write operation.
The procedure scales to handling much more compli-
cated cases, and we also apply the same procedure to any
expression used in a branching construct, such that the
result of the test influences what is written to the client.
Especially in this latter case, we need to be able to rea-
son about values that are neither known nor allowable,
but that are built from such values via record and union
operations. Our theorem prover handles the automation
of that kind of reasoning, too.

The heart of symbolic evaluation is the treatment of
database queries. Recall the form of queries, as illus-
trated by the main output loop of our example applica-
tion.

query (SELECT secret.Id, secret.Data
FROM secret
WHERE secret.User = {u})

(r acc => ...) ()

We execute an SQL query, which may contain injected
program values, and loop over the result rows. An accu-
mulator is initialized to some specified value, which here
is the dummy value (), since we execute this loop body
only for side effects. Every iteration runs the loop body
with r bound to the latest result row and acc bound to
the current accumulator. After an iteration, the accumu-
lator is replaced with the value of the ... body expres-
sion.

Traditional verification tools require manual annota-
tion of loops with invariants, to help tame the unde-
cidability of the program analysis problem. To avoid
that cost, we designed UrFlow around some observations
about the loops that appear in practice in Web applica-
tions. Most are run solely for their side effects of writ-
ing content to the client, so that there is no need to track
state changes from iteration to iteration. Ur/Web vari-
ables are all immutable, so it is not even possible for
them to change across iterations. Side effects are re-
stricted to database tables and cookies, which tend not
to be used in the same way that variables are used in tra-
ditional imperative languages. All this implies that a sim-
ple loop traversal strategy can be very effective: traverse
each loop body only once.

Concretely, when we reach a query in a symbolic ex-
ecution path, we consider two possible sub-paths. First,

8

the query may return no results, in which case we pro-
ceed taking the initial accumulator as the final value.

More interestingly, the loop may execute one or more
times. We perform a quick linear pass over the body
... to see which cookies it might set and which tables
it might modify with SQL UPDATE or DELETE com-
mands. All references to those cookies and tables are
deleted from the symbolic state. Since all other aspects
of concrete state are immutable, this new logical state is
guaranteed to be an accurate description of the concrete
state at the beginning of any iteration of the loop. Thus,
by running the loop body with its local variables set to
fresh logical variables, we consider all possible behav-
iors of the loop. We can continue execution afterward as
if we had just executed the loop body once as normal,
non-loop code. The symbolic state at loop exit can just
as well stand for the last iteration of the loop as for any
other iteration.

At the beginning of a loop iteration, we must enrich
the logical state with predicates capturing the behavior of
the query. This is best illustrated by example. Consider
again the main loop of our example application. We ex-
ecute its loop body with variable r set to r and acc set
to some arbitrary value (since the accumulator is not ref-
erenced in the body). Assume that program variable u is
mapped to logical variable u. We add these predicates to
the logical state:

secret(x2), x2.User = u,
r = {Secret = {Id = x2.Id,Data = x2.Data}}

Queries with joins just add more table predicates, as
we have seen in the modeling of queries as policies.
Larger WHERE conditions add additional non-table pred-
icates. A SELECT clause determines which fields to
project from the tables, in building the record expression
to equate with r.

This basic algorithm works for most of the queries that
we support. In general, UrFlow does not yet support SQL
grouping or aggregation. We include one special case for
queries selecting just the aggregate function COUNT(*).
Here, we consider that the loop body always iterates ex-
actly once. Either the query result is 0, and we do not
enrich the state with any new table information; or the
result is greater than 0, and we assert that there exists
some set of rows matching the conditions of the query.

To check database updates, we use a hybrid of the
query and write checking. Any modification must match
with an update policy, using the same matching proce-
dure as for writes, but without the need to check al-
lowability of a value. After an UPDATE or DELETE,
we delete any state predicates mentioning the affected
tables.

UrFlow also has basic support for simple recursive
functions. Calls to recursive functions are effectively in-

c, C c′

r

x2

x1

Id

Secret

Pass User
Id

Data

Data

Pass

Some

Id

Id

Figure 1: E-graph for the state from the write example

lined like regular function calls, with further self-calls
skipped. To make this omission sound, we analyze each
recursive function to find all effects it might have on the
database and cookies, and every self-call is treated as a
nondeterministic modification of those parts of the state,
followed by generation of an unknown return value. Fur-
ther analysis allows us to abstract the initial state so that
it can stand for any set of arguments that might be used at
any recursion depth, such that we only preserve state in-
formation that can be shown not to vary across calls. As
a result, just like for query loops, a single pass over the
function body suffices to consider all possible behaviors.

We want to emphasize some useful consequences of
the way that our analysis handles SQL. First, unlike in
some related work [14], despite the fact that our poli-
cies are themselves SQL queries, the analysis does not
require that program code use exactly those queries. Se-
mantic modeling of queries makes it possible for one
policy query to justify infinitely many possible program
queries. Second, the soundness of our analysis depends
on knowledge of the database schema, but not knowl-
edge of database contents. Schema changes can invali-
date analysis results by, for example, redefining data in-
tegrity constraints that the theorem-prover might have re-
lied on. However, arbitrary changes to the database rows,
by arbitrary programs with no relation to UrFlow, cannot
invalidate past analysis results.

6 The Theorem Prover

The last section highlighted the key theorem-prover op-
erations that symbolic evaluation depends on. We can
summarize them like this:

• Assert a predicate p. If p contradicts the predicates
already asserted, raise an exception indicating so.

• Check if a predicate is implied by those already as-
serted.

• Determine if a logical expression can be constructed
from members of a set of allowable expressions.

9

The first two points are supported by the classic model
of first-order logic theorem-proving that is embodied in
tools like Simplify [8]. The third point is new and not di-
rectly supported by usual prover interfaces, but the usual
implementation techniques can support it very directly.

Provers like Simplify are based on the Nelson-Oppen
architecture. We do not use many of the elements of that
architecture, since our prototype implementation omits
features like reasoning about arithmetic. Instead, we just
adopt the key data structure, the E-graph. An E-graph
is a directed graph representation of the possible worlds
that are consistent with a set of predicates. Nodes stand
for objects, and, for function symbol f , an edge labeled
with f goes from node u to node v if, in any compatible
world, the object associated with v equals the result of
applying f to the object associated with u. A node is
labeled with logical variables and constants to indicate
that any compatible world must assign this node to an
object equal to those variables and constants.

In UrFlow, we only use two kinds of function sym-
bols: union tags and record field names. For tag T , there
is a T -labeled edge from u to v if v must be u tagged
with T (i.e., “v = T (u)”). For field name F , there is
an F -labeled edge from u to v if u is a record whose F
component equals v. For each node that came from a lit-
eral record expression, we mark that node as complete,
in the sense that the field edges coming out of it provide
a complete description of the available fields. An exam-
ple of an incomplete record node is one representing a
row selected in an SQL query; the state will only men-
tion those columns relevant to the query, and it would be
unsound to treat this row as if it had no further columns.

Figure 1 shows an E-graph representing the
logical state given earlier for checking the code
write(escape(r.Secret.Data)). Nodes are
boxes when the state implies that they are known; other
nodes may not be known. Complete record nodes are
diamonds. We abbreviate cookie/login as C.

The basic prover algorithm understands two kinds of
predicates: e1 = e2 and known(e). When either kind is
asserted, its expressions are first evaluated into nodes of
the E-graph, adding new nodes as necessary. A variable
or constant is evaluated to the node labeled with it. A
union tag application T (e) is evaluated by following the
T edge from the node that e evaluates to, and a field pro-
jection e.F is evaluated analogously. A record expres-
sion {F1 = e1, . . . , Fn = en} is evaluated by checking
for existing complete nodes whose Fi edges point to the
nodes to which the eis evaluate.

When a fact e1 = e2 is asserted, the nodes u1 and u2

standing for e1 and e2 are merged, taking the unions of
their sets of labels and incoming and outgoing edges. Al-
ternatively, this fact might trigger a contradiction. That
happens when u1 and u2 are labeled with different con-

stants or have incoming tag edges labeled with different
tags.

When a fact known(e) is asserted, and e evaluates to
u, we “change u to a box,” and we propagate this known-
ness information across edges. That propagation follows
record field edges in the forward direction only and tag
edges in either direction. The same propagation is im-
plied when merging a known node with a not-known
node for an equality assertion.

The heart of the procedure is in this handling of as-
sertion. E-graphs have nice properties which make im-
plication checking very efficient. To check if e1 = e2,
we only check if e1 and e2 evaluate to the same node.
To check if known(e), we only check if e evaluates to a
boxed node.

One useful addition, implemented outside of the theo-
rem prover core, takes advantage of key information for
SQL tables, where, for instance, an ID column is as-
serted not to be duplicated across rows of a table, and
the SQL engine maintains this invariant with dynamic
checks. Whenever a new predicate asserts that some row
r is in table R, we check, for every pre-existing predicate
R(r′), if r and r′ agree on the values of R’s key columns.
These checks can be implemented by querying the prover
core with the appropriate equality predicates. Whenever
a matching r and r′ pair is found, we can skip adding the
new predicate R(r) to the state, instead asserting r = r′.
This enrichment of the prover is useful in analyzing ap-
plications that, for example, query a user/password table
multiple times, where correctness relies on the fact that
the query always returns the same result.

The last ingredient is checking if the value of expres-
sion e can be constructed out of the values of expressions
e1, . . . , en, using only record and union operations. To
implement the check, we evaluate each ei in turn, mark-
ing its node as allowable. Next, we evaluate e to a node
u. If u is marked as allowable, we are done. Otherwise,
if u has an incoming union tag edge from a node v, we re-
peat the procedure for v. If u is a complete record node,
we repeat the procedure for each target of a field edge
out of u, returning success only if the check is successful
for each of these new nodes. In any other case, we return
failure.

7 Discussion

We can get a sense for the breadth of UrFlow by con-
sidering how it helps with the most common Web appli-
cation security flaws. The OWASP Top 10 Web Appli-
cation Security Risks project1 is a popular reference for
security-conscious Web developers. Based on analysis

1http://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project

10

of databases of real vulnerabilities, the OWASP team has
identified which classes of security flaw pose the greatest
risks. The Ur/Web compiler rules out injection (ranked
#1) and cross-site scripting (#2) vulnerabilities and par-
tially mitigates cross-site request forgery (#5) and unval-
idated redirects and forwards (#10) using techniques un-
related to UrFlow. Risk #6, security misconfiguration, is
a whole-system property that cannot really be addressed
by any single tool, and UrFlow’s lack of integrated rea-
soning about cryptography prevents it from helping to
avoid insecure cryptographic storage (#7). UrFlow can
contribute to the mitigation of the remaining risk cate-
gories.

Risk #3, broken authentication and session manage-
ment, is helped by the ability to use UrFlow policies to
specify exactly which secure tokens may be sent to which
clients. It is still possible to make mistakes in the poli-
cies, but these policies should be significantly easier to
audit than programs, with the many possible control-flow
paths of the latter. The next two risk categories, insecure
direct object references (#4) and failure to restrict URL
access (#8), are very similar, as both involve the omission
of access control checks for particular system objects.
UrFlow can enforce that appropriate checks are always
performed whenever database objects are used in par-
ticular ways. Insufficient transport layer protection (#9)
could be avoided by adding a variant of sendClient
policies which specifies values that may only be sent to
clients over SSL connections.

Comparing against the pros and cons of security
types [16], we find some interesting trade-offs. UrFlow
uses high-level knowledge of programs to provide more
sound reasoning without program annotations. Security-
typed languages generally rely on declassification tech-
niques where trust is granted to particular spans of code.
This creates a contrast between the security-typed ap-
proach, requiring trusted code but granting soundness
with respect to implicit flows; and the UrFlow approach,
which requires no trusted Ur/Web functions but ignores
some implicit flows. Security type annotations tend to be
required throughout a program, while UrFlow avoids the
need to mark up program code. However, SQL queries as
policies involve some gotchas that would be less applica-
ble to security types. For instance, it is easy to forget all
or part of a policy WHERE clause, which has the unfortu-
nate consequence of allowing behaviors by default.

The problem of implicit flow checking is a serious one
in all kinds of information flow analysis. Where Ur-
Flow checks implicit flows, the checking is not particu-
larly clever, and implicit flows caused by WHERE clauses
are ignored. Future work may be able to plug part of
this hole statically, and we suspect there will also be a
large role for dynamic monitoring systems, for detecting
brute-force password cracking attempts and other attacks

that involve many HTTP requests.
Many different logical languages have been used for

specification-writing in static verification tools. We
found SQL to be a convenient choice, because it is ex-
pressive enough to allow direct expression of interesting
policies, and declarative enough to enable effective auto-
mated reasoning. We do not mean to claim that SQL
has great expressivity or succinctness advantages over
more traditional specification languages. Rather, most
Web programmers are accustomed to SQL, which should
help in overcoming some of the social obstacles faced in
the past by attempts to get programmers to write logical
specifications.

Our implementation today only handles a subset of the
common SQL features. We omit support for outer joins.
These should be easy to model via disjunctive formulas,
covering all the possible cases of whether a row match-
ing the join condition exists in a table, though a naive
realization of this idea would probably have poor perfor-
mance consequences for the theorem-prover. Grouping
and aggregation are harder to encode in the quantifier-
free first-order logic that we are employing. We sus-
pect that most real programs can be checked with con-
servative encodings of aggregation, where we model ag-
gregate function values as unknowns. Alternatively, we
can restrict reasoning about aggregate functions to sim-
ple syntactic pattern-matching against policies. That ap-
proach also seems most practical for handling of the SQL
EXCEPT operator, which implements a kind of negative
reasoning about which rows do not exist. This is needed
to write down policies like (for a conference manage-
ment system) “reviewer A may see the reviews for paper
B only if A does not have a conflict with B.”

More advanced policies might also need to include
non-trivial program code. For instance, a custom hash-
ing or encryption scheme might be used. Here we en-
counter a common situation for static verification, where
it is always possible to expand the reach of your theorem-
prover to handle new program features. No single imple-
mentation will ever be able to handle all realistic pro-
grams, but we suspect that very good coverage will be
possible, after the incorporation of significant practical
experience with the tool.

8 Evaluation

The UrFlow prototype is implemented in about 2200
lines of Standard ML code. We have used the analy-
sis to check a number of Ur/Web applications. There
is a live demo of the applications, with links to syntax-
highlighted source code, at:

http://www.impredicative.com/ur/scdv/

11

Application Program
(LoC)

Policies
(LoC)

Check
(sec)

Secret 138 24 0.02
Poll 196 50 0.035

User DB 84 8 -
Calendar 255 46 0.28

Forum 412 134 17.68
Gradebook 342 61 1.49

Figure 2: Lines-of-code breakdown in case studies, with
time required to check the code with UrFlow

Our case studies include Secret, a minimal applica-
tion for storing secrets that may later be retrieved via
password authentication, which was used as the model
for this paper’s first set of running examples; the Forum
and Poll applications from which Section 3’s examples
were drawn; a Gradebook application, for managing a
database of student grades in courses; and a reimplemen-
tation of the Calendar application from the paper [5] that
introduced the SIF system for combined static and dy-
namic checking of information flow in Web applications.
Calendar, Forum, and Gradebook share a common user
authentication component.

The Calendar application lets users save details of
their schedules on the Web, with controlled sharing of in-
formation. By default, no one may learn anything about
an event. The creator of an event may learn everything
about it, and the creator may add invitees who inherit
the same read privileges. The creator may also authorize
users to know only the time of an event, so that those
users see that time slot only as “busy” on the creator’s
calendar. Only event creators may modify any state re-
lated to their events.

The Gradebook application is based on a database of
courses and assignments of users to be instructors, teach-
ing assistants (TAs), or students in courses. Each student
membership record contains an optional grade. Only sys-
tem administrators may create courses and modify in-
structor lists. Instructors may set grades and control TA
assignments. A TA may view all of the state associated
with a course, but may not modify it. A student may view
his own grades, and a student in a course may only affect
that course’s part of the database by dropping the course.

Figure 2 gives the number of lines in code in each
of these components. An application’s code is sepa-
rated into the program itself and the policies. The fig-
ures here make “policy overhead” appear bigger than it
would probably be in production applications, since our
case studies include minimal code dedicated to provid-
ing fancy user interfaces. Still, these numbers compare
favorably to those for systems like SIF, where Calendar

requires 1779 lines of code. While we have a similar
ratio of program to annotation, our annotations are of a
different kind. 443 lines of the SIF version include an-
notations, in the form of security types [20] and explicit
downgradings. The latter involve annotations that effec-
tively say “the owner of a piece of information trusts this
span of code, so let that span release derived information
that would not otherwise be allowed.” The SIF Calendar
case study includes 17 such downgrades.

The UrFlow approach is very different. As no annota-
tions are required in programs, there is no need to accept
any part of a program as trusted. All checking is with
respect to the declarative specification provided by the
policy queries.

Our analysis detects flaws similar to those that occur
frequently in real deployed systems. For instance, we
examined reports for July 2010 in the National Vulner-
ability Database2. Among the relevant issues, we found
CVE-2009-4927, involving privilege escalation via a sur-
prising setting of a specific cookie; and CVE-2010-2685
and CVE-2009-4929, which allow administrative actions
to be taken without proper credentials, via hand-crafted
HTTP requests. UrFlow makes it easy to catch these
problems, since it is not necessary to enumerate all pos-
sible attack vectors, thanks to policies that talk directly
about underlying resources. For instance, we introduced
a bug in the Gradebook application to mimic the cookie
bug above, where we allow anyone to set any student’s
grade if a particular cookie is set to 1. The compiler com-
plains that the database update policy may be violated,
referencing the exact span of source code where the of-
fending UPDATE statement occurs. The same output ap-
pears if we simulate a forgotten access control check, in
the style of the second two issues above, by commenting
out an important if test.

UrFlow also requires no change to the runtime behav-
ior of a program, and this baseline performance level
is greater than for most popular Web languages and
frameworks, thanks to the general-purpose and domain-
specific optimizations performed by the Ur/Web com-
piler. We present the performance of the UrFlow anal-
ysis itself in Figure 2, for runs on a Linux machine with
dual 1 GHz AMD64 processors with 2 GB of RAM. Of
our case studies, only Forum takes much longer than a
second to check. This is because Forum has a compli-
cated main function, with many security checks. Many
different actions call the main function after perform-
ing some database modification. Every such call is an-
alyzed afresh, as if the main function had been inlined.
Techniques like procedure summaries [19] should make
it possible to reduce this time significantly.

2http://nvd.nist.gov/

12

Very precise, logic-based program analyses often ex-
hibit bad scaling behavior. There is no theoretical rea-
son that UrFlow would not run into the same problems.
Many programs with exponentially many feasible paths
will indeed trigger exponential behavior in any realiza-
tion of our algorithm. Simple experiments with param-
eterized families of programs also show that our current
implementation produces exponential running time (with
small constant factors) even on some examples that can
probably be reduced to linear running time with more op-
timization. For instance, we tested programs made up of
if-trees that perform the same SQL query at each of the
tree’s exponentially-many nodes. Primary key informa-
tion implies that the if test always goes the same way,
ruling out all but two paths through the tree. Still, expo-
nential time usage results from our heuristic of consid-
ering two execution paths starting at each query, for the
cases of zero or more than zero result rows. Much future
work remains in smarter detection of redundant paths.

9 Related Work

The BAN logic [2] is a formal system for reasoning about
knowledge in distributed system protocols. The rules of
the logic model important aspects like transitive trust and
cryptography. The spi calculus [1] pursues similar goals,
introducing an explicit formalization of programs, rather
than just of the knowledge that principals have at points
throughout a protocol. Our known predicate is modeled
on notions introduced in that line of work.

Security types [20] are a technique for static checking
of information flow based on explicit data labels such
as “high security” and “low security.” The JFlow [15]
and Jif [16] systems are realistic implementations of se-
curity typing for Java. SIF [5] extends Jif for the Web
application domain. This line of work enables check-
ing of a much broader range of applications than UrFlow
can handle. By focusing on a narrow domain that nat-
urally supports declarative implementation techniques,
UrFlow is able to do sound checking without requir-
ing any program annotations. Jif-based systems require
many annotations, including explicit granting of trust
to particular spans of code. The Swift system [4] ex-
tends this approach to do automatic, secure partitioning
of Web application code across client and server, based
on information-flow constraints.

Li and Zdancewic [14] presented a system for static
checking of information-flow properties for database-
backed Web applications. Their design requires that
the application be programmed in terms of fixed sets of
query templates with holes to be filled with different val-
ues on different invocations. Every template is annotated
with security typing information for each input and out-
put. In contrast, UrFlow infers the security-relevant char-

acteristics of queries from a declarative policy. One pol-
icy may be enough to imply the sensitivity of outputs
from many different query forms. UrFlow also applies
theorem-proving technology to allow sound checking of
more programs, including those where policies vary dy-
namically based on database contents.

Asbestos [9] and HiStar [23] are operating systems
with support for dynamic enforcement of the Decentral-
ized Information Flow Control model, which specifies
which run-time flows between sensitive objects to allow.
The Flume system [13] implements similar functionality
on top of standard UNIX abstractions. All of these sys-
tems can support complex system architectures that fall
outside the specialized orientation of UrFlow. Flume has
been used to build a secured version of the MoinMoin
wiki application. This port to Flume required about 1000
lines of new code and 1000 lines of modifications, and a
performance cost between 34% and 43% was measured,
against the baseline of interpreted Python code. Our Fo-
rum case study demonstrates that UrFlow can check poli-
cies based on access control lists, which are the main
property enforced in the Flume case study.

The Resin system [22] implements a much lighter-
weight approach to Web application security. Instead of
relying on a fixed label model, Resin allows program-
mers to implement their own property checks in the lan-
guage in which the application is written. Policy code
may tag values with policy objects, and the Resin system
takes care of flowing these policies through the system
and checking them at points where the application inter-
acts with its environment. Compared to the other systems
we have mentioned, including UrFlow, Resin makes it
much easier to add security checking to existing appli-
cations written in popular scripting languages like PHP
and Python. Resin’s lightweight policy approach can
also express policies that UrFlow’s policy queries can-
not. On the other hand, once a programmer has learned
Ur/Web and used it to implement his application, UrFlow
requires little annotation and brings the standard bene-
fits of static analysis, compared to Resin and the systems
mentioned in the previous paragraph: we get once-and-
for-all security guarantees, without the possibility of the
application being aborted because a problem is detected
at run-time; and we avoid extra run-time costs, such as
the 33% CPU overhead reported for a representative PHP
application instrumented with Resin.

Much work on Web application security focuses on
injection attacks, where bugs allow untrusted user input
to be passed to run-time program interpreters. Solutions
have employed both static [12, 21] and dynamic [11, 17]
analysis. Ur/Web rules out these problems by construc-
tion, by encoding the syntax of HTML and SQL with
richly-typed objects.

Rizvi et al. [18] present a technique for fine-grained

13

access control over SQL queries, based on the concept
of authorization views, which are much like UrFlow’s
policy queries. The key difference is that authorization
views are phrased in terms of variables like $user-id
that must be filled in by some out-of-band mechanism.
With UrFlow, the correctness of authentication may itself
be verified, through reasoning about the known predi-
cate. The technique of Rizvi et al. is applied dynami-
cally to individual queries, where an allowability check
against the current database must be run for each query.
In contrast, UrFlow can prove statically that an appli-
cation never uses query results inappropriately, with no
modification to run-time database operation.

The SELinks system [7] extends the Links [6] Web
programming language with support for static tracking
of labels through trusted functions that enforce custom
policies. The natural way of expressing some queries
in SELinks involves mixing customized access control
checks with code that should be compiled into SQL
queries. The SELinks compiler handles the translation
of the custom checks into stored procedures that the
database engine can run during query evaluation. Ur-
Flow follows the alternate approach of letting the pro-
grammer be explicit about the interaction of checks and
queries, such that the static analysis verifies that all this
has been done correctly. In general, SELinks provides a
type system that makes certain types of security proofs
easier, though the SELinks compiler does not carry out
those proofs itself.

10 Conclusion

We have presented UrFlow, a static program analysis
that verifies adherence of database-backed Web applica-
tions to security policies. These policies may vary by
database state, and they are expressed as SQL queries, a
convenient format for most Web programmers. UrFlow
requires no program annotations and adds no run-time
overhead. A key direction for future work is adaptation
of UrFlow to more traditional languages, where database
access is granted less of a first-class status, so that pro-
gram analysis must be run to recover some information
that UrFlow depends on.

Acknowledgements We would like to thank Stephen
Chong, Avraham Shinnar, our shepherd Nickolai Zel-
dovich, and the anonymous referees for their very helpful
suggestions about this project and its presentation here.

References
[1] ABADI, M., AND GORDON, A. D. A calculus for cryptographic

protocols: The spi calculus. In Proc. CCS (1997).

[2] BURROWS, M., ABADI, M., AND NEEDHAM, R. A logic of
authentication. ACM Trans. Comput. Syst. 8, 1 (1990), 18–36.

[3] CHLIPALA, A. Ur: Statically-typed metaprogramming with
type-level record computation. In Proc. PLDI (2010).

[4] CHONG, S., LIU, J., MYERS, A. C., QI, X., VIKRAM, K.,
ZHENG, L., AND ZHENG, X. Secure web applications via auto-
matic partitioning. In Proc. SOSP (2007).

[5] CHONG, S., VIKRAM, K., AND MYERS, A. C. SIF: Enforc-
ing confidentiality and integrity in web applications. In Proc.
USENIX Security (2007).

[6] COOPER, E., LINDLEY, S., WADLER, P., AND YALLOP, J.
Links: Web programming without tiers. In Proc. FMCO (2006).

[7] CORCORAN, B. J., SWAMY, N., AND HICKS, M. Cross-tier,
label-based security enforcement for web applications. In Proc.
SIGMOD (2009).

[8] DETLEFS, D., NELSON, G., AND SAXE, J. B. Simplify: a theo-
rem prover for program checking. J. ACM 52, 3 (2005), 365–473.

[9] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLER, D., KOHLER, E., MAZIÈRES, D.,
KAASHOEK, F., AND MORRIS, R. Labels and event processes
in the Asbestos operating system. In Proc. SOSP (2005).

[10] FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NEL-
SON, G., SAXE, J. B., AND STATA, R. Extended static checking
for Java. In Proc. PLDI (2002).

[11] HALFOND, W. G. J., AND ORSO, A. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks. In Proc.
ASE (2005).

[12] HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.-
T., AND KUO, S.-Y. Securing web application code by static
analysis and runtime protection. In Proc. WWW ’04 (2004).

[13] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Informa-
tion flow control for standard OS abstractions. In Proc. SOSP
(2007).

[14] LI, P., AND ZDANCEWIC, S. Practical information-flow control
in web-based information systems. In Proc. CSFW (2005).

[15] MYERS, A. C. JFlow: Practical mostly-static information flow
control. In Proc. POPL (1999).

[16] MYERS, A. C., ZHENG, L., ZDANCEWIC, S., CHONG, S., AND
NYSTROM, N. Jif: Java information flow, July 2001. Software
release at http://www.cs.cornell.edu/jif.

[17] NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D., SHIRLEY,
J., AND EVANS, D. Automatically hardening web applications
using precise tainting. In Proc. IFIP International Information
Security Conference (2005).

[18] RIZVI, S., MENDELZON, A., SUDARSHAN, S., AND ROY,
P. Extending query rewriting techniques for fine-grained access
control. In Proc. SIGMOD (2004).

[19] SHARIR, M., AND PNUELI, A. Two approaches to interproce-
dural data flow analysis. In Program Flow Analysis: Theory and
Applications. Prentice-Hall, 1981, pp. 189–233.

[20] VOLPANO, D., AND SMITH, G. A type-based approach to pro-
gram security. In Proc. International Joint Conference on the
Theory and Practice of Software Development (1997).

[21] XIE, Y., AND AIKEN, A. Static detection of security vulnerabil-
ities in scripting languages. In Proc. USENIX Security (2006).

[22] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.
Improving application security with data flow assertions. In Proc.
SOSP (2009).

[23] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making information flow explicit in HiStar. In
Proc. OSDI (2006).

14

