
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 267

Finding and Reproducing Heisenbugs in Concurrent Programs

Madanlal Musuvathi
Microsoft Research

Shaz Qadeer
Microsoft Research

Thomas Ball
Microsoft Research

Gerard Basler
ETH Zurich

Piramanayagam Arumuga Nainar
University of Wisconsin, Madison

Iulian Neamtiu
University of California, Riverside

Abstract

Concurrency is pervasive in large systems. Unexpected
interference among threads often results in “Heisenbugs”
that are extremely difficult to reproduce and eliminate.
We have implemented a tool called CHESS for finding
and reproducing such bugs. When attached to a program,
CHESS takes control of thread scheduling and uses ef-
ficient search techniques to drive the program through
possible thread interleavings. This systematic explo-
ration of program behavior enables CHESS to quickly
uncover bugs that might otherwise have remained hid-
den for a long time. For each bug, CHESS consistently
reproduces an erroneous execution manifesting the bug,
thereby making it significantly easier to debug the prob-
lem. CHESS scales to large concurrent programs and
has found numerous bugs in existing systems that had
been tested extensively prior to being tested by CHESS.
CHESS has been integrated into the test frameworks of
many code bases inside Microsoft and is used by testers
on a daily basis.

1 Introduction

Building concurrent systems is hard. Subtle interactions
among threads and the timing of asynchronous events
can result in concurrency errors that are hard to find,
reproduce, and debug. Stories are legend of so-called
“Heisenbugs” [18] that occasionally surface in systems
that have otherwise been running reliably for months.
Slight changes to a program, such as the addition of
debugging statements, sometimes drastically reduce the
likelihood of erroneous interleavings, adding frustration
to the debugging process.

The main contribution of this paper is a new tool called
CHESS for systematic and deterministic testing of con-
current programs. When attached to a concurrent pro-
gram, CHESS takes complete control over the scheduling
of threads and asynchronous events, thereby capturing

all the interleaving nondeterminism in the program. This
provides two important benefits. First, if an execution re-
sults in an error, CHESS has the capability to reproduce
the erroneous thread interleaving. This substantially im-
proves the debugging experience. Second, CHESS uses
systematic enumeration techniques [10, 37, 17, 31, 45,
22] to force every run of the program along a differ-
ent thread interleaving. Such a systematic exploration
greatly increases the chances of finding errors in exist-
ing tests. More importantly, there is no longer a need
to artificially “stress” the system, such as increasing the
number of threads, in order to get interleaving coverage
— a common and recommended practice in testing con-
current systems. As a result, CHESS can find in simple
configurations errors that would otherwise only show up
in more complex configurations.

To build a systematic testing tool for real-world con-
current programs, several challenges must be addressed.
First, such a tool should avoid perturbing the system un-
der test, and be able to test the code as is. Testers often do
not have the luxury of changing code. More importantly,
whenever code is changed for the benefit of testing, the
deployed bits are not being tested. Similarly, we cannot
change the operating system or expect testers to run their
programs in a specialized virtual machine. Therefore,
testing tools should easily integrate with existing test in-
frastructure with no modification to the system under test
and little modification to the test harness.

Second, a systematic testing tool must accomplish the
nontrivial task of capturing and exploring all interleaving
nondeterminism. Concurrency is enabled in most sys-
tems via complex concurrency APIs. For instance, the
Win32 API [30] used by most user-mode Windows pro-
grams contains more than 200 threading and synchro-
nization functions, many with different options and pa-
rameters. The tool must understand the precise seman-
tics of these functions to capture and explore the nonde-
terminism inherent in them. Failure to do so may result
in lack of reproducibility and the introduction of false

268 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

behaviors.
Finally, a systematic testing tool must explore the

space of thread interleavings intelligently, as the set of
interleavings grows exponentially with the number of
threads and the number of steps executed by each thread.
To effectively search large state spaces, a testing tool
must not only reduce the search space by avoiding re-
dundant search [16] but also prioritize the search towards
potentially erroneous interleavings [32].

The CHESS tool addresses the aforementioned chal-
lenges with a suite of innovative techniques. The only
perturbation introduced by CHESS is a thin wrapper
layer, introduced with binary instrumentation, between
the program under test and the concurrency API (Fig-
ure 1). This layer allows CHESS to capture and explore
the nondeterminism inherent in the API. We have devel-
oped a methodology for writing wrappers that provides
enough hooks to CHESS to control the thread scheduling
without changing the semantics of the API functions and
without modifying the underlying OS, the API imple-
mentation, or the system under test. We are also able to
map complex synchronization primitives into simpler op-
erations that greatly simplify the process of writing these
wrappers. We have validated our methodology by build-
ing wrappers for three different platforms—Win32 [30],
.NET [29], and Singularity [19].

CHESS uses a variety of techniques to address the
state-explosion problem inherent in analyzing concurrent
programs. The CHESS scheduler is non-preemptive by
default, giving it the ability to execute large bodies of
code atomically. Of course, a non-preemptive scheduler
will not model the behavior that a real scheduler may
preempt a thread at just about any point in its execu-
tion. Pragmatically, CHESS explores thread schedules
giving priority to schedules with fewer preemptions. The
intuition behind this search strategy, called preemption
bounding [32], is that many bugs are exposed in mul-
tithreaded programs by a few preemptions occurring in
particular places in program execution. To scale to large
systems, we improve upon preemption bounding in sev-
eral important ways. First, in addition to introducing
preemptions at calls to synchronization primitives in the
concurrency API, we also allow preemptions at accesses
to volatile variables that participate in a data race. Sec-
ond, we provide the ability to control the components to
which preemptions are added (and conversely the com-
ponents which are treated atomically). This is critical for
trusted libraries that are known to be thread-safe.

Today, CHESS works on three platforms and has been
integrated into the test frameworks of several product
teams. CHESS has been used to find numerous bugs, of
which more than half were found by Microsoft testers—
people other than the authors of this paper. We empha-
size this point because there is a huge difference between

the robustness and usability of a tool that researchers ap-
ply to a code base of their choice and a tool that has
been released “into the wild” to be used daily by testers.
CHESS has made this transition successfully. We have
reproduced all stress test crashes reported to us so far;
as an additional benefit, these crashes were reproduced
in small configurations, thereby greatly reducing the de-
bugging effort. Furthermore, we have demonstrated that
CHESS scales to large code bases. It has been applied to
Dryad, a distributed execution engine for coarse-grained
data-parallel applications [21] and Singularity, a research
operating system [19].

To summarize, the main contributions of this paper are
the following:

• a tool for taking control of scheduling through API-
level shimming, allowing the systematic testing of
concurrent programs with minimal perturbation;

• techniques for systematic exploration of systems
code for fine-grained concurrency with shared
memory and multithreading;

• validation of the tool and its architecture and wrap-
per methodology on three different platforms;

• demonstrating that the tool can find a substantial
number of previously unknown bugs, even in well-
tested systems;

• the ability to consistently reproduce crashing bugs
with unknown cause.

The paper is organized as follows. Section 2 gives an
example of how we used CHESS to quickly reproduce
a Heisenbug in production code. Section 3 explains the
design decisions behind the CHESS scheduler, its basic
abstractions, and the wrappers that allow CHESS to ef-
fectively control interleaving nondeterminism. Section 4
describes the search strategies that CHESS employs in
order to systematically test a concurrent program. Sec-
tion 5 provides an experimental evaluation of CHESS on
several concurrent systems from Microsoft. Finally, sec-
tion 6 reviews related work.

2 Example

In this section, we describe how we used CHESS to deter-
ministically reproduce a Heisenbug in CCR [8], a .NET
library for efficient asynchronous concurrent program-
ming. The code is a client of .NET’s System.Threading
library, from which it primarily uses monitors, events,
and interlocked operations.

The creator of the library reported that a nightly test
run had failed. The entire test run consists of many

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 269

Win32
Program

Win32 CHESS

.NET
Program

CLR
Replay happens-before graph

CHESS
search
module

Win32 library /
Windows OS

Win32
wrappers

CHESS
scheduler

CLR

CLR
wrappers Record happens-before graph

Figure 1: CHESS architecture

smaller unit concurrency tests, each testing some concur-
rency scenario and each repeatedly executed hundreds to
millions of times. The failing test (which did not termi-
nate) previously had not failed for many months, indicat-
ing the possibility of a rare race condition.

Our first step was to isolate the offending unit test,
which was simply a matter of commenting out the other
(passing) tests. The offending test was run several hun-
dred times by the test harness. We changed the harness
so it ran the test just once, since CHESS will perform the
task of running the test repeatedly anyway. Apart from
this change, we did not make any other changes to the
test. The entire process took less than thirty minutes, in-
cluding the time to understand the test framework. As
expected, when we ran the modified test repeatedly un-
der the control of the .NET CLR scheduler, it always ter-
minated with success.

We first ran the test under CHESS. In just over
twenty seconds, CHESS reported a deadlock after ex-
ploring 6737 different thread interleavings. It is worth
noting that running CHESS a second time produces ex-
actly the same result (deadlock after 6737 interleavings),
as the CHESS search strategy is deterministic. However,
by simply telling CHESS to use the last recorded inter-
leaving, written out to disk during the execution, CHESS

reproduces the deadlock scenario immediately.
We then ran CHESS on the offending schedule under

the control of a standard debugger. When CHESS is in
control of thread scheduling, it executes the schedule
one thread at a time; consequently, single-stepping in the
debugger was completely predictable (which is not true
in general for a multithreaded program). Furthermore,
CHESS provides hooks that allow us to run a thread till it
gets preempted. By examining these preemption points,
we easily identified the source of the bug, described be-
low.

In this program, the worker threads communicate with
each other by exchanging tasks through CCR ports [8], a
generic message-passing mechanism in CCR. The bug is
due to a race condition in the implementation of a two-

phase commit protocol required to atomically process a
set of tasks belonging to a port. The bug manifests when
a worker A registers to process a set of tasks in a port
while a worker B cancels all the tasks in the port. In the
erroneous schedule, worker A is preempted after it suc-
cessfully registers on the port, but before it receives the
tasks in the port. Worker B proceeds with the cancel-
lation but gets preempted after processing the first task.
However, the code fails to set an important field in the
port to indicate that cancellation is in progress. As a re-
sult, when worker A resumes, it erroneously proceeds to
process both tasks, violating the atomicity of the cancel-
lation. This violation results in an exception that leads to
a deadlock.

To summarize, with CHESS we were able to reproduce
in thirty seconds a Heisenbug that appeared just once in
months of testing of a fairly robust concurrency library.
This bug requires a specific interleaving between two
threads when accessing a port with two or more tasks.
Without CHESS, such a complicated concurrency error
would have taken several days to weeks to consistently
reproduce and debug. It took one of the authors less than
an hour to integrate CHESS with the existing test frame-
work, isolate the test that failed from a larger test suite,
and deterministically reproduce the Heisenbug. In ad-
dition to successfully reproducing many such stress-test
crashes, CHESS has also found new concurrency errors
in existing, unfailing stress tests.

3 The CHESS scheduler

This section describes the CHESS scheduler and explains
how it obtains control over the scheduling of all concur-
rent activity in a program.

Execution of a concurrent program is highly nonde-
terministic. We distinguish between two classes of non-
determinism — input and interleaving nondeterminism.
The former consists of values provided by the environ-
ment that can affect the program execution. For a user-
mode program, this consists of return values of all system

270 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

calls and the state of memory when the program starts.
Interleaving nondeterminism includes the interleaving of
threads running concurrently on a multi-processor and
the timing of events such as preemptions, asynchronous
callbacks, and timers.

The primary goal of the CHESS scheduler is to cap-
ture all the nondeterminism during a program execution.
This allows the scheduler to later reproduce a chosen
concurrent execution by replaying these nondeterminis-
tic choices. Another equally important goal is to expose
these nondeterministic choices to a search engine that
can systematically enumerate possible executions of a
concurrent program. As a concrete example, consider
two threads that are blocked on a lock that is currently
unavailable. On a subsequent release, the lock imple-
mentation is allowed to wake up any of the two blocked
threads. Capturing this nondeterminism involves logging
which thread was woken up by the system and ensuring
that the same happens on a subsequent replay. Exposing
this nondeterminism involves notifying the search engine
about the two choices available, thereby allowing the en-
gine to explore both possible futures.

Capturing and exposing all nondeterministic choices
is a nontrivial task. Programs use a large number of con-
currency primitives and system calls. The CHESS sched-
uler needs to understand the semantics of these functions
accurately. Failing to capture some nondeterminism can
impede CHESS’ ability to replay an execution. Similarly,
failing to expose nondeterminism can reduce the cover-
age achieved by CHESS and possibly reduce the number
of bugs found. On the other hand, the scheduler has to
be careful to not introduce new behaviors that are oth-
erwise not possible in the program. Any such perturba-
tion can result in false error reports that drastically re-
duce the usability of the tool. Also, the scheduler should
not adversely slow the execution of the program. Any
slowdown directly affects the number of interleavings
CHESS can explore in a given amount of time. Finally,
the techniques used to implement the scheduler should
allow CHESS to be easily integrated with existing test
frameworks. In particular, requiring the program to run
under a modified kernel or a specialized virtual machine
is not acceptable.

The rest of this section describes how CHESS ad-
dresses the aforementioned challenges. We first describe
how CHESS handles input nondeterminism in the next
subsection and focus on interleaving nondeterminism in
following subsections.

3.1 Handling input nondeterminism

Handling input nondeterminism is necessary for deter-
ministic replay. The standard technique for dealing with
input nondeterminism involves log and replay [44, 13,

3, 23, 14, 27]. In CHESS, we decided not to implement
a complete log and replay mechanism, and shifted the
onus of generating deterministic inputs to the user. Most
test frameworks already run in a controlled environment,
which clean up the state of the memory, the disk, and the
network between test runs. We considered the overhead
of an elaborate log and replay mechanism unnecessary
and expensive in this setting. By using these cleanup
functions, CHESS ensures that every run of the program
runs from the same initial state.

On the other hand, the scheduler logs and replays in-
put values that are not easily controlled by the user, in-
cluding functions that read the current time, query the
process or thread ids, and generate random numbers. In
addition, the scheduler logs and replays any error values
returned from system calls. For instance, the scheduler
logs the error value returned when a call to read a file
fails. However, when the call succeeds CHESS does not
log the contents of the file read. While such a log and
replay mechanism is easier to implement, it cannot guar-
antee deterministic replay in all cases. Section 4.2 de-
scribes how the search recovers from any unhandled in-
put nondeterminism at the cost of search coverage. Also,
CHESS can be easily combined with tools that guarantee
deterministic replay of inputs.

3.2 Choosing the right abstraction layer

A program typically uses concurrency primitives pro-
vided by different abstraction layers in the system. For
Win32 programs, primitives such as locks and thread-
pools are implemented in a user-mode library. Threading
and blocking primitives are implemented in the Windows
kernel. In addition, a program can use primitives, such as
interlocked operations, that are directly provided by the
hardware.

The scheduler is implemented by redirecting calls to
concurrency primitives to alternate implementations pro-
vided in a “wrapper” library (Figure 1). These alternate
implementations need to sufficiently understand the se-
mantics of these primitives in order to capture and ex-
pose the nondeterminism in them. For complex primi-
tives, an acceptable design choice is to include an im-
plementation of these primitives as part of the program.
For example, if a user-mode library implements locks,
the scheduler can treat this library as part of the program
under test. Now, the scheduler only needs to understand
the simpler system primitives that the lock implemen-
tation uses. While this choice makes the scheduler im-
plementation easier, it also prevents the scheduler from
exposing all the nondeterminism in the lock implemen-
tation. For instance, the library could implement a par-
ticular queuing policy that determines the order in which
threads acquire locks. Including this implementation as

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 271

part of the program prevents the scheduler from emulat-
ing other queuing policies that future versions of this li-
brary might implement. In the extreme, one can include
the entire operating system with the program and imple-
ment the scheduler at the virtual machine monitor layer.
While this choice might be acceptable for a replay tool
like ReVirt [13], it is unacceptable for CHESS because
such a scheduler cannot interleave the set of all enabled
threads in the program. Rather, it can interleave only
those threads that are simultaneously scheduled by the
operating system scheduler.

In CHESS, we implement the scheduler for well-
documented, standard APIs such as WIN32 and .NET’s
System.Threading. While these APIs are complex, the
work involved in building the scheduler can be reused
across many programs.

3.3 The happens-before graph

To simplify the scheduler implementation, we abstract
the execution of the concurrent program using Lamport’s
happens-before graph [24]. Intuitively, this graph cap-
tures the relative execution order of the threads in a con-
current execution. Nodes in this graph represent instruc-
tions executed by threads in the system. Edges in the
graph form a partial-order that determine the execution
order of these instructions. Building the happens-before
graph has two important benefits. First, it provides a
common framework for reasoning about all the different
synchronization primitives used by a program. Second,
the happens-before graph abstracts the timing of instruc-
tions in the execution. Two executions that result in the
same happens-before graph but otherwise execute at dif-
ferent speeds are behaviorally equivalent. In particular,
CHESS can reproduce a particular execution by running
the program again on the same inputs and enforcing the
same happens-before graph as the original execution.

Each node in the happens-before graph is annotated
with a triple—a task, a synchronization variable, and an
operation. A task, in most cases, corresponds to the
thread executing an instruction. But other schedulable
entities, such as threadpool work items, asynchronous
callbacks, and timer callbacks are also mapped as tasks.
While such entities could possibly execute under the con-
text of the same thread, the CHESS scheduler treats them
as logically independent tasks. A synchronization vari-
able represents a resource used by the tasks for synchro-
nizing and communicating with each other, e.g., locks,
semaphores, variables accessed using atomic operations,
and queues. A fresh synchronization variable is created
for a resource the first time it is accessed.

Each resource, depending on its type, allows a set of
operations with potentially complex semantics. How-
ever, CHESS only needs to understand two bits of infor-

mation, isWrite and isRelease, for each of these
operations. The bit isWrite is used to encode the
edges in the happens-before graph of the execution. In-
tuitively, this bit is true for those operations that change
the state of the resource being accessed. If this bit is
true for a node n, then two sets of happens-before edges
are created: (1) edges to n from all preceding nodes la-
beled with the same synchronization variable as n, and
(2) edges from n to all subsequent nodes labeled with
the same synchronization variable as n.

The bit isRelease is true for those operations that
unblock tasks waiting on the resource being accessed.
The search module in CHESS needs to know the set of
enabled tasks at any point in the execution. To maintain
this information efficiently, CHESS not only maintains
the set of enabled tasks but also the set of tasks waiting
for each resource. Upon the execution of an operation
whose isRelease bit is true, CHESS adds these wait-
ing tasks to the set of enabled tasks.

For example, a CriticalSection resource
provided by WIN32 allows three operations—
EnterCriticalSection, ReleaseCritical-
Section, and TryEnterCriticalSection.
The isWrite bit is true only for the first two
operations and for the last operation whenever it
succeeds. The isRelease bit is true only for
ReleaseCriticalSection.

Next, we describe how the CHESS scheduler cap-
tures the happens-before graph of a concurrent execu-
tion. We distinguish between two kinds of inter-thread
communication that create edges in the graph. Sec-
tion 3.4 describes how the scheduler captures commu-
nication through synchronization operations, while Sec-
tion 3.5 describes how the scheduler addresses commu-
nication through shared memory.

3.4 Capturing the happens-before graph

During the program execution, CHESS redirects all calls
to synchronization operations to a library of wrappers as
shown in Figure 1. These wrappers capture sufficient se-
mantics of the concurrency API to provide the abstrac-
tion described in Section 3.3 to CHESS. To create this
abstraction, the wrappers must: (1) determine whether a
task may be disabled by executing a potentially blocking
API call, (2) label each call to the API with an appro-
priate triple of task, synchronization variable, and op-
eration, and (3) inform the CHESS scheduler about the
creation and termination of a task. Ideally, in order to
minimize perturbation to the system, we would like to
meet these three goals without reimplementing the API.
To achieve these goals, CHESS maintains state variables
for the currently-executing task, the mapping from re-
source handles to synchronization variables, the set of

272 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

enabled threads, and the set of threads waiting on each
synchronization variable.

Achieving the first goal requires knowing which
API functions can potentially block. We have ob-
served that all such functions invariably have a non-
blocking “try” version that indicates the non-availability
of the resource using a return value. For ex-
ample, if the critical section cs is not available,
then EnterCriticalSection(cs)blocks whereas
TryEnterCriticalSection returns false. The
wrapper for a blocking function calls the “try” version
first, and if this call fails (as indicated by the appropriate
return value), then it adds the currently-executing task to
the set of tasks waiting on this resource and removes it
from the set of enabled tasks. Later, when a release op-
eration is performed on this resource, each task in the set
of waiting tasks is moved to the set of enabled tasks.

For the second goal, creating the task and synchroniza-
tion variable for a particular API call is easily done using
the state maintained by CHESS. The first element of the
triple is simply the currently-executing task. The second
element is obtained by looking up the address of the re-
source being accessed in the map from resource handles
to synchronization variables. Setting the isWrite and
isRelease bits in the third element of the triple re-
quires understanding the semantics of the API call. Note
that this understanding does not have to be precise; when
in doubt it is always correct, at the cost of efficiency, to
set either of those bits to true. Conservatively setting
the isWrite bit to true only adds extra edges in the
happens-before graph of the execution, adversely affect-
ing the state-caching optimization described later (Sec-
tion 4.4.2). Conservatively setting the isRelease bit
to true might unnecessarily move all tasks waiting on
a resource to the set of enabled tasks. Later, when the
CHESS scheduler attempts to schedule these tasks, they
will be moved back into the set of waiting tasks, thus cre-
ating some wasteful work. This robustness in the design
of our scheduler is really important in practice because
the exact behavior of an API function is often unclear
from its English documentation. Also, this design allows
us to refine the wrappers gradually as our understanding
of a particular API improves.

For the third goal, it is important to identify the API
functions that can create fresh tasks. The most common
mechanism for the creation of a new task are functions
such as CreateThread and QueueUserWorkItem,
each of which takes a closure as input. While the for-
mer creates a new thread to execute the closure, the lat-
ter queues the closure to a threadpool which might po-
tentially multiplex many closures onto the same thread.
The CHESS wrappers for both of them are identical. The
wrapper first informs CHESS that a new task is being cre-
ated, creates another closure wrapping the input closure,

and then calls the real API function on the new closure.
The new closure simply brackets the old closure with
calls to the CHESS scheduler indicating the beginning
and the end of the task.

A task may be created when a timer is created using
CreateTimerQueueTimer. Timers are more com-
plicated for several reasons. First, a timer is expected
to start after a time period specified in the call to create
the timer. The CHESS scheduler abstracts real-time and
therefore creates a schedulable task immediately. We feel
this is justified because programs written for commodity
operating systems usually do not depend for their cor-
rectness on real-time guarantees. Second, a timer may
be periodic in which case it must execute repeatedly af-
ter each expiration of the time interval. Continuing our
strategy of abstracting away real-time, we handle peri-
odic timers by converting them into aperiodic timers ex-
ecuting the timer function in a loop. Finally, a timer may
be cancelled any time after it has been created. We han-
dle cancellation by introducing a canceled bit per timer.
This bit is checked just before the timer function starts
executing; the bit is checked once for an aperiodic timer
and repeatedly at the beginning of each loop iteration for
a periodic timer. If the bit is set, the timer task is termi-
nated.

In addition to the synchronization operations dis-
cussed above, CHESS also handles communication prim-
itives involving FIFO queues such as asynchronous pro-
cedure calls (APC) and IO completion ports. Each
WIN32 thread has a queue of APCs associated with it.
A thread can enqueue a closure to the queue of an-
other thread by using the function QueueUserAPC.
The APCs in the queue of a thread are executed when
the thread enters an alertable wait function such as
SleepEx. Since the operating system guarantees FIFO
execution of the APCs, it suffices for the wrappers to pass
on the call to the actual function. The treatment of IO
completion ports is similar again because the completion
packets in the queue associated with an IO completion
port are delivered in FIFO order.

Once the wrappers are defined, we use various mecha-
nisms to dynamically intercept calls to the real API func-
tions and forward them to the wrappers. For Win32
programs, we use DLL-shimming techniques to redi-
rect all calls to the synchronization library by overwrit-
ing the import address table of the program under test.
In addition, we use binary instrumentation to insert a
call to the wrapper before instructions that use hardware
synchronization mechanisms, such as interlocked oper-
ations. For .NET programs, we used an extended CLR
profiler [11] that replaces calls to API functions with
calls to the wrappers at JIT time. Finally, for the Sin-
gularity API, we use a static IL rewriter [1] to make the
modifications. Table 1 shows the complexity and the

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 273

API No. of wrappers LOC
Win32 134 2512
.NET 64 1270
Singularity 37 876

Table 1: Complexity of writing wrappers for the APIs.
The LOC does not count the boiler-plate code that is au-
tomatically generated from API specifications.

amount of effort required to write the wrappers.

3.5 Capturing data-races by single-
threaded execution

Most concurrent programs communicate through shared
memory and it is important to capture this communi-
cation in the happens-before graph of an execution. If
the program is data-race free, then any two conflicting
accesses to a shared memory location are ordered by
synchronization operations. In this case, the happens-
before graph of synchronization operations captured by
the wrappers, as described in Section 3.4, is sufficient to
order all accesses to shared memory.

Unfortunately, our experience suggests that most con-
current programs contain data-races, many of which are
intentional [46]. In this case, the happens-before graph
should include additional edges that determine the order
of racy accesses. Neglecting these edges may result in in-
ability to replay a given execution. One possible solution
is to use a dynamic data-race detection tool [46, 9] that
captures the outcome of each data-race at runtime. The
main disadvantage of this approach is the performance
overhead—current data-race detection slow the execu-
tion of the program by an order of magnitude. Therefore,
we considered this solution too expensive.

Instead, the CHESS scheduler controls the outcome of
data-races indirectly by enforcing single-threaded execu-
tion [13, 39, 25]. By enabling only one thread at a time,
CHESS ensures that two threads cannot concurrently ac-
cess memory locations. Hence, all data-races occur in
the order in which CHESS schedules the threads. While
this solves the replay problem, there are two potential
downsides of this approach. First, depending on the par-
allelism in the program, running one thread at a time can
slow down the execution of the program. However, this
lost performance can be recovered by running multiple
CHESS instances in parallel, each exploring a different
part of the interleaving state-space. We intend to explore
this promising idea in the future. Second, CHESS may
not be able to explore both of the possible outcomes of
a data-race. This loss of coverage can either result in
missed bugs or impact the ability of CHESS to reproduce
a Heisenbug that occurs in the wild. We address this

problem to an extent, by running the data-race detector
on the first few runs of CHESS and then instrumenting
the binary with calls to CHESS at the set of data-races
found in these runs. This trick has helped us to success-
fully reproduce all Heisenbugs reported to us (§5), our
most important criterian for the success of CHESS.

4 Exploring nondeterminism

The previous section describes how CHESS obtains con-
trol at scheduling points before the synchronization op-
erations of the program and how CHESS determines the
set of enabled threads at each scheduling point. This sec-
tion describes how CHESS systematically drives the test
along different schedules

4.1 Basic search operation

CHESS repeatedly executes the same test driving each it-
eration of the test through a different schedule. In each
iteration, the scheduler works in three phases: replay,
record, and search.

During replay, the scheduler replays a sequence of
scheduling choices from a trace file. This trace file is
empty in the first iteration, and contains a partial sched-
ule generated by the search phase from the previous it-
eration. Once replay is done, CHESS switches to the
record phase. In this phase, the scheduler behaves as
a fair, nonpreemptive scheduler. It schedules a thread
till the thread yields the processor either by completing
its execution, or blocking on a synchronization opera-
tion, or calling a yielding operation such as sleep().
On a yield, the scheduler picks the next thread to ex-
ecute based on priorities that the scheduler maintains to
guarantee fairness (§4.3). Also, the scheduler extends the
partial schedule in the trace file by recording the thread
scheduled at each schedule point together with the set
of threads enabled at each point. The latter provides the
set of choices that are available but not taken in this test
iteration.

When the test terminates, the scheduler switches to
the search phase. In this phase, the scheduler uses the
enabled information at each schedule point to determine
the schedule for the next iteration. Picking the next in-
teresting schedule among the myriad choices available is
a challenging problem, and the algorithms in this phase
are the most complicated and computationally expensive
components of CHESS (§4.4).

The subsequent three subsections describe the key
challenges in each of the three phases.

274 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.2 Dealing with imperfect replay

Unlike stateful model checkers [43, 31] that are able to
checkpoint and restore program state, CHESS relies on
its ability to replay a test iteration from the beginning to
bring a program to particular state. As has been amply
demonstrated in previous work [13, 23, 27, 4], perfect
replay is impossible without significant engineering and
heavy-weight techniques that capture all sources of non-
determinism. In CHESS, we have made a conscious de-
cision to not rely on perfect replay capability. Instead,
CHESS can robustly handle extraneous nondeterminism
in the system, albeit at the cost of the exhaustiveness of
the search.

The CHESS scheduler can fail to replay a trace in the
following two cases. First, the thread to schedule at a
scheduling point is disabled. This happens when a par-
ticular resource, such as a lock, was available at this
scheduling point in the previous iteration but is currently
unavailable. Second, a scheduled thread performs a dif-
ferent sequence of synchronization operations than the
one present in the trace. This can happen due to a change
in the program control flow resulting from a program
state not reset at the end of the previous iteration.

When the scheduler detects such extraneous nondeter-
minism, the default strategy is to give up replay and im-
mediately switch to the record phase. This ensures that
the current test runs to completion. The scheduler then
tries to replay the same trace once again, in the hope that
the nondeterminism is transient. On a failure, the sched-
uler continues the search beyond the current trace. This
essentially prunes the search space at the point of nonde-
terminism. To alleviate this loss of coverage, CHESS has
special handling for the most common sources of nonde-
terminism that we encountered in practice.

Lazy-initialization: Almost all systems we have en-
countered perform some sort of lazy-initialization, where
the program initializes a data-structure the first time the
structure is accessed. If the initialization performs syn-
chronization operations, CHESS would fail to see these
operations in subsequent iterations. To avoid this nonde-
terminism, CHESS “primes the pump” by running a few
iterations of the tests as part of the startup in the hope of
initializing all data-structures before the systematic ex-
ploration. The downside, of course, is that CHESS loses
the capability to interleave the lazy-initialization opera-
tions with other threads, potentially missing some bugs.

Interference from environment: The system under
test is usually part of a bigger environment that could be
concurrently performing computations during a CHESS

run. For instance, when we run CHESS on Dryad we
bring up the entire Cosmos system (of which Dryad is a
part) as part of the startup. While we do expect the tester
to provide sufficient isolation between the system under

test and its environment, it is impractical to require com-
plete isolation. As a simple example, both Dryad and
Cosmos share the same logging module, which uses a
lock to protect a shared log buffer. When a Dryad thread
calls into the logging module, it could potentially inter-
fere with a Cosmos thread that is currently holding the
lock. CHESS handles this as follows. In the replay phase,
the interference will result in the current thread being dis-
abled unexpectedly. When this happens, the scheduler
simply retries scheduling the current thread a few times
before resorting to the default solution mentioned above.
If the interference happens in record mode, the sched-
uler might falsely think that the current thread is disabled
when it can actually make progress. In the extreme case,
this can result in a false deadlock if no other threads are
enabled. To distinguish this from a real deadlock, the
CHESS scheduler repeatedly tries scheduling the threads
in a deadlock state to ensure that they are indeed unable
to make progress.

Nondeterministic calls: The final source of
nondeterminism arises from calls to random() and
gettimeofday(), which can return different values
at different iterations of the test. We expect the tester
to avoid making such calls in the test code. However,
such calls might still be present in the system under test
that the tester has no control over. We determinize calls
to random() by simply reseeding the random number
generate to a predefined constant at the beginning of each
test iteration. On the other hand, we do not determinize
time functions such as gettimeofday(). Most of the
calls to time functions do not affect the control flow of
the program. Even when they do, it is to periodically re-
fresh some state in the program. In this case, the default
strategy of retrying the execution works well in practice.

4.3 Ensuring starvation-free schedules

Many concurrent programming primitives implicitly as-
sume that the underlying OS schedulers are strongly
fair [2], that is, no thread is starved forever. For in-
stance, spin-loops are very common in programs. Such
loops would not terminate if the scheduler continuously
starves the thread that is supposed to set the condition of
the loop. Similarly, some threads perform computation
until they receive a signal from another thread. An un-
fair scheduler is not required to eventually schedule the
signaling thread.

On such programs, it is essential to restrict systematic
enumeration to only fair schedules. Otherwise, a simplis-
tic enumeration strategy will spend a significant amount
of time exploring unfair schedules. Moreover, errors
found on these interleavings will appear uninteresting to
the user as she would consider these interleavings impos-
sible or unlikely in practice. Finally, fair scheduling is

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 275

essential because CHESS relies on the termination of the
test scenario to bring the system to the initial state. Most
tests will not terminate on unfair schedules, and with no
other checkpointing capability, CHESS will not be able
to bring the system to the initial state.

Of course, it is unreasonable to expect CHESS to enu-
merate all fair schedules. For most programs, there are
infinitely many fair interleavings, since any schedule that
unrolls a spin-loop an arbitrary but finite number of times
is fair. Instead, CHESS makes a pragmatic choice to fo-
cus on interleavings that are likely to occur in practice.
The fair scheduler, described in detail in [34], gives lower
priority to threads that yield the processor, either by call-
ing a yielding function such as Thread.yield or by
sleeping for a finite time. This immediately restricts the
CHESS scheduler to only schedule enabled threads with
a higher priority, if any. Under the condition that a thread
yields only when it is unable to make progress, this fair
scheduler is guaranteed to not miss any safety error [34].

4.4 Tackling state-space explosion

State-space explosion is the bane of model checking.
Given a program with n threads that execute k atomic
steps in total, it is very easy to show that the number
of thread interleavings grows astronomically as n

k. The
exponential in k is particularly troublesome. It is normal
for realistic tests to perform thousands (if not more) syn-
chronization operations in a single run of the test. To be
effective in such large state spaces, it is essential to focus
on interesting and potentially bug-yielding interleavings.
In the previous section, we described how fairness helps
CHESS to focus only on fair schedules. We discuss other
key strategies below.

4.4.1 Inserting preemptions prudently

In recent work [32], we showed that bounding the num-
ber of preemptions is a very good search strategy when
systematically enumerating thread schedules. Given a
program with n threads that execute k steps in total, the
number of interleavings with c preemptions grows with
k

c. Informally, this is because, once the scheduler has
picked c out of the k possible places to preempt, the
scheduler is forced to schedule the resulting chunks of
execution atomically. (See [32] for a more formal argu-
ment.) On the other hand, we expect that most concur-
rency bugs happen [28] because of few preemptions hap-
pening at the right places. In our experience with CHESS,
we have been able to reproduce very serious bugs using
just two preemptions.

On applying to large systems, however, we found that
preemption bounding alone was not sufficient to reason-
ably reduce the size of the state space. To solve this prob-

lem, we had to scope preemptions to code regions of in-
terest, essentially reducing k. First, we realized that a
significant portion of the synchronization operations oc-
cur in system functions, such as the C run time. Simi-
larly, many of the programs use underlying base libraries
which can be safely assumed to be thread-safe. CHESS

does not insert preemptions in these modules, thereby
gaining scalability at the cost of missing bugs resulting
from adverse interactions between these modules and the
rest of the system.

Second, we observed that a large number of the syn-
chronizations are due to accesses to volatile variables.
Here we borrow a crucial insight from Bruening and
Chapin [5] (see also [41]) — if accesses to a particular
volatile variable are always ordered by accesses through
other synchronization, then it is not necessary to inter-
leave at these points.

4.4.2 Capturing states

One advantage of stateful model checkers [43, 31] is
their ability to cache visited program states. This allows
them to avoid exploring the same program state more
than once, a huge gain in efficiency. The downside is that
precisely capturing the state of a large system is oner-
ous [31, 45]. Avoiding this complication was the main
reason for designing CHESS to be stateless.

However, we obtain some advantages of state-caching
by observing that we can use the trace used to reach the
current state from the initial state as a representation of
the current state. Specifically, CHESS maintains for each
execution a partially-ordered happens-before graph over
the set of synchronization operations in the execution.
Two executions that generate the same happens-before
graph only differ in the order of independent synchro-
nizations operations. Thus, a program that is data-race
free will be at the same program state along each of the
two executions. By caching the happens-before graphs
of visited states, CHESS avoids exploring the same state
redundantly. This reduction has the same reduction as a
partial-order reduction method called sleep-sets [16] but
combines well with preemption bounding [33].

4.5 Monitoring executions

The main goal of CHESS is to systematically drive a
concurrent program through possible thread interleav-
ings. Monitoring an interleaving for possible errors, ei-
ther safety violations or performance problems, is a or-
thogonal but important problem. Since CHESS executes
the program being tested, it can easily catch standard as-
sertion failures such as null dereferences, segmentation
faults, and crashes due to memory corruption. The user
can also attach other monitors such as memory-leak or

276 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

max max max
Programs LOC Threads Synch. Preemp.
PLINQ 23750 8 23930 2
CDS 6243 3 143 2
STM 20176 2 75 4
TPL 24134 8 31200 2
ConcRT 16494 4 486 3
CCR 9305 3 226 2
Dryad 18093 25 4892 2
Singularity 174601 14 167924 1

Table 2: Characteristics of input programs to CHESS

use-after-free detectors [36].
In addition to assertion failures, CHESS also checks

each interleaving for deadlocks and livelocks. The wrap-
pers maintain the set of enabled tasks (Section 3.4), al-
lowing CHESS to report a deadlock whenever this set
becomes empty. Detecting liveness violations is sig-
nificantly more difficult and fundamentally requires the
fair scheduling capability of CHESS (Section 4.3). Any
liveness property is reducible to the problem of fair-
termination [42], which is to check whether a program
terminates under all fair interleavings. Then, to check if
“something good eventually happens”, the user writes a
test that terminates only when the “good” condition hap-
pens. If the program violates this property, the CHESS

scheduler will eventually produce a fair interleaving un-
der which the test does not terminate. The user identifies
such nonterminating behavior by setting an abnormally
high bound on the length of the execution.

We have also implemented monitors for detecting
data-races and for detecting whether an execution could
result in behavior that is not sequentially consistent [6].
These monitors require trapping all memory accesses
and consequently impose a significant runtime overhead.
Therefore, we keep these monitors off by default but al-
low the user to turn them on as needed.

5 Evaluation

In this section, we describe our experience in applying
CHESS to several large industry-scale systems.

5.1 Brief description of benchmarks

Table 2 describes the systems on which CHESS has been
run on. We briefly describe each of these systems to
emphasize the range of systems CHESS is applicable to.
Also, the integration of CHESS with the first five systems
in Table 2 was done by the users of CHESS, with some
help from the authors.

PLINQ [12] is an implementation of the declarative
data-parallel extensions to the .NET framework. CDS
(Concurrent Data Structures) is a library that implements
efficient concurrent data structures. STM is an imple-
mentation of software transactional memory inside Mi-
crosoft. TPL and ConcRT are two libraries that pro-
vide efficient work-stealing implementations of user-
level tasks, the former for .NET programs and the lat-
ter for C and C++ programs. CCR is the concurrency
and coordination runtime [8], which is part of Microsoft
Robotics Studio Runtime. Dryad is a distributed exe-
cution engine for coarse-grained data-parallel applica-
tions [21]. Finally, Singularity [19] is a research oper-
ating system.

5.2 Test scenarios

In all these programs, except Singularity, we took exist-
ing stress tests and modified them to run with CHESS.
Most of the stress tests were originally written to create
large number of threads. We modified them to run with
fewer threads, for two reasons. Due to the systematic
exploration of CHESS, one no longer needs a large num-
ber of threads to create scheduling variety. Also, CHESS

scales much better when there are few threads. We vali-
date this reduction in the next section.

Other modifications were required to “undo” code
meant to create scheduling variety. We found that testers
pepper the code with random calls to sleep and other
yielding functions. With CHESS, such tricks are no
longer necessary. On the other hand, such calls im-
pede the coverage achieved with CHESS as the sched-
uler (§4.3) assumes that a yielding thread is not able to
make progress, and accordingly assigns it a low schedul-
ing priority. Another common paradigm in the stress
tests was to randomly choose between a variety of inputs
with probabilities to mimic real executions. In this case
we had to refactor the test to concurrently generate the
inputs so that CHESS interleaved their processing. These
modifications would not be required if system develop-
ers and testers were only concerned about creating in-
teresting concurrency scenarios, and relied on a tool like
CHESS to create scheduling variety.

Finally, we used CHESS to systematically test the en-
tire boot and shutdown sequence of the Singularity op-
erating system [19]. The Singularity OS has the ability
to run as a user process on top of the Win32 API. This
functionality is essentially provided by a thin software
layer that emulates necessary hardware abstractions on
the host. This mechanism alone was sufficient to run
the entire Singularity OS on CHESS with little modifica-
tion. The only changes required were to expose certain
low-level synchronization primitives at the hardware ab-
straction layer to CHESS and to call the shutdown imme-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 277

Failure / Bug
Programs Total Unk/Unk Kn/Unk Kn/Kn
PLINQ 1 1
CDS 1 1
STM 2 2
TPL 9 9
ConcRT 4 4
CCR 2 1 1
Dryad 7 7
Singularity 1 1
Total 27 21 4 2

Table 3: Bugs found with CHESS, classified on whether
the failure and the bug were known or unknown.

diately after the boot without forking the login process.
These changes involved ˜300 lines in four files.

5.3 Validating CHESS against stress-testing

Many believe that one cannot find concurrency errors
with a small number of threads. This belief is a di-
rect consequence of the painful experience people have
of their concurrent systems failing under stress. A cen-
tral hypothesis of CHESS is that errors in complex sys-
tems occur due to complex interleavings of simple sce-
narios. In this section, we validate this hypothesis. Re-
cent work [28] also suggests a similar hypothesis.

Table 3 shows the bugs that CHESS has found so far on
the systems described in Table 2. Table 3 distinguishes
between bugs and failures. A bug is an error in the pro-
gram and is associated with the specific line(s) in the
code containing the error. A failure is a, possibly non-
deterministic, manifestation of the bug in a test run, and
is associated with the test case that fails. Thus, a single
bug can cause multiple failures. Also, as is common with
concurrency bugs, a known failure does not necessarily
imply a known bug — the failure might be too hard to
reproduce and debug.

Table 3 only reports the number of distinct bugs found
by CHESS. The number of failures exceeds this number.
As an extreme case, the PLINQ bug is a race-condition in
a core primitive library that was the root-cause for over
30, apparently unrelated, test failures. CHESS found a
total of 27 bugs in all of the programs, of which 25 were
previously unknown. Of these 25 bugs, 21 did not mani-
fest in existing stress runs over many months. The other 4
bugs were those with known failures but unknown cause.
In these cases, the tester pointed us to existing stress tests
that failed occasionally. CHESS was able to reproduce
the failure, within minutes in some cases, with less than
ten threads and two preemptions. Similarly, CHESS was
able to reproduce two failures that the tester had previ-

LiteEvent::Set(){
state = SIGNALLED;
if(kevent)

lock_and_set_kevent();
}

LiteEvent::Wait(){
if(state == SIGNALLED)

return;
alloc_kevent();
//BUG:kevent can be 0 here
kevent.wait();

}

LiteEvent::Dispose(){
lock_and_delete_kevent();

}

Figure 2: A race condition exposed when LiteEvents are
used with multiple waiters.

ously (and painfully) debugged on the STM library. So
far, CHESS has succeeded in reproducing every stress-
test failure reported to us.

5.4 Description of two bugs

In this section, we describe two bugs that CHESS was
able to find.

5.4.1 PLINQ bug

CHESS discovered a bug in PLINQ that is due to an in-
correct use of LiteEvents, a concurrency primitive
implemented in the library. A LiteEvent is an optimiza-
tion over kernel events that does not require a kernel tran-
sition in the common case. It was originally designed
to work between exactly two threads — one that calls
Set and one that calls Wait followed by a Dispose.
Figure 2 contains a simplified version of the code. A
lock protects the subtle race that occurs between a Set
that gets preempted right after an update to state and
Dispose. However, the lock does not protect a similar
race between a Wait and a Dispose. This is because
the designer did not intend to use LiteEvents with multi-
ple waiters. However, the PLINQ code did not obey this
restriction and CHESS promptly reported this error with
just one preemption. As with many concurrency bugs,
the fix is easy once the bug is identified.

5.4.2 Singularity bug

CHESS is able to check for liveness properties and it
checks the following property by default [34]: every

278 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Dispatch(id){
while (true) {

Platform.Halt();
// We wake up on any notification.
// Dispatch only our id

if (PendingNotification(id)) {
DispatchNotification(id);
break;

}
}

}

Platform.Halt(){
if(AnyNotification())
return;

Sleep();
}

Figure 3: Violation of the good Samaritan property. Un-
der certain cases, this loop results in the thread spinning
idly till time-slice expiration.

thread either makes progress towards completing its
function or yields the processor. This property detected
an incorrect spin loops that never yields in the boot pro-
cess of Singularity. Figure 3 shows the relevant code
snippet. A thread spins in a loop till it receives a particu-
lar notification from the underlying hardware. If the noti-
fication has a different id and thus does not match what
it is waiting for, the thread retries without dispatching
the notification. On first sight, it appears that this loop
yields by calling the Halt function. However, Halt
will return without yielding, if any notification is pend-
ing. The boot thread, thus, needlessly spins in the loop
till its time-slice expires, starving other threads, poten-
tially including the one that is responsible for receiving
the current notification.

The developers responsible for this code immediately
recognized this scenario as a serious bug. In practice,
this bug resulted in “sluggish I/O behavior” during the
boot process, a behavior that was previously known to
occur but very hard to debug. This bug was fixed within
a week. The fix involved changing the entire notification
dispatch mechanism in the hardware abstraction layer.

6 Related work

The systematic exploration of the behaviors of exe-
cutable concurrent programs is not a new idea and has
previously occurred in the research areas of software
testing and model checking. In contrast to this previous
work, this paper is the first to demonstrate the applicabil-

ity of such systematic exploration to large systems with
little perturbation to the program, the runtime, and the
test infrastructure.

Carver and Tai [7] proposed repeatable deterministic
testing by running a program with an input and explicit
thread schedule. The idea of systematic generation of
thread schedules came later under the rubric of reachabil-
ity testing [20]. Recent work in this area includes RichT-
est [26] which performs efficient search using on-the-
fly partial-order reduction techniques, and ExitBlock [5]
which observes that context switches only need to be in-
troduced at synchronization accesses, an idea we borrow.

In the model checking community, the idea of ap-
plying state exploration directly to executing concur-
rent programs can be traced back to the Verisoft model
checker [17], which is similar to the testing approach
in that it enumerates thread schedules rather than states.
There are a number of other model checkers, such
as Java Pathfinder [43], Bogor [38], CMC [31], and
MaceMC [22], that attempt to capture and cache the
visited states of the program. CHESS is designed to
be stateless; hence it is similar in spirit to the work on
systematic testing and stateless model checking. What
sets CHESS apart from the previous work in this area
is its focus on detecting both safety and liveness vio-
lations on large multithreaded systems programs. Ef-
fective safety and liveness testing of such programs re-
quires novel techniques—preemption bounding, and fair
scheduling—absent from the previous work.

ConTest [15] is a lightweight testing tool that attempts
to create scheduling variance without resorting to sys-
tematic generation of all executions. In contrast, CHESS

obtains greater control over thread scheduling to offer
higher coverage guarantees and better reproducibility.

The ability to replay a concurrent execution is a fun-
damental building block for CHESS. The problem of de-
terministic replay has been well-studied [25, 39, 44, 13,
3, 23, 14]. The goal of CHESS is to not only capture
the nondeterminism but also to systematically explore it.
Also, to avoid the inherent cost of deterministic replay,
we have designed CHESS to robustly handle some non-
determinism at the cost of test coverage.

The work on dynamic data-race detection, e.g., [40,
35, 46], is orthogonal and complementary to the work
on systematic enumeration of concurrent behaviors. A
tool like CHESS can be used to systematically generate
dynamic executions, each of which can then be analyzed
by a data-race detector.

7 Conclusions

In this paper, we presented CHESS, a systematic test-
ing tool for finding and reproducing Heisenbugs in con-
current programs. The systematic testing capability

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 279

of CHESS is achieved by carefully exposing, control-
ling, and searching all interleaving nondeterminism in
a concurrent system. CHESS works for three different
platforms—Win32, .NET, and Singularity. It has been
integrated into the test frameworks of many code bases
inside Microsoft and is used by testers on a daily basis.
CHESS has helped us and many other users find and re-
produce numerous concurrency errors in large applica-
tions. Our experience with CHESS indicates that such
a tool can be extremely valuable for the development
and testing of concurrent programs. We believe that all
concurrency-enabling platforms should be designed to
enable the style of testing espoused by CHESS.

Acknowledgments

We would like to thank Chris Dern, Pooja Nagpal, Rahul
Patil, Raghu Simha, Roy Tan, and Susan Wo for being
immensely patient first users of CHESS. We would also
like to thank Chris Hawblitzel for helping with the inte-
gration of CHESS into the Singularity operating system.
Finally, we would like to thank Terence Kelly, our shep-
herd, and our anonymous reviewers for invaluable feed-
back on the original version of this paper.

References
[1] Abstract IL — http://research.microsoft.com/projects/ilx/absil.aspx.

[2] APT, K. R., FRANCEZ, N., AND KATZ, S. Appraising fairness
in languages for distributed programming. In POPL 87: Princi-
ples of Programming Languages (1987), pp. 189–198.

[3] BHANSALI, S., CHEN, W.-K., DE JONG, S., EDWARDS, A.,
MURRAY, R., DRINIĆ, M., MIHOČKA, D., AND CHAU, J.
Framework for instruction-level tracing and analysis of program
executions. In VEE 06: Virtual Execution Environments (2006),
ACM, pp. 154–163.

[4] BOOTHE, B. Efficient algorithms for bidirectional debugging. In
PLDI 00: Programming Language Design and Implementation
(2000), pp. 299–310.

[5] BRUENING, D., AND CHAPIN, J. Systematic testing of mul-
tithreaded Java programs. Tech. Rep. LCS-TM-607, MIT/LCS,
2000.

[6] BUCKHARDT, S., AND MUSUVATHI, M. Effective program veri-
fication for relaxed memory models. In CAV 08: Computer-Aided
Verification (2008), pp. 107–120.

[7] CARVER, R. H., AND TAI, K.-C. Replay and testing for concur-
rent programs. IEEE Softw. 8, 2 (1991), 66–74.

[8] Concurrency and Coordination Runtime —
http://msdn.microsoft.com/en-us/library/bb648752.aspx.

[9] CHOI, J.-D., LEE, K., LOGINOV, A., O’CALLAHAN, R.,
SARKAR, V., AND SRIDHARAN, M. Efficient and precise
datarace detection for multithreaded object-oriented programs. In
PLDI 02: Programming Language Design and Implementation
(2002), pp. 258–269.

[10] CLARKE, E., AND EMERSON, E. Synthesis of synchronization
skeletons for branching time temporal logic. In Logic of Pro-
grams (1981), LNCS 131, Springer-Verlag, pp. 52–71.

[11] The CLR profiler — http://msdn.microsoft.com/en-
us/library/ms979205.aspx.

[12] DUFFY, J. A query language for data parallel programming: in-
vited talk. In DAMP (2007), p. 50.

[13] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND

CHEN, P. M. ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay. In OSDI 02: Operating Systems
Design and Implementation (2002).

[14] DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M. A.,
AND CHEN, P. M. Execution replay of multiprocessor virtual
machines. In VEE 08: Virtual Execution Environments (2008),
ACM, pp. 121–130.

[15] EDELSTEIN, O., FARCHI, E., GOLDIN, E., NIR, Y., RATSABY,
G., AND UR, S. Framework for testing multi-threaded java pro-
grams. Concurrency and Computation: Practice and Experience
15, 3–5 (2003), 485–499.

[16] GODEFROID, P. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion Prob-
lem. LNCS 1032. Springer-Verlag, 1996.

[17] GODEFROID, P. Model checking for programming languages us-
ing Verisoft. In POPL 97: Principles of Programming Languages
(1997), ACM Press, pp. 174–186.

[18] GRAY, J. Why do computers stop and what can be done about it?
In Büroautomation (1985), pp. 128–145.

[19] HUNT, G. C., AIKEN, M., FÄHNDRICH, M., HODSON, C.
H. O., LARUS, J. R., LEVI, S., STEENSGAARD, B., TARDITI,
D., AND WOBBER, T. Sealing OS processes to improve de-
pendability and safety. In Proceedings of the EuroSys Conference
(2007), pp. 341–354.

[20] HWANG, G., TAI, K., AND HUNAG, T. Reachability testing: An
approach to testing concurrent software. International Journal of
Software Engineering and Knowledge Engineering 5, 4 (1995),
493–510.

[21] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: distributed data-parallel programs from se-
quential building blocks. In Proceedings of the EuroSys Confer-
ence (2007), pp. 59–72.

[22] KILLIAN, C. E., ANDERSON, J. W., JHALA, R., AND VAHDAT,
A. Life, death, and the critical transition: Finding liveness bugs
in systems code. In NSDI 07: Networked Systems Design and
Implementation (2007), pp. 243–256.

[23] KONURU, R. B., SRINIVASAN, H., AND CHOI, J.-D. Determin-
istic replay of distributed java applications. In IPDPS 00: Inter-
national Parallel and Distributed Processing Symposium (2000),
pp. 219–228.

[24] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM 21, 7 (1978), 558–
565.

[25] LEBLANC, T. J., AND MELLOR-CRUMMEY, J. M. Debugging
parallel programs with instant replay. IEEE Trans. Comput. 36, 4
(1987), 471–482.

[26] LEI, Y., AND CARVER, R. H. Reachability testing of concurrent
programs. IEEE Trans. Software Eng. 32, 6 (2006), 382–403.

[27] LIU, X., LIN, W., PAN, A., AND ZHANG, Z. WiDS checker:
Combating bugs in distributed systems. In NSDI 07: Networked
Systems Design and Implementation (2007), pp. 257–270.

[28] LU, S., PARK, S., SEO, E., AND ZHOU, Y. Learning from
mistakes: a comprehensive study on real world concurrency bug
characteristics. In ASPLOS 08: Architectural Support for Pro-
gramming Languages and Operating Systems (2008).

[29] .NET Framework 3.5—http://msdn.microsoft.com/en-
us/library/w0x726c2.aspx.

280 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[30] Windows API reference—http://msdn.microsoft.com/en-
us/library/aa383749(vs.85).aspx.

[31] MUSUVATHI, M., PARK, D., CHOU, A., ENGLER, D., AND

DILL, D. L. CMC: A pragmatic approach to model checking
real code. In OSDI 02: Operating Systems Design and Imple-
mentation (2002), pp. 75–88.

[32] MUSUVATHI, M., AND QADEER, S. Iterative context bound-
ing for systematic testing of multithreaded programs. In PLDI
07: Programming Language Design and Implementation (2007),
pp. 446–455.

[33] MUSUVATHI, M., AND QADEER, S. Partial-order reduction for
context-bounded state exploration. Tech. Rep. MSR-TR-2007-
12, Microsoft Research, 2007.

[34] MUSUVATHI, M., AND QADEER, S. Fair stateless model check-
ing. In PLDI 08: Programming Language Design and Implemen-
tation (2008).

[35] O’CALLAHAN, R., AND CHOI, J.-D. Hybrid dynamic data race
detection. In PPOPP 03: Principles and Practice of Parallel
Programming (2003), pp. 167–178.

[36] Rational Purify—http://www-01.ibm.com/software/awdtools/purify.

[37] QUEILLE, J., AND SIFAKIS, J. Specification and verification of
concurrent systems in CESAR. In Fifth International Symposium
on Programming, LNCS 137. Springer-Verlag, 1981, pp. 337–
351.

[38] ROBBY, DWYER, M., AND HATCLIFF, J. Bogor: An extensi-
ble and highly-modular model checking framework. In FSE 03:
Foundations of Software Engineering (2003), ACM, pp. 267–276.

[39] RUSSINOVICH, M., AND COGSWELL, B. Replay for concur-
rent non-deterministic shared-memory applications. In PLDI
96: Programming Language Design and Implementation (1996),
pp. 258–266.

[40] SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P.,
AND ANDERSON, T. Eraser: a dynamic data race detector for
multithreaded programs. ACM Transactions on Computer Sys-
tems 15, 4 (1997), 391–411.

[41] STOLLER, S. D., AND COHEN, E. Optimistic synchronization-
based state-space reduction. In TACAS 03 (2003), LNCS 2619,
Springer-Verlag, pp. 489–504.

[42] VARDI, M. Y. Verification of concurrent programs: The
automata-theoretic framework. Annals of Pure and Applied Logic
51, 1-2 (1991), 79–98.

[43] VISSER, W., HAVELUND, K., BRAT, G., AND PARK, S. Model
checking programs. In ASE 00: Automated Software Engineering
(2000), pp. 3–12.

[44] XU, M., BODIK, R., AND HILL, M. D. A ”flight data
recorder” for enabling full-system multiprocessor deterministic
replay. SIGARCH Comput. Archit. News 31, 2 (2003), 122–135.

[45] YANG, J., TWOHEY, P., ENGLER, D. R., AND MUSUVATHI, M.
Using model checking to find serious file system errors. ACM
Transactions on Computer Systems 24, 4 (2006), 393–423.

[46] YU, Y., RODEHEFFER, T., AND CHEN, W. Racetrack: effi-
cient detection of data race conditions via adaptive tracking. In
SOSP 05: Symposium on Operating Systems Principles (2005),
pp. 221–234.

