
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 29

Improving MapReduce Performance in Heterogeneous Environments

Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, Ion Stoica

University of California, Berkeley

{matei,andyk,adj,randy,stoica}@cs.berkeley.edu

Abstract
MapReduce is emerging as an important programming

model for large-scale data-parallel applications such as

web indexing, data mining, and scientific simulation.

Hadoop is an open-source implementation of MapRe-

duce enjoying wide adoption and is often used for short

jobs where low response time is critical. Hadoop’s per-

formance is closely tied to its task scheduler, which im-

plicitly assumes that cluster nodes are homogeneous and

tasks make progress linearly, and uses these assumptions

to decide when to speculatively re-execute tasks that ap-

pear to be stragglers. In practice, the homogeneity as-

sumptions do not always hold. An especially compelling

setting where this occurs is a virtualized data center, such

as Amazon’s Elastic Compute Cloud (EC2). We show

that Hadoop’s scheduler can cause severe performance

degradation in heterogeneous environments. We design

a new scheduling algorithm, Longest Approximate Time

to End (LATE), that is highly robust to heterogeneity.

LATE can improve Hadoop response times by a factor

of 2 in clusters of 200 virtual machines on EC2.

1 Introduction

Today’s most popular computer applications are Internet

services with millions of users. The sheer volume of data

that these services work with has led to interest in paral-

lel processing on commodity clusters. The leading exam-

ple is Google, which uses its MapReduce framework to

process 20 petabytes of data per day [1]. Other Internet

services, such as e-commerce websites and social net-

works, also cope with enormous volumes of data. These

services generate clickstream data from millions of users

every day, which is a potential gold mine for understand-

ing access patterns and increasing ad revenue. Further-

more, for each user action, a web application generates

one or two orders of magnitude more data in system logs,

which are the main resource that developers and opera-

tors have for diagnosing problems in production.

The MapReduce model popularized by Google is very

attractive for ad-hoc parallel processing of arbitrary data.

MapReduce breaks a computation into small tasks that

run in parallel on multiple machines, and scales easily to

very large clusters of inexpensive commodity comput-

ers. Its popular open-source implementation, Hadoop

[2], was developed primarily by Yahoo, where it runs

jobs that produce hundreds of terabytes of data on at least

10,000 cores [4]. Hadoop is also used at Facebook, Ama-

zon, and Last.fm [5]. In addition, researchers at Cornell,

Carnegie Mellon, University of Maryland and PARC are

starting to use Hadoop for seismic simulation, natural

language processing, and mining web data [5, 6].

A key benefit of MapReduce is that it automatically

handles failures, hiding the complexity of fault-tolerance

from the programmer. If a node crashes, MapReduce re-

runs its tasks on a different machine. Equally impor-

tantly, if a node is available but is performing poorly,

a condition that we call a straggler, MapReduce runs a

speculative copy of its task (also called a “backup task”)

on another machine to finish the computation faster.

Without this mechanism of speculative execution1, a job

would be as slow as the misbehaving task. Stragglers can

arise for many reasons, including faulty hardware and

misconfiguration. Google has noted that speculative ex-

ecution can improve job response times by 44% [1].

In this work, we address the problem of how to ro-

bustly perform speculative execution to maximize per-

formance. Hadoop’s scheduler starts speculative tasks

based on a simple heuristic comparing each task’s

progress to the average progress. Although this heuristic

works well in homogeneous environments where strag-

glers are obvious, we show that it can lead to severe per-

formance degradation when its underlying assumptions

are broken. We design an improved scheduling algorithm

that reduces Hadoop’s response time by a factor of 2.

An especially compelling environment where

1Not to be confused with speculative execution at the OS or hard-

ware level for branch prediction, as in Speculator [11].

30 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Hadoop’s scheduler is inadequate is a virtualized data

center. Virtualized “utility computing” environments,

such as Amazon’s Elastic Compute Cloud (EC2) [3], are

becoming an important tool for organizations that must

process large amounts of data, because large numbers

of virtual machines can be rented by the hour at lower

costs than operating a data center year-round (EC2’s

current cost is $0.10 per CPU hour). For example,

the New York Times rented 100 virtual machines for a

day to convert 11 million scanned articles to PDFs [7].

Utility computing environments provide an economic

advantage (paying by the hour), but they come with the

caveat of having to run on virtualized resources with

uncontrollable variations in performance. We also ex-

pect heterogeneous environments to become common in

private data centers, as organizations often own multiple

generations of hardware, and data centers are starting to

use virtualization to simplify management and consoli-

date servers. We observed that Hadoop’s homogeneity

assumptions lead to incorrect and often excessive spec-

ulative execution in heterogeneous environments, and

can even degrade performance below that obtained with

speculation disabled. In some experiments, as many as

80% of tasks were speculatively executed.

Naı̈vely, one might expect speculative execution to be

a simple matter of duplicating tasks that are sufficiently

slow. In reality, it is a complex issue for several reasons.

First, speculative tasks are not free – they compete for

certain resources, such as the network, with other run-

ning tasks. Second, choosing the node to run a specula-

tive task on is as important as choosing the task. Third, in

a heterogeneous environment, it may be difficult to dis-

tinguish between nodes that are slightly slower than the

mean and stragglers. Finally, stragglers should be identi-

fied as early as possible to reduce response times.

Starting from first principles, we design a simple al-

gorithm for speculative execution that is robust to het-

erogeneity and highly effective in practice. We call our

algorithm LATE for Longest Approximate Time to End.

LATE is based on three principles: prioritizing tasks to

speculate, selecting fast nodes to run on, and capping

speculative tasks to prevent thrashing. We show that

LATE can improve the response time of MapReduce jobs

by a factor of 2 in large clusters on EC2.

This paper is organized as follows. Section 2 describes

Hadoop’s scheduler and the assumptions it makes. Sec-

tion 3 shows how these assumptions break in hetero-

geneous environments. Section 4 introduces our new

scheduler, LATE. Section 5 validates our claims about

heterogeneity in virtualized environments through mea-

surements of EC2 and evaluates LATE in several set-

tings. Section 6 is a discussion. Section 7 presents re-

lated work. Finally, we conclude in Section 8.

Figure 1: A MapReduce computation. Image from [8].

2 Background: Scheduling in Hadoop

In this section, we describe the mechanism used by

Hadoop to distribute work across a cluster. We identify

assumptions made by the scheduler that hurt its perfor-

mance. These motivate our LATE scheduler, which can

outperform Hadoop’s by a factor of 2.

Hadoop’s implementation of MapReduce closely re-

sembles Google’s [1]. There is a single master manag-

ing a number of slaves. The input file, which resides on a

distributed filesystem throughout the cluster, is split into

even-sized chunks replicated for fault-tolerance. Hadoop

divides each MapReduce job into a set of tasks. Each

chunk of input is first processed by a map task, which

outputs a list of key-value pairs generated by a user-

defined map function. Map outputs are split into buckets

based on key. When all maps have finished, reduce tasks

apply a reduce function to the list of map outputs with

each key. Figure 1 illustrates a MapReduce computation.

Hadoop runs several maps and reduces concurrently

on each slave – two of each by default – to overlap com-

putation and I/O. Each slave tells the master when it has

empty task slots. The scheduler then assigns it tasks.

The goal of speculative execution is to minimize a

job’s response time. Response time is most important for

short jobs where a user wants an answer quickly, such as

queries on log data for debugging, monitoring and busi-

ness intelligence. Short jobs are a major use case for

MapReduce. For example, the average MapReduce job

at Google in September 2007 took 395 seconds [1]. Sys-

tems designed for SQL-like queries on top of MapRe-

duce, such as Sawzall [9] and Pig [10], underline the im-

portance of MapReduce for ad-hoc queries. Response

time is also clearly important in a pay-by-the-hour envi-

ronment like EC2. Speculative execution is less useful in

long jobs, because only the last wave of tasks is affected,

and it may be inappropriate for batch jobs if throughput is

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 31

the only metric of interest, because speculative tasks im-

ply wasted work. However, even in pure throughput sys-

tems, speculation may be beneficial to prevent the pro-

longed life of many concurrent jobs all suffering from

straggler tasks. Such nearly complete jobs occupy re-

sources on the master and disk space for map outputs on

the slaves until they terminate. Nonetheless, in our work,

we focus on improving response time for short jobs.

2.1 Speculative Execution in Hadoop

When a node has an empty task slot, Hadoop chooses

a task for it from one of three categories. First, any

failed tasks are given highest priority. This is done to

detect when a task fails repeatedly due to a bug and stop

the job. Second, non-running tasks are considered. For

maps, tasks with data local to the node are chosen first.

Finally, Hadoop looks for a task to execute speculatively.

To select speculative tasks, Hadoop monitors task

progress using a progress score between 0 and 1. For

a map, the progress score is the fraction of input data

read. For a reduce task, the execution is divided into

three phases, each of which accounts for 1/3 of the score:

• The copy phase, when the task fetches map outputs.

• The sort phase, when map outputs are sorted by key.

• The reduce phase, when a user-defined function is

applied to the list of map outputs with each key.

In each phase, the score is the fraction of data processed.

For example, a task halfway through the copy phase has a

progress score of 1
2 ·

1
3 = 1

6 , while a task halfway through

the reduce phase scores 1
3 + 1

3 + (1
2 ·

1
3) = 5

6 .

Hadoop looks at the average progress score of each

category of tasks (maps and reduces) to define a thresh-

old for speculative execution: When a task’s progress

score is less than the average for its category minus 0.2,

and the task has run for at least one minute, it is marked

as a straggler. All tasks beyond the threshold are consid-

ered “equally slow,” and ties between them are broken by

data locality. The scheduler also ensures that at most one

speculative copy of each task is running at a time.

Although a metric like progress rate would make more

sense than absolute progress for identifying stragglers,

the threshold in Hadoop works reasonably well in ho-

mogenous environments because tasks tend to start and

finish in “waves” at roughly the same times and specula-

tion only starts when the last wave is running.

Finally, when running multiple jobs, Hadoop uses a

FIFO discipline where the earliest submitted job is asked

for a task to run, then the second, etc. There is also a pri-

ority system for putting jobs into higher-priority queues.

2.2 Assumptions in Hadoop’s Scheduler

Hadoop’s scheduler makes several implicit assumptions:

1. Nodes can perform work at roughly the same rate.

2. Tasks progress at a constant rate throughout time.

3. There is no cost to launching a speculative task on a

node that would otherwise have an idle slot.

4. A task’s progress score is representative of fraction

of its total work that it has done. Specifically, in a

reduce task, the copy, sort and reduce phases each

take about 1/3 of the total time.

5. Tasks tend to finish in waves, so a task with a low

progress score is likely a straggler.

6. Tasks in the same category (map or reduce) require

roughly the same amount of work.

As we shall see, assumptions 1 and 2 break down in

a virtualized data center due to heterogeneity. Assump-

tions 3, 4 and 5 can break down in a homogeneous data

center as well, and may cause Hadoop to perform poorly

there too. In fact, Yahoo disables speculative execution

on some jobs because it degrades performance, and mon-

itors faulty machines through other means. Facebook

disables speculation for reduce tasks [14].

Assumption 6 is inherent in the MapReduce paradigm,

so we do not address it in this paper. Tasks in MapReduce

should be small, otherwise a single large task will slow

down the entire job. In a well-behaved MapReduce job,

the separation of input into equal chunks and the division

of the key space among reducers ensures roughly equal

amounts of work. If this is not the case, then launching

a few extra speculative tasks is not harmful as long as

obvious stragglers are also detected.

3 How the Assumptions Break Down

3.1 Heterogeneity

The first two assumptions in Section 2.2 are about ho-

mogeneity: Hadoop assumes that any detectably slow

node is faulty. However, nodes can be slow for other

reasons. In a non-virtualized data center, there may be

multiple generations of hardware. In a virtualized data

center where multiple virtual machines run on each phys-

ical host, such as Amazon EC2, co-location of VMs

may cause heterogeneity. Although virtualization iso-

lates CPU and memory performance, VMs compete for

disk and network bandwidth. In EC2, co-located VMs

use a host’s full bandwidth when there is no contention

and share bandwidth fairly when there is contention [12].

Contention can come from other users’ VMs, in which

case it may be transient, or from a user’s own VMs if

they do similar work, as in Hadoop. In Section 5.1, we

32 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

measure performance differences of 2.5x caused by con-

tention. Note that EC2’s bandwidth sharing policy is not

inherently harmful – it means that a physical host’s I/O

bandwidth can be fully utilized even when some VMs do

not need it – but it causes problems in Hadoop.

Heterogeneity seriously impacts Hadoop’s scheduler.

Because the scheduler uses a fixed threshold for select-

ing tasks to speculate, too many speculative tasks may

be launched, taking away resources from useful tasks

(assumption 3 is also untrue). Also, because the sched-

uler ranks candidates by locality, the wrong tasks may be

chosen for speculation first. For example, if the average

progress was 70% and there was a 2x slower task at 35%

progress and a 10x slower task at 7% progress, then the

2x slower task might be speculated before the 10x slower

task if its input data was available on an idle node.

We note that EC2 also provides “large” and “extra

large” VM sizes that have lower variance in I/O perfor-

mance than the default “small” VMs, possibly because

they fully own a disk. However, small VMs can achieve

higher I/O performance per dollar because they use all

available disk bandwidth when no other VMs on the host

are using it. Larger VMs also still compete for network

bandwidth. Therefore, we focus on optimizing Hadoop

on “small” VMs to get the best performance per dollar.

3.2 Other Assumptions

Assumptions 3, 4 and 5 in Section 2.2 are broken on both

homogeneous and heterogeneous clusters, and can lead

to a variety of failure modes.

Assumption 3, that speculating tasks on idle nodes

costs nothing, breaks down when resources are shared.

For example, the network is a bottleneck shared resource

in large MapReduce jobs. Also, speculative tasks may

compete for disk I/O in I/O-bound jobs. Finally, when

multiple jobs are submitted, needless speculation reduces

throughput without improving response time by occupy-

ing nodes that could be running the next job.

Assumption 4, that a task’s progress score is approxi-

mately equal to its percent completion, can cause incor-

rect speculation of reducers. In a typical MapReduce job,

the copy phase of reduce tasks is the slowest, because

it involves all-pairs communication over the network.

Tasks quickly complete the other two phases once they

have all map outputs. However, the copy phase counts

for only 1/3 of the progress score. Thus, soon after the

first few reducers in a job finish the copy phase, their

progress goes from 1/3 to 1, greatly increasing the aver-

age progress. As soon as about 30% of reducers finish,

the average progress is roughly 0.3 ·1+0.7 ·1/3 ≈ 53%,
and now all reducers still in the copy phase will be 20%

behind the average, and an arbitrary set will be specu-

latively executed. Task slots will fill up, and true strag-

glers may never be speculated executed, while the net-

work will be overloaded with unnecessary copying. We

observed this behavior in 900-node runs on EC2, where

80% of reducers were speculated.

Assumption 5, that progress score is a good proxy for

progress rate because tasks begin at roughly the same

time, can also be wrong. The number of reducers in a

Hadoop job is typically chosen small enough so that they

they can all start running right away, to copy data while

maps run. However, there are potentially tens of mappers

per node, one for each data chunk. The mappers tend

to run in waves. Even in a homogeneous environment,

these waves get more spread out over time due to vari-

ance adding up, so in a long enough job, tasks from dif-

ferent generations will be running concurrently. In this

case, Hadoop will speculatively execute new, fast tasks

instead of old, slow tasks that have more total progress.

Finally, the 20% progress difference threshold used

by Hadoop’s scheduler means that tasks with more than

80% progress can never be speculatively executed, be-

cause average progress can never exceed 100%.

4 The LATE Scheduler

We have designed a new speculative task scheduler by

starting from first principles and adding features needed

to behave well in a real environment.

The primary insight behind our algorithm is as fol-

lows: We always speculatively execute the task that we

think will finish farthest into the future, because this

task provides the greatest opportunity for a speculative

copy to overtake the original and reduce the job’s re-

sponse time. We explain how we estimate a task’s finish

time based on progress score below. We call our strat-

egy LATE, for Longest Approximate Time to End. Intu-

itively, this greedy policy would be optimal if nodes ran

at consistent speeds and if there was no cost to launching

a speculative task on an otherwise idle node.

Different methods for estimating time left can be

plugged into LATE. We currently use a simple heuris-

tic that we found to work well in practice: We estimate

the progress rate of each task as ProgressScore/T ,
where T is the amount of time the task has been run-

ning for, and then estimate the time to completion as

(1 − ProgressScore)/ProgressRate. This assumes

that tasks make progress at a roughly constant rate. There

are cases where this heuristic can fail, which we describe

later, but it is effective in typical Hadoop jobs.

To really get the best chance of beating the original

task with the speculative task, we should also only launch

speculative tasks on fast nodes – not stragglers. We do

this through a simple heuristic – don’t launch speculative

tasks on nodes that are below some threshold, SlowN-

odeThreshold, of total work performed (sum of progress

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 33

scores for all succeeded and in-progress tasks on the

node). This heuristic leads to better performance than as-

signing a speculative task to the first available node. An-

other option would be to allow more than one speculative

copy of each task, but this wastes resources needlessly.

Finally, to handle the fact that speculative tasks cost

resources, we augment the algorithm with two heuristics:

• A cap on the number of speculative tasks that can be

running at once, which we denote SpeculativeCap.

• A SlowTaskThreshold that a task’s progress rate is

compared with to determine whether it is “slow

enough” to be speculated upon. This prevents need-

less speculation when only fast tasks are running.

In summary, the LATE algorithm works as follows:

• If a node asks for a new task and there are fewer

than SpeculativeCap speculative tasks running:

– Ignore the request if the node’s total progress

is below SlowNodeThreshold.

– Rank currently running tasks that are not cur-

rently being speculated by estimated time left.

– Launch a copy of the highest-ranked task with

progress rate below SlowTaskThreshold.

Like Hadoop’s scheduler, we also wait until a task has

run for 1 minute before evaluating it for speculation.

In practice, we have found that a good choice for the

three parameters to LATE are to set the SpeculativeCap

to 10% of available task slots and set the SlowNode-

Threshold and SlowTaskThreshold to the 25th percentile

of node progress and task progress rates respectively. We

use these values in our evaluation. We have performed a

sensitivity analysis in Section 5.4 to show that a wide

range of thresholds perform well.

Finally, we note that unlike Hadoop’s scheduler, LATE

does not take into account data locality for launching

speculative map tasks, although this is a potential exten-

sion. We assume that because most maps are data-local,

network utilization during the map phase is low, so it is

fine to launch a speculative task on a fast node that does

not have a local copy of the data. Locality statistics avail-

able in Hadoop validate this assumption.

4.1 Advantages of LATE

The LATE algorithm has several advantages. First, it

is robust to node heterogeneity, because it will relaunch

only the slowest tasks, and only a small number of tasks.

LATE prioritizes among the slow tasks based on how

much they hurt job response time. LATE also caps the

number of speculative tasks to limit contention for shared

resources. In contrast, Hadoop’s native scheduler has a

fixed threshold, beyond which all tasks that are “slow

enough” have an equal chance of being launched. This

fixed threshold can cause excessively many tasks to be

speculated upon.

Second, LATE takes into account node heterogeneity

when deciding where to run speculative tasks. In con-

trast, Hadoop’s native scheduler assumes that any node

that finishes a task and asks for a new one is likely to be

a fast node, i.e. that slow nodes will never finish their

original tasks and so will never be candidates for run-

ning speculative tasks. This is clearly untrue when some

nodes are only slightly (2-3x) slower than the mean.

Finally, by focusing on estimated time left rather than

progress rate, LATE speculatively executes only tasks

that will improve job response time, rather than any slow

tasks. For example, if task A is 5x slower than the mean

but has 90% progress, and task B is 2x slower than the

mean but is only at 10% progress, then task B will be

chosen for speculation first, even though it is has a higher

progress rate, because it hurts the response time more.

LATE allows the slow nodes in the cluster to be utilized

as long as this does not hurt response time. In contrast,

a progress rate based scheduler would always re-execute

tasks from slow nodes, wasting time spent by the backup

task if the original finishes faster. The use of estimated

time left also allows LATE to avoid assumption 4 in Sec-

tion 2.2 (that progress score is linearly correlated with

percent completion): it does not matter how the progress

score is calculated, as long as it can be used to estimate

the finishing order of tasks.

As a concrete example of how LATE improves over

Hadoop’s scheduler, consider the reduce example in Sec-

tion 3.2, where assumption 4 (progress score ≈ fraction

of work complete) is violated and all reducers in the copy

phase fall below the speculation threshold as soon as a

few reducers finish. Hadoop’s native scheduler would

speculate arbitrary reduces, missing true stragglers and

potentially starting too many speculative tasks. In con-

trast, LATE would first start speculating the reducers

with the slowest copy phase, which are probably the true

stragglers, and would stop launching speculative tasks

once it has reached the SpeculativeCap, avoiding over-

loading the network.

4.2 Estimating Finish Times

At the start of Section 4, we said that we estimate the

time left for a task based on the progress score provided

by Hadoop, as (1 − ProgressScore)/ProgressRate.
Although this heuristic works well in practice, we wish

to point out that there are situations in which it can back-

fire, and the heuristic might incorrectly estimate that a

task which was launched later than an identical task will

finish earlier. Because these situations do not occur in

typical MapReduce jobs (as explained below), we have

34 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 2: A scenario where LATE estimates task finish orders

incorrectly.

used the simple heuristic presented above in our experi-

ments in this paper. We explain this misestimation here

because it is an interesting, subtle problem in scheduling

using progress rates. In future work, we plan to evaluate

more sophisticated methods of estimating finish times.

To see how the progress rate heuristic might backfire,

consider a task that has two phases in which it runs at

different rates. Suppose the task’s progress score grows

by 5% per second in the first phase, up to a total score

of 50%, and then slows down to 1% per second in the

second phase. The task spends 10 seconds in the first

phase and 50 seconds in the second phase, or 60s in to-

tal. Now suppose that we launch two copies of the task,

T1 and T2, one at time 0 and one at time 10, and that

we check their progress rates at time 20. Figure 2 illus-

trates this scenario. At time 20, T1 will have finished

its first phase and be one fifth through its second phase,

so its progress score will be 60%, and its progress rate

will be 60%/20s = 3%/s. Meanwhile, T2 will have

just finished its first phase, so its progress rate will be

50%/10s = 5%/s. The estimated time left for T1 will

be (100% − 60%)/(3%/s) = 13.3s. The estimated time

left for T2 will be (100%−50%)/(5%/s) = 10s. There-
fore our heuristic will say that T1 will take longer to run

than T2, while in reality T2 finishes second.

This situation arises because the task’s progress rate

slows down throughout its lifetime and is not linearly re-

lated to actual progress. In fact, if the task sped up in its

second phase instead of slowing down, there would be

no problem – we would correctly estimate that tasks in

their first phase have a longer amount of time left, so the

estimated order of finish times would be correct, but we

would be wrong about the exact amount of time left. The

problem in this example is that the task slows down in its

second phase, so “younger” tasks seem faster.

Fortunately, this situation does not frequently arise

in typical MapReduce jobs in Hadoop. A map task’s

progress is based on the number of records it has pro-

cessed, so its progress is always representative of percent

complete. Reduce tasks are typically slowest in their first

phase – the copy phase, where they must read all map

outputs over the network – so they fall into the “speeding

up over time” category above.

For the less typical MapReduce jobs where some of

the later phases of a reduce task are slower than the first,

it would be possible to design a more complex heuris-

tic. Such a heuristic would account for each phase in-

dependently when estimating completion time. It would

use the the per-phase progress rate thus far observed for

any completed or in-progress phases for that task, and for

phases that the task has not entered yet, it would use the

average progress rate of those phases from other reduce

tasks. This more complex heuristic assumes that a task

which performs slowly in some phases relative to other

tasks will not perform relatively fast in other phases. One

issue for this phase-aware heuristic is that it depends on

historical averages of per phase task progress rates. How-

ever, since speculative tasks are not launched until at

least the end of at least one wave of tasks, a sufficient

number of tasks will have completed in time for the first

speculative task to use the average per phase progress

rates. We have not implemented this improved heuris-

tic to keep our algorithm simple. We plan to investigate

finish time estimation in more detail in future work.

5 Evaluation

We began our evaluation by measuring the effect of con-

tention on performance in EC2, to validate our claims

that contention causes heterogeneity. We then evaluated

LATE performance in two environments: large clusters

on EC2, and a local virtualized testbed. Lastly, we per-

formed a sensitivity analysis of the parameters in LATE.

Throughout our evaluation, we used a number of dif-

ferent environments. We began our evaluation by mea-

suring heterogeneity in the production environment on

EC2. However, we were assigned by Amazon to a sepa-

rate test cluster when we ran our scheduling experiments.

Amazon moved us to this test cluster because our experi-

ments were exposing a scalability bug in the network vir-

tualization software running in production that was caus-

ing connections between our VMs to fail intermittently.

The test cluster had a patch for this problem. Although

fewer customers were present on the test cluster, we cre-

ated contention there by occupying almost all the virtual

machines in one location – 106 physical hosts, on which

we placed 7 or 8 VMs each – and using multiple VMs

from each physical host. We chose our distribution of

VMs per host to match that observed in the production

cluster. In summary, although our results are from a test

cluster, they simulate the level of heterogeneity seen in

production while letting us operate in a more controlled

environment. The EC2 results are also consistent with

those from our local testbed. Finally, when we performed

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 35

Environment Scale (VMs) Experiments

EC2 production 871 Measuring heterogeneity

EC2 test cluster 100-243 Scheduler performance

Local testbed 15 Measuring heterogeneity,

scheduler performance

EC2 production 40 Sensitivity analysis

Table 1: Environments used in evaluation.

the sensitivity analysis, the problem in the production

cluster had been fixed, so we were placed back in the

production cluster. We used a controlled sleep workload

to achieve reproducible sensitivity experiments, as de-

scribed in Section 5.4. Table 1 summarizes the environ-

ments we used throughout our evaluation.

Our EC2 experiments ran on “small”-size EC2 VMs

with 1.7 GB of memory, 1 virtual core with “the equiv-

alent of a 1.0-1.2 GHz 2007 Opteron or Xeon proces-

sor,” and 160 GB of disk space on potentially shared hard

drive [12]. EC2 uses Xen [13] virtualization software.

In all tests, we configured the Hadoop Distributed File

System to maintain two replicas of each chunk, and we

configured each machine to run up to 2 mappers and 2

reducers simultaneously (the Hadoop default). We chose

the data input sizes for our jobs so that each job would

run approximately 5 minutes, simulating the shorter,

more interactive job-types common in MapReduce [1].

For our workload, we used primarily the Sort bench-

mark in the Hadoop distribution, but we also evaluated

two other MapReduce jobs. Sorting is the main bench-

mark used for evaluating Hadoop at Yahoo [14], and was

also used in Google’s paper [1]. In addition, a number of

features of sorting make it a desirable benchmark [16].

5.1 Measuring Heterogenity on EC2

Virtualization technology can isolate CPU and memory

performance effectively between VMs. However, as ex-

plained in Section 3.1, heterogeneity can still arise be-

cause I/O devices (disk and network) are shared between

VMs. On EC2, VMs get the full available bandwidth

when there is no contention, but are reduced to fair shar-

ing when there is contention [12]. We measured the ef-

fect of contention on raw disk I/O performance as well as

application performance in Hadoop. We saw a difference

of 2.5-2.7x between loaded and unloaded machines.

We note that our examples of the effect of load are in

some sense extreme, because for small allocations, EC2

seems to try to place a user’s virtual machines on dif-

ferent physical hosts. When we allocated 200 or fewer

virtual machines, they were all placed on different phys-

ical hosts. Our results are also inapplicable to CPU and

Load Level VMs Write Perf (MB/s) Std Dev

1 VMs/host 202 61.8 4.9

2 VMs/host 264 56.5 10.0

3 VMs/host 201 53.6 11.2

4 VMs/host 140 46.4 11.9

5 VMs/host 45 34.2 7.9

6 VMs/host 12 25.4 2.5

7 VMs/host 7 24.8 0.9

Table 2: EC2 Disk Performance vs. VM co-location: Write

performance vs. number of VMs per physical host on EC2.

Second column shows how many VMs fell into each load level.

memory-bound workloads. However, the results are rel-

evant to users running Hadoop at large scales on EC2,

because these users will likely have co-located VMs (as

we did) and Hadoop is an I/O-intensive workload.

5.1.1 Impact of Contention on I/O Performance

In the first test, we timed a dd command that wrote 5000

MB of zeroes from /dev/zero to a file in parallel on

871 virtual machines in EC2’s production cluster. Be-

cause EC2 machines exhibit a “cold start” phenomenon

where the first write to a block is slower than subsequent

writes, possibly to expand the VM’s disk allocation, we

“warmed up” 5000 MB of space on each machine before

we ran our tests, by running dd and deleting its output.

We used a traceroute from each VM to an exter-

nal URL to figure out which physical machine the VM

was on – the first hop from a Xen virtual machine is al-

ways the dom0 or supervisor process for that physical

host. Our 871 VMs ranged from 202 that were alone on

their physical host up to 7 VMs located on one physical

host. Table 2 shows average performance and standard

deviations. Performance ranged from 62 MB/s for the

isolated VMs to 25 MB/s when seven VMs shared a host.

To validate that the performance was tied to contention

for disk resources due to multiple VMs writing on the

same host, we also tried performing dd’s in a smaller

EC2 allocation where 200 VMs were assigned to 200

distinct physical hosts. In this environment, dd perfor-

mance was between 51 and 72 MB/s for all but three

VMs. These achieved 44, 36 and 17 MB/s respectively.

We do not know the cause of these stragglers. The nodes

with 44 and 36 MB/s could be explained by contention

with other users’ VMs given our previous measurements,

but the node with 17 MB/s might be a truly faulty ma-

chine. From these results, we conclude that background

load is an important factor in I/O performance on EC2,

and can reduce I/O performance by a factor of 2.5. We

also see that stragglers can occur “in the wild” on EC2.

We also measured I/O performance on “large” and

36 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

“extra-large” EC2 VMs. These VMs have 2 and 4 virtual

disks respectively, which appear to be independent. They

achieve 50-60 MB/s performance on each disk. How-

ever, a large VM costs 4x more than a small one, and an

extra-large costs 8x more. Thus the I/O performance per

dollar is on average less than that of small VMs.

5.1.2 Impact of Contention at the Application Level

We also evaluated the hypothesis that background load

reduces the performance of Hadoop. For this purpose,

we ran two tests with 100 virtual machines: one where

each VM was on a separate physical host that was doing

no other work, and one where all 100 VMs were packed

onto 13 physical hosts, with 7 machines per host. These

tests were in EC2’s test cluster, where we had allocated

all 800 VMs. With both sets of machines, we sorted

100 GB of random data using Hadoop’s Sort benchmark

with speculative execution disabled (this setting achieved

the best performance). With isolated VMs, the job com-

pleted in 408s, whereas with VMs packed densely onto

physical hosts, it took 1094s. Therefore there is a 2.7x

difference in Hadoop performance with a cluster of iso-

lated VMs versus a cluster of colocated VMs.

5.2 Scheduling Experiments on EC2

We evaluated LATE, Hadoop’s native scheduler, and no

speculation in a variety of experiments on EC2, on clus-

ters of about 200 VMs. For each experiment in this sec-

tion, we performed 5-7 runs. Due to the environment’s

variability, some of the results had high variance. To ad-

dress this issue, we show the average, worst and best-

case performance for LATE in our results. We also ran

experiments on a smaller local cluster where we had full

control over the environment for further validation.

We compared the three schedulers in two settings:

Heterogeneous but non-faulty nodes, chosen by assign-

ing a varying number of VMs to each physical host,

and an environment with stragglers, created by running

CPU and I/O intensive processes on some machines. We

wanted to show that LATE provides gains in heteroge-

neous environments even if there are no faulty nodes.

As described at the start of Section 5, we ran these ex-

periments in an EC2 test cluster where we allocated 800

VMs on 106 physical nodes – nearly the full capacity,

since each physical machine seems to support at most 8

VMs – and we selected a subset of the VMs for each test

to control colocation and hence contention.

5.2.1 Scheduling in a Heterogeneous Cluster

For our first experiment, we created a heterogeneous

cluster by assigning different numbers of VMs to physi-

cal hosts. We used 1 to 7 VMs per host, for a total of 243

Load Level Hosts VMs

1 VMs/host 40 40

2 VMs/host 20 40

3 VMs/host 15 45

4 VMs/host 10 40

5 VMs/host 8 40

6 VMs/host 4 24

7 VMs/host 2 14

Total 99 243

Table 3: Load level mix in our heterogeneous EC2 cluster.

Figure 3: EC2 Sort running times in heterogeneous cluster:

Worst, best and average-case performance of LATE against

Hadoop’s scheduler and no speculation.

VMs, as shown in Table 3. We chose this mix to resem-

ble the allocation we saw for 900 nodes in the production

EC2 cluster in Section 5.1.

As our workload, we used a Sort job on a data set

of 128 MB per host, or 30 GB of total data. Each

job had 486 map tasks and 437 reduce tasks (Hadoop

leaves some reduce capacity free for speculative and

failed tasks). We repeated the experiment 6 times.

Figure 3 shows the response time achieved by each

scheduler. Our graphs throughout this section show nor-

malized performance against that of Hadoop’s native

scheduler. We show the worst-case and best-case gain

from LATE to give an idea of the range involved, be-

cause the variance is high. On average, in this first ex-

periment, LATE finished jobs 27% faster than Hadoop’s

native scheduler and 31% faster than no speculation.

5.2.2 Scheduling with Stragglers

To evaluate the speculative execution algorithms on the

problem they were meant to address – faulty nodes – we

manually slowed down eight VMs in a cluster of 100

with background processes to simulate stragglers. The

other machines were assigned between 1 and 8 VMs per

host, with about 10 in each load level. The stragglers

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 37

Figure 4: EC2 Sort running times with stragglers: Worst,

best and average-case performance of LATE against Hadoop’s

scheduler and no speculation.

were created by running four CPU-intensive processes

(tight loops modifying 800 KB arrays) and four disk-

intensive processes (dd tasks creating large files in a

loop) on each straggler. The load was significant enough

that disabling speculative tasks caused the cluster to per-

form 2 to 4 times slower than it did with LATE, but not

so significant as to render the straggler machines com-

pletely unusable. For each run, we sorted 256 MB of

data per host, for a total of 25 GB.

Figure 4 shows the results of 4 experiments. On aver-

age, LATE finished jobs 58% faster than Hadoop’s native

scheduler and 220% faster than Hadoop with speculative

execution disabled. The speed improvement over native

speculative execution could be as high as 93%.

5.2.3 Differences Across Workloads

To validate our use of the Sort benchmark, we also ran

two other workloads, Grep and WordCount, on a hetero-

geneous cluster with stragglers. These are example jobs

that come with the Hadoop distribution. We used a 204-

node cluster with 1 to 8 VMs per physical host. We sim-

ulated eight stragglers with background load as above.

Grep searches for a regular expression in a text file

and creates a file with matches. It then launches a second

MapReduce job to sort the matches. We only measured

performance of the search job because the sort job was

too short for speculative execution to activate (less than

a minute). We applied Grep to 43 GB of text data (re-

peated copies of Shakespeare’s plays), or about 200 MB

per host. We searched for the regular expression “the”.

Results from 5 runs are shown in Figure 5. On aver-

age, LATE finished jobs 36% faster than Hadoop’s native

scheduler and 57% faster than no speculation.

We notice that in one of the experiments, LATE per-

formed worse than no speculation. This is not surpris-

ing given the variance in the results. We also note that

Figure 5: EC2 Grep running times with stragglers: Worst,

best and average-case performance of LATE against Hadoop’s

scheduler and no speculation.

Figure 6: EC2 WordCount running times with stragglers:

Worst, best and average-case performance of LATE against

Hadoop’s scheduler and no speculation.

there is an element of “luck” involved in these tests: if

a data chunk’s two replicas both happen to be placed

on stragglers, then no scheduling algorithm can perform

very well, because this chunk will be slow to serve.

WordCount counts the number of occurrences of each

word in a file. We applied WordCount to a smaller data

set of 21 GB, or 100 MB per host. Results from 5 runs

are shown in Figure 6. On average, LATE finished jobs

8.5% faster than Hadoop’s native scheduler and 179%

faster than no speculation. We observe that the gain from

LATE is smaller in WordCount than in Grep and Sort.

This is explained by looking at the workload. Sort and

Grep write a significant amount of data over the network

and to disk. On the other hand, WordCount only sends a

small number of bytes to each reducer – a count for each

word. Once the maps in WordCount finish, the reducers

finish quickly, so its performance is bound by the map-

pers. The slowest mappers will be those which read data

whose only replicas are on straggler nodes, and therefore

38 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Load Level VMs Write Perf (MB/s) Std Dev

1 VMs/host 5 52.1 13.7

2 VMs/host 6 20.9 2.7

4 VMs/host 4 10.1 1.1

Table 4: Local cluster disk performance: Write performance

vs. VMs per host on local cluster. The second column shows

how many VMs fell into each load level.

Load Level Hosts VMs

1 VMs/host 5 5

2 VMs/host 3 6

4 VMs/host 1 4

Total 9 15

Table 5: Load level mix in our heterogeneous local cluster.

they will be equally slow with LATE and native specula-

tion. In contrast, in jobs where reducers do more work,

maps are a smaller fraction of the total time, and LATE

has more opportunity to outperform Hadoop’s scheduler.

Nonetheless, speculation was helpful in all tests.

5.3 Local Testbed Experiments

In order to validate our results from EC2 in a more tightly

controlled environment, we also ran a local cluster of 9

physical hosts running Xen virtualization software [13].

Our machines were dual-processor, dual-core 2.2 GHz

Opteron processors with 4 GB of memory and a single

250GB SATA drive. On each physical machine, we ran

one to four virtual machines using Xen, giving each vir-

tual machine 768 MB of memory. While this environ-

ment is different from EC2, this appeared to be the most

natural way of splitting up the computing resources to

allow a large range of virtual machines per host (1-4).

5.3.1 Local I/O Performance Heterogeneity

We first performed a local version of the experiment de-

scribed in 5.1.1. We started a dd command in parallel

on each virtual machine which wrote 1GB of zeroes to

a file. We captured the timing of each dd command and

show the averaged results of 10 runs in Table 4. We saw

that average write performance ranged from 52.1 MB/s

for the isolated VMs to 10.1 MB/s for the 4 VMs that

shared a single physical host. We witnessed worse disk

I/O performance in our local cluster than on EC2 for the

co-located virtual machines because our local nodes each

have only a single hard disk, whereas in the worst case

on EC2, 8 VMs were contending for 4 disks.

Figure 7: Local Sort with heterogeneity: Worst, best and

average-case times for LATE against Hadoop’s scheduler and

no speculation.

Figure 8: Local Sort with stragglers: Worst, best and average-

case times for LATE against Hadoop’s scheduler and no spec-

ulation.

5.3.2 Local Scheduling Experiments

We next configured the local cluster in a heterogeneous

fashion to mimic a VM-to-physical-host mapping one

might see in a virtualized environment such as EC2. We

scaled the allocation to the size of the hardware we were

using, as shown in Table 5. We then ran the Hadoop

Sort benchmark on 64 MB of input data per node, for

5 runs. Figure 7 shows the results. On average, LATE

finished jobs 162% faster than Hadoop’s native sched-

uler and 104% faster than no speculation. The gain over

native speculation could be as high as 261%.

We also tested an environment with stragglers by run-

ning intensive background processes on two nodes. Fig-

ure 8 shows the results. On average, LATE finished jobs

53% faster than Hadoop’s native scheduler and 121%

faster than Hadoop with speculative execution disabled.

Finally, we also tested the WordCount workload in the

local environment with stragglers. The results are shown

in Figure 9. We see that LATE performs better on aver-

age than the competition, although as on EC2, the gain is

less due to the nature of the workload.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 39

Figure 9: Local WordCount with stragglers: Worst, best and

average-case times for LATE against Hadoop’s scheduler and

no speculation.

5.4 Sensitivity Analysis

To verify that LATE is not overly sensitive to the thresh-

olds defined in 4, we ran a sensitivity analysis comparing

performance at different values for the thresholds. For

this analysis, we chose to use a synthetic sleep work-

load, where each machine was deterministically ”slowed

down” by a different amount. The reason was that, by

this point, we had been moved out of the test cluster in

EC2 to the production environment, because the bug that

initially put is in the test cluster was fixed. In the pro-

duction environment, it was more difficult to slow down

machines with background load, because we could not

easily control VM colocation as we did in the test clus-

ter. Furthermore, there was a risk of other users’ traffic

causing unpredictable load. To reduce variance and en-

sure that the experiment is reproducible, we chose to run

a synthetic workload based on behavior observed in Sort.

Our job consisted of a fast 15-second map phase fol-

lowed by a slower reduce phase, motivated by the fact

that maps are much faster than reduces in the Sort job.

Maps in Sort only read data and bucket it, while reduces

merge and sort the output of multiple maps. Our job’s

reducers chose a sleep time t on each machine based on

a per-machine “slowdown factor”. They then slept 100

times for random periods between 0 and 2t, leading to

uneven but steady progress. The base sleep time was 0.7

seconds, for a total of 70s per reduce. We ran on 40 ma-

chines. The slowdown factors on most machines were 1

or 1.5 (to simulate small variations), but five machines

had a sleep factor of 3, and one had a sleep factor of 10,

simulating a faulty node.

One flaw in our sensitivity experiments is that the

sleep workload does not penalize the scheduler for

launching too many speculative tasks, because sleep

tasks do not compete for disk and network bandwidth.

Nonetheless, we chose this job to make results repro-

Figure 10: Performance versus SpeculativeCap.

ducible. To check that we are not launching too many

speculative tasks, we measured the time spent in killed

tasks in each test. We also compared LATE to Hadoop’s

native scheduler and saw that LATE wasted less time

speculating while achieving faster response times.

5.4.1 Sensitivity to SpeculativeCap

We started by varying SpeculativeCap, that is, the per-

centage of slots that can be used for speculative tasks

at any given time. We kept the other two thresh-

olds, SlowTaskThreshold and SlowNodeThreshold,

at 25%, which was a well-performing value, as we shall

see later. We ran experiments at six SpeculativeCap

values from 2.5% to 100%, repeating each one 5 times.

Figure 10 shows the results, with error bars for standard

deviations. We plot two metrics on this figure: the re-

sponse time, and the amount of wasted time per node,

which we define as the total compute time spent in tasks

that will eventually be killed (either because they are

overtaken by a speculative task, or because an original

task finishes before its speculative copy).

We see that response time drops sharply at

SpeculativeCap = 20%, after which it stays low.

Thus we postulate that any value of SpeculativeCap

beyond some minimum threshold needed to specula-

tively re-execute the severe stragglers will be adequate,

as LATE will prioritize the slowest stragglers first.

Of course, a higher threshold value is undesirable

because LATE wastes more time on excess speculation.

However, we see that the amount of wasted time does

not grow rapidly, so there is a wide operating range. It is

also interesting to note that at a low threshold of 10%,

we have more wasted time than at 20%, because while

fewer speculative tasks are launched, the job runs longer,

so more time is wasted in tasks that eventually get killed.

As a sanity check, we also ran Hadoop with native

40 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 11: Performance versus SlowTaskThreshold.

speculation and with no speculation. Native speculation

had a response time of 247s (std dev 22s), and wasted

time of 35s/node (std dev 16s), both of which are worse

than LATE with SlowCapThreshold = 20%. No spec-

ulation had an average response time of 745s (about

10 × 70s, as expected) and, of course, 0 wasted time.

Finally, we note that the optimal value for

SpeculativeCap in these sensitivity experiments,

20%, was larger than the value we used in our eval-

uation on EC2, 10%. The 10% threshold probably

performed poorly in the sensitivity experiment because

6 out of our 40 nodes, or about 15%, were slow (by

3x or 10x). Unfortunately, it was too late for us to

re-run our EC2 test cluster experiments with other

values of SpeculativeCap, because we no longer had

access to the test cluster. Nonetheless, we believe that

performance in those experiments could only have

gotten better with a larger SpeculativeCap, because

the sensitivity results presented here show that after

some minimum threshold, response time stays low and

wasted work does not increase greatly. It is also possible

that there were few enough stragglers in the large-scale

experiments that a 10% cap was already high enough.

5.4.2 Sensitivity to SlowTaskThreshold

SlowTaskThreshold is the percentile of progress rate

below which a task must lie to be considered for specula-

tion (e.g. slowest 5%). The idea is to avoid wasted work

by not speculating tasks that are progressing fast when

they are the only non-speculated tasks left. For our tests

varying this threshold, we set SpeculativeCap to the

best value from the previous experiment, 20%, and set

SlowNodeThreshold to 25%, a well-performing value.

We tested 6 values of SlowTaskThreshold, from 5%

to 100%. Figure 11 shows the results. We see again that

while small threshold values harmfully limit the number

Figure 12: Performance versus SlowNodeThreshold.

of speculative tasks, values past 25% all work well.

5.4.3 Sensitivity to SlowNodeThreshold

SlowNodeThreshold is the percentile of speed below

which a node will be considered too slow for LATE to

launch speculative tasks on. This value is important be-

cause it protects LATE against launching a speculative

task on a node that is slow but happens to have a free

slot when LATE needs to make a scheduling decision.

Launching such a task is wasteful and also means that we

cannot re-speculate that task on any other node, because

we allow only one speculative copy of each task to run

at any time. Unfortunately, our sleep workload did not

present any cases in which SlowNodeThreshold was

necessary for good performance. This happened because

the slowest nodes (3x and 10x slower than the rest) were

so slow that they never finished their tasks by the time the

job completed, so they were never considered for running

speculative tasks.

Nonetheless, it is easy to construct scenarios where

SlowNodeThreshold makes a difference. For exam-

ple, suppose we had 10 fast nodes that could run tasks in

1 minute, one node X that takes 2.9 minutes to run a task,

and one node Y that takes 10 minutes to ran a task. Sup-

posed we launched a job with 32 tasks. During the first

two minutes, each of the fast nodes would run 2 tasks and

be assigned a third. Then, at time 2.9, node X would fin-

ish, and there would be no non-speculative task to give it,

so it would be assigned a speculative copy of the task on

node Y. The job as a whole would finish at time 5.8, when

X finishes this speculative task. In contrast, if we waited

0.1 more minutes and assigned the speculative task to a

fast node, we would finish at time 4, which is 45% faster.

This is why we included SlowNodeThreshold in our

algorithm. As long as the threshold is high enough that

the very slow nodes fall below it, LATE will make rea-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 41

sonable decisions. Therefore we ran our evaluation with

a value of 25%, expecting that fewer than 25% of nodes

in a realistic environment will be severe stragglers.

For completeness, Figure 12 shows the results of vary-

ing SlowNodeThreshold from 5% to 50% while fixing

SpeculativeCap = 20% and SlowTaskThreshold =

25%. As noted, the threshold has no significant effect on

performance. However, it is comforting to see that the

very high threshold of 50% did not lead to a decrease in

performance by unnecessarily limiting the set of nodes

we can run speculative tasks on. This further supports

the argument that, as long as SlowNodeThreshold is

higher than the fraction of nodes that are extremely slow

or faulty, LATE performs well.

6 Discussion

Our work is motivated by two trends: increased inter-

est from a variety of organizations in large-scale data-

intensive computing, spurred by decreased storage costs

and availability of open-source frameworks like Hadoop,

and the advent of virtualized data centers, exemplified

by Amazon’s Elastic Compute Cloud. We believe that

both trends will continue. Now that MapReduce has be-

come a well-known technique, more and more organi-

zations are starting to use it. For example, Facebook,

a relatively young web company, has built a 300-node

data warehouse using Hadoop in the past two years [14].

Many other companies and research groups are also us-

ing Hadoop [5, 6]. EC2 also growing in popularity. It

powers a number of startup companies, and it has en-

abled established organizations to rent capacity by the

hour for running large computations [17]. Utility com-

puting is also attractive to researchers, because it en-

ables them to run scalability experiments without hav-

ing to own large numbers of machines, as we did in

our paper. Services like EC2 also level the playing field

between research institutions by reducing infrastructure

costs. Finally, even without utility computing motivat-

ing our work, heterogeneity will be a problem in private

data centers as multiple generations of hardware accu-

mulate and virtualization starts being used for manage-

ment and consolidation. These factors mean that dealing

with stragglers in MapReduce-like workloads will be an

increasingly important problem.

Although selecting speculative tasks initially seems

like a simple problem, we have shown that it is surpris-

ingly subtle. First, simple thresholds, such as Hadoop’s

20% progress rule, can fail in spectacular ways (see Sec-

tion 3.2) when there is more heterogeneity than expected.

Other work on identifying slow tasks, such as [15], sug-

gests using the mean and the variance of the progress rate

to set a threshold, which seems like a more reasonable

approach. However, even here there is a problem: iden-

tifying slow tasks eventually is not enough. What mat-

ters is identifying the tasks that will hurt response time

the most, and doing so as early as possible. Identifying

a task as a laggard when it has run for more than two

standard deviations than the mean is not very helpful for

reducing response time: by this time, the job could have

already run 3x longer than it should have! For this rea-

son, LATE is based on estimated time left, and can detect

the slow task early on. A few other elements, such as

a cap on speculative tasks, ensure reasonable behavior.

Through our experience with Hadoop, we have gained

substantial insight into the implications of heterogeneity

on distributed applications. We take away four lessons:

1. Make decisions early, rather than waiting to base

decisions on measurements of mean and variance.

2. Use finishing times, not progress rates, to prioritize

among tasks to speculate.

3. Nodes are not equal. Avoid assigning speculative

tasks to slow nodes.

4. Resources are precious. Caps should be used to

guard against overloading the system.

7 Related Work

MapReduce was described architecturally and evaluated

for end-to-end performance in [1]. However, [1] only

briefly discusses speculative execution and does not ex-

plore the algorithms involved in speculative execution

nor the implications of highly variable node perfor-

mance. Our work provides a detailed look at the problem

of speculative execution, motivated by the challenges we

observed in heterogeneous environments.

Much work has been done on the problem of schedul-

ing policies for task assignment to hosts in distributed

systems [18, 19]. However, this previous work deals with

scheduling independent tasks among a set of servers,

such as web servers answering HTTP requests. The goal

is to achieve good response time for the average task, and

the challenge is that task sizes may be heterogeneous. In

contrast, our work deals with improving response time

for a job consisting of multiple tasks, and our challenge

is that node speeds may be heterogeneous.

Our work is also related to multiprocessor task

scheduling with processor heterogeneity [20] and with

task duplication when using dependency graphs [21].

Our work differs significantly from this literature be-

cause we focus on an environment where node speeds are

unknown and vary over time, and where tasks are shared-

nothing. Multiprocessor task scheduling work focuses

on environments where processor speeds, although het-

erogeneous, are known in advance, and tasks are highly

interdependent due to intertask communication. This

42 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

means that, in the multiprocessor setting, it is both pos-

sible and necessary to plan task assignments in advance,

whereas in MapReduce, the scheduler must react dynam-

ically to conditions in the environment.

Speculative execution in MapReduce shares some

ideas with “speculative execution” in distributed file sys-

tems [11], configuration management [22], and informa-

tion gathering [23]. However, while this literature is fo-

cused on guessing along decision branches, LATE fo-

cuses on guessing which running tasks can be overtaken

to reduce the response time of a distributed computation.

Finally, DataSynapse, Inc. holds a patent which de-

tails speculative execution for scheduling in a distributed

computing platform [15]. The patent proposes using

mean speed, normalized mean, standard deviation, and

fraction of waiting versus pending tasks associated with

each active job to detect slow tasks. However, as dis-

cussed in Section 6, detecting slow tasks eventually is

not sufficient for a good response time. LATE identifies

the tasks that will hurt response time the most, and does

so as early as possible, rather than waiting until a mean

and standard deviation can be computed with confidence.

8 Conclusion

Motivated by the real-world problem of node hetero-

geneity, we have analyzed the problem of speculative ex-

ecution in MapReduce. We identified flaws with both

the particular threshold-based scheduling algorithm in

Hadoop and with progress-rate-based algorithms in gen-

eral. We designed a simple, robust scheduling algorithm,

LATE, which uses estimated finish times to speculatively

execute the tasks that hurt the response time the most.

LATE performs significantly better than Hadoop’s de-

fault speculative execution algorithm in real workloads

on Amazon’s Elastic Compute Cloud.

9 Acknowledgments

We would like to thank Michael Armbrust, Rodrigo Fon-

seca, George Porter, David Patterson, Armando Fox, and

our industrial contacts at Yahoo!, Facebook and Ama-

zon for their help with this work. We are also grate-

ful to our shepherd, Marvin Theimer, for his feedback.

This research was supported by California MICRO, Cal-

ifornia Discovery, the Natural Sciences and Engineer-

ing Research Council of Canada, as well as the follow-

ing Berkeley Reliable Adaptive Distributed systems lab

sponsors: Sun, Google, Microsoft, HP, Cisco, Oracle,

IBM, NetApp, Fujitsu, VMWare, Siemens, Amazon and

Facebook.

References

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In Communications of the

ACM, 51 (1): 107-113, 2008.
[2] Hadoop, http://lucene.apache.org/hadoop
[3] Amazon Elastic Compute Cloud, http://aws.

amazon.com/ec2

[4] Yahoo! Launches World’s Largest Hadoop Production

Application, http://tinyurl.com/2hgzv7
[5] Applications powered by Hadoop: http://wiki.

apache.org/hadoop/PoweredBy

[6] Presentations by S. Schlosser and J. Lin at the 2008

Hadoop Summit. tinyurl.com/4a6lza
[7] D. Gottfrid, Self-service, Prorated Super Computing

Fun, New York Times Blog, tinyurl.com/2pjh5n
[8] Figure from slide deck on MapReduce from Google aca-

demic cluster, tinyurl.com/4zl6f5. Available un-

der Creative Commons Attribution 2.5 License.
[9] R. Pike, S. Dorward, R. Griesemer, S. Quinlan. Interpret-

ing the Data: Parallel Analysis with Sawzall, Scientific

Programming Journal, 13 (4): 227-298, Oct. 2005.
[10] C. Olston, B. Reed, U. Srivastava, R. Kumar and A.

Tomkins. Pig Latin: A Not-So-Foreign Language for

Data Processing. ACM SIGMOD 2008, June 2008.
[11] E.B. Nightingale, P.M. Chen, and J.Flinn. Speculative

execution in a distributed file system. ACM Trans. Com-

put. Syst., 24 (4): 361-392, November 2006.
[12] Amazon EC2 Instance Types, tinyurl.com/

3zjlrd

[13] B.Dragovic, K.Fraser, S.Hand, T.Harris, A.Ho, I.Pratt,

A.Warfield, P.Barham, and R.Neugebauer. Xen and the

art of virtualization. ACM SOSP 2003.
[14] Personal communication with the Yahoo! Hadoop team

and with Joydeep Sen Sarma from Facebook.
[15] J. Bernardin, P. Lee, J. Lewis, DataSynapse, Inc. Using

Execution statistics to select tasks for redundant assign-

ment in a distributed computing platform. Patent number

7093004, filed Nov 27, 2002, issued Aug 15, 2006.
[16] G. E. Blelloch, L. Dagum, S. J. Smith, K. Thearling,

M. Zagha. An evaluation of sorting as a supercomputer

benchmark. NASA Technical Reports, Jan 1993.
[17] EC2 Case Studies, tinyurl.com/46vyut
[18] Mor Harchol-Balter, Task Assignment with Unknown

Duration. Journal of the ACM, 49 (2): 260-288, 2002.
[19] M.Crovella, M.Harchol-Balter, and C.D. Murta. Task

assignment in a distributed system: Improving perfor-

mance by unbalancing load. In Measurement and Mod-

eling of Computer Systems, pp. 268-269, 1998.
[20] B.Ucar, C.Aykanat, K.Kaya, and M.Ikinci. Task assign-

ment in heterogeneous computing systems. J. of Parallel

and Distributed Computing, 66 (1): 32-46, Jan 2006.
[21] S.Manoharan. Effect of task duplication on the assign-

ment of dependency graphs. Parallel Comput., 27 (3):

257-268, 2001.
[22] Y. Su, M. Attariyan, J. Flinn AutoBash: improving con-

figuration management with operating system causality

analysis. ACM SOSP 2007.
[23] G. Barish. Speculative plan execution for information

agents. PhD dissertation, University of Southernt Cali-

fornia. Dec 2003

