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Abstract

This paper presents three policies for effectively utiliz-
ing TCP offload network interfaces that support connec-
tion handoff. These policies allow connection handoff
to reduce the computation and memory bandwidth re-
quirements for packet processing on the host processor
without causing the resource constraints on the network
interface to limit overall system performance. First, pri-
oritizing packet processing on the network interface en-
sures that its TCP processing does not harm performance
of the connections on the host operating system. Sec-
ond, dynamically adapting the number of connections
on the network interface to the current load avoids over-
loading the network interface. Third, the operating sys-
tem can predict connection lifetimes to select long-lived
connections for handoff to better utilize the network in-
terface. The use of the first two policies improves web
server throughput by 12–31% over the baseline through-
put achieved without offload. The third policy helps im-
prove performance when the network interface can only
handle a small number of connections at a time. Further-
more, by using a faster offload processor, offloading can
improve server throughput by 33–72%.

1 Introduction

In order to address the increasing bandwidth demands
of modern networked computer systems, there has been
significant interest in offloading TCP processing from
the host operating system to the network interface card
(NIC). TCP offloading can potentially reduce the num-
ber of host processor cycles spent on networking tasks,
reduce the amount of local I/O interconnect traffic, and
improve overall network throughput [14, 18, 27, 30, 31].
However, the maximum packet rate and the maximum
number of connections supported by an offloading NIC
are likely to be less than those of a modern micropro-
cessor due to resource constraints on the network inter-

face [24, 28, 30]. Since the overall capabilities of an of-
floading NIC may lag behind modern microprocessors,
the system should not delegate all TCP processing to the
NIC. However, a custom processor with fast local mem-
ory on a TCP offloading NIC should still be able to pro-
cess packets efficiently, so the operating system should
treat such a NIC as an acceleration coprocessor and use
as much resources on the NIC as possible in order to
speed up a portion of network processing.

Connection handoff has been proposed as a mecha-
nism to allow the operating system to selectively offload
a subset of the established connections to the NIC [18,
22, 23]. Once a connection is handed off to the NIC, the
operating system switches the protocol for that connec-
tion from TCP to a stateless bypass protocol that simply
forwards application requests to send or receive data to
the NIC. The NIC then performs all of the TCP process-
ing for that connection. If necessary, the operating sys-
tem can also reclaim the connection from the NIC after it
has been handed off. Thus, the operating system retains
complete control over the networking subsystem and can
control the division of work between the NIC and host
processor(s). At any time, the operating system can eas-
ily opt to reduce the number of connections on the NIC
or not to use offload at all. Furthermore, with handoff,
the NIC does not need to make routing decisions or al-
locate port numbers because established connections al-
ready have correct routes and ports.

While previous proposals have presented interfaces
and implementations of TCP offload NICs that support
connection handoff, they have not presented policies to
utilize these NICs effectively. This paper shows that
there are three main issues in systems that utilize con-
nection handoff and evaluates policies to address these
issues. First, the NIC must ensure that TCP processing
on the NIC does not degrade the performance of con-
nections that are being handled by the host. Second, the
operating system must not overload the NIC since that
would create a bottleneck in the system. Finally, when
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the NIC is only able to store a limited number of connec-
tions, the operating system needs to hand off long-lived
connections with high packet rates in order to better uti-
lize the NIC.

Full-system simulations of four web workloads show
that TCP processing on the NIC can degrade the perfor-
mance of connections being handled by the host by slow-
ing down packet deliveries to the host processor. The
amount of time for a packet to cross the NIC increases
from under 10 microseconds without handoff to over 1
millisecond with handoff. For three of the four work-
loads, the resulting request rate of the server is 14–30%
lower than the baseline request rate achieved without
handoff. The NIC can minimize delays by giving pri-
ority to those packets that must be delivered to the host.
The use of this host first packet processing on the NIC
increases the server’s request rate over the baseline by
up to 24%, when the NIC is not overloaded. However,
the NIC still becomes overloaded when too many con-
nections are handed off to the NIC, which reduces the re-
quest rate of the server by up to 44% below the baseline
performance. The NIC can avoid overload conditions by
dynamically adapting the number of connections to the
current load indicated by the length of the receive packet
queue. By using both techniques, handoff improves the
request rate of the server by up to 31% over the base-
line throughput. When the NIC can support a large num-
ber of connections, handing off connections in a simple
first-come, first-served order is sufficient to realize these
performance improvements. However, when the NIC has
limited memory for storing connection state, handing off
long-lived connections helps improve performance over
a simple first-come, first-served handoff policy. Finally,
using a NIC with a faster offload processor, handoff im-
proves server throughput by 33–72%.

The rest of the paper is organized as follows. Section 2
briefly describes connection handoff. Section 3 presents
techniques to control the division of work between the
NIC and the operating system. Section 4 describes the
experimental setup, and Section 5 presents results. Sec-
tion 6 discusses related work. Section 7 draws conclu-
sions.

2 Connection Handoff

TCP packet processing time is dominated by expen-
sive main memory accesses, not computation [10, 17].
These main memory accesses occur when the network
stack accesses packet data and connection data struc-
tures, which are rarely found in the processor caches.
Accesses to packet data are due to data touching oper-
ations like data copies and checksum calculations. These
accesses can be eliminated by using zero-copy I/O tech-
niques to avoid data copies between the user and kernel

memory spaces [9, 12, 26] and checksum offload tech-
niques to avoid computing TCP checksums on the host
processor [19]. These techniques have gained wide ac-
ceptance in modern operating systems and network in-
terfaces. However, no such techniques exist to eliminate
accesses to connection data structures. While these struc-
tures are small, around 1KB per connection, a large num-
ber of connections can easily overwhelm modern pro-
cessor caches, significantly degrading performance. Pre-
vious experiments show that main memory accesses to
connection data structures can degrade performance as
much as data touching operations [17].

TCP offload can be used to reduce the impact of ex-
pensive main memory accesses to connection data struc-
tures. By moving TCP processing to the NIC, connection
data structures can be efficiently stored in fast, dedicated
memories on the NIC. Typically, all TCP processing is
moved to the NIC. However, such full TCP offload is not
scalable. First, the resource limitations of a peripheral
device will limit the maximum processing capability and
memory capacity of a TCP offload NIC. Second, TCP
offload complicates the existing software architecture of
the network stack, since the operating system and the
NIC now need to cooperatively manage global resources
like port numbers and IP routes [24]. Connection hand-
off solves these problems by enabling the host operating
system to select a subset of the established connections
and move them to the network interface [18, 22, 23]. Us-
ing handoff, the operating system remains in control of
global resources and can utilize TCP offload NICs to ac-
celerate as many TCP connections as the resources on
the NIC will allow.

Using connection handoff, all connections are estab-
lished within the network stack of the host operating sys-
tem. Then, if the operating system chooses to do so, the
connection can be handed off to the NIC. Once a con-
nection is handed off to the NIC, the NIC handles all
TCP packets for that connection. Figure 1 shows a dia-
gram of a network stack that supports connection hand-
off. The left portion of the diagram depicts the regular
(non-offload) stack, and the dotted lines show data move-
ment. When a connection is offloaded to the NIC, the
operating system switches its stack to the right (shaded)
portion of the diagram. This new stack executes a sim-
ple bypass protocol on the host processor for offloaded
connections, and the rest of the TCP/IP stack is executed
directly on the NIC. The bypass protocol forwards socket
operations between the socket layers on the host and the
NIC via the device driver, as shown by the dashed lines in
the figure. For an offloaded connection, packets are gen-
erated by the NIC and also completely consumed by the
NIC, so packet headers are never transferred across the
local I/O interconnect. The solid lines show the packet
movement within the NIC. The lookup layer on the NIC
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Figure 1: Modified network stack architecture to support
connection handoff. The shaded region indicates the path
used by connections on the NIC.

determines whether an incoming packet belongs to a con-
nection on the NIC or to a connection on the host. It only
adds a small amount of overhead to all incoming packets
by using a hash-based lookup table [21].

The bypass layer communicates with the device driver
using a connection handoff API. So, the operating system
can transparently support multiple, heterogeneous NICs
using the same API. Furthermore, the API also allows the
actual socket buffer data to be stored in main memory in
order to reduce the amount of buffering required on the
NIC.

Previous experiments show that TCP offload, whether
it is based on connection handoff or not, can reduce cy-
cles, instructions, and cache misses on the host CPU as
well as traffic across the local I/O interconnect [14, 18].
Since socket-level operations occur less frequently than
Ethernet packet transmits and receives, handoff can re-
duce the number of message exchanges across the local
I/O interconnect. For instance, because acknowledgment
packets (ACKs) are processed by the NIC, the NIC may
aggregate multiple ACKs into one message so that the
host operating system can drop the acknowledged data
in a single socket operation.

3 Connection Handoff Framework

In addition to the features described in the previous sec-
tion, both the operating system and the network interface
must also implement policies to ensure that the perfor-
mance of connections that are being handled by the host
operating system is not degraded, that the network in-
terface does not become overloaded, and that the appro-
priate connections are handed off to the network inter-
face. Figure 2 illustrates the proposed framework for

Figure 2: Framework for connection handoff and dynam-
ically controlling the load on the NIC.

the implementation of such packet prioritization, load
control, and connection selection policies. These poli-
cies are integral to the effective utilization of connection
handoff network interfaces. The proposed framework
and policies will be discussed in detail in the following
sections—all supporting data was collected while run-
ning a simulated web server using the methodology that
will be described in Section 4.

3.1 Priority-based Packet Processing

Traditional NICs act as a bridge between the network and
main memory. There is very little processing required to
send or receive packets from main memory (host pack-
ets), so the network interface can process each packet
fairly quickly. However, with connection handoff, the
NIC must perform TCP processing for packets that be-
long to connections that have been handed off to the
network interface (NIC packets). Because NIC packets
require significantly more processing than host packets,
NIC packet processing can delay the processing of host
packets, which may reduce the throughput of connec-
tions that remain within the host operating system. In the
worst case, the NIC can become overloaded with TCP
processing and drop host packets, which further reduces
the throughput of host connections.

Table 1 illustrates the effect of connection handoff on
host packet delays and overall networking performance
for a web workload that uses 2048 simultaneous con-
nections. The first row of the table shows the perfor-
mance of the system when no connections are handed
off to the NIC. In this case, the web server is able to
satisfy 23031 requests per second with a median packet
processing time on the NIC of only 2 us for host pack-
ets. The second row shows that when 256 of the 2048
connections (12.5%) are handed off to the NIC, the re-
quest rate increases by 4% with only slight increases in
host packet processing time. However, as shown in the

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 295



Host NIC
Offloaded Packet Packet Delay (usec) Idle (%) Idle (%)

Connections Priority Send Receive Requests/s
0 no handoff 2 2 0 62 23031

256 FCFS 3 3 0 49 23935
1024 FCFS 679 301 62 3 16121
1024 Host first 10 6 0 5 26663

Table 1: Impact of a heavily loaded NIC on the networking performance of a simulated web server. Packet delays are
median values, not averages. Idle represents the fraction of total cycles that are idle.

third row, when 1024 connections are handed off to the
NIC, the NIC is nearly saturated and becomes the bot-
tleneck in the system. The median packet delay on the
NIC for host packets increases dramatically and the NIC
drops received packets as the receive queue fills up. As a
result, the server’s request rate drops by 33%.

For both the second and third rows of Table 1, the NIC
processes all packets on a first-come, first-served (FCFS)
basis. As the load on the NIC increases, host packets suf-
fer increasing delays. Since an offloading NIC is doing
additional work for NIC packets, increased host packet
delays are inevitable. However, such delays need to be
minimized in order to maintain the performance of host
connections. Since host packets require very little pro-
cessing on the NIC, they can be given a priority over NIC
packets without significantly reducing the performance
of connections that have been handed off to the NIC. The
priority queues, shown in Figure 2, enable such a priori-
tization. As discussed in Section 2, all received packets
must first go through the lookup layer, which determines
whether a packet belongs to a connection on the NIC.
Once the lookup task completes, the NIC now forms two
queues. One queue includes only host packets, and the
other queue stores only NIC packets. The NIC also main-
tains a queue of host packets to be sent and another queue
of handoff command messages from the host. In order to
give priority to host packets, the NIC always processes
the queue of received host packets and the queue of host
packets to be sent before NIC packets and handoff com-
mand messages.

The fourth row of Table 1 shows the impact of using
the priority queues to implement a host first packet pro-
cessing policy on the NIC. With the host first policy on
the NIC, the median packet delay of host packets is about
6–10 us even though 1024 connections are handed off to
the NIC. Handoff now results in a 16% improvement in
request rate. Thus, this simple prioritization scheme can
be an effective mechanism to ensure that TCP processing
on the NIC does not hurt the performance of connections
that are handled by the host operating system. Further
evaluation is presented in Section 5.

3.2 Load Control

Packet prioritization can ensure that host packets are han-
dled promptly, even when the NIC is heavily loaded.
However, this will not prevent the NIC from becoming
overloaded to the point where there are not enough pro-
cessing resources remaining to process NIC packets. In
such an overloaded condition, the network interface be-
comes a system bottleneck and degrades the performance
of connections that have been handed off to the network
interface. A weighted sum of the packet rate of NIC
packets and the packet rate of host packets is an approx-
imate measure of the load on the network interface. The
number of connections that have been handed off to the
NIC indirectly determines this load. In general, increas-
ing the number of connections on the NIC increases the
load on the NIC because they tend to increase overall
packet rates. Likewise, decreasing the number of con-
nections generally reduces the load on the NIC.

Due to the finite amount of memory on the NIC, there
is a hard limit on the total number of connections that
can be handed off to the NIC. However, depending on
the workload and the available processing resources on
the NIC, the NIC may become saturated well before the
number of connections reaches the hard limit. Therefore,
the network interface must dynamically control the num-
ber of connections that can be handed off based on the
current load on the network interface.

As discussed in Section 3.1, the NIC maintains a
queue of received NIC packets. As the load on the NIC
increases, the NIC cannot service the receive queue as
promptly. Therefore, the number of packets in the re-
ceive queue (queue length) is a good indicator of the
current load on the NIC. This holds for send-dominated,
receive-dominated, and balanced workloads. For send-
dominated workloads, the receive queue mainly stores
acknowledgment packets. A large number of ACKs on
the receive queue indicate that the load is too high be-
cause the host operating system is sending data much
faster than the NIC can process ACKs returning from a
remote machine. For receive-dominated workloads, the
receive queue mainly stores data packets from remote
machines. A large number of data packets on the re-
ceive queue indicates that data packets are being received
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much faster than the NIC can process and acknowledge
them. In balanced workloads, a combination of the above
factors will apply. Therefore, a large number of packets
in the receive queue indicates that the NIC is not pro-
cessing received packets in a timely manner which will
increase packet delays for all connections.

The NIC uses six parameters to control the load on the
network interface: Hard limit, Soft limit, Qlen, Hiwat,
Lowat, and Cnum. Hard limit is the maximum possible
number of connections that can be handed off to the net-
work interface and is determined based on the amount
of physical memory available on the network interface.
Hard limit is set when the network interface firmware
is initialized and remains fixed. Soft limit is the current
maximum number of connections that may be handed off
to the NIC. This parameter is initially set to Hard limit,
and is always less than or equal to Hard limit. Qlen
is the number of NIC packets currently on the receive
packet queue. Hiwat is the high watermark for the re-
ceive packet queue. When Qlen exceeds Hiwat, the net-
work interface is overloaded and must begin to reduce its
load. A high watermark is needed because once the re-
ceive packet queue becomes full, packets will start to be
dropped, so the load must be reduced before that point.
Similarly, Lowat is the low watermark for the receive
packet queue, indicating that the network interface is
underloaded and should allow more connections to be
handed off, if they are available. As with Hard limit, Hi-
wat and Lowat are constants that are set upon initializa-
tion based upon the processing capabilities and memory
capacity of the network interface. For example, a faster
NIC with larger memory can absorb bursty traffic better
than a slower NIC with smaller memory, so it should in-
crease these values. Currently, Hiwat and Lowat need
to be set empirically. However, since the values only
depend on the hardware capabilities of the network in-
terface, only the network interface manufacturer would
need to tune the values, not the operating system. Finally,
Cnum is the number of currently active connections on
the NIC.

Figure 3 shows the state machine employed by the
NIC in order to dynamically adjust the number of con-
nections. The objective of the state machine is to main-
tain Qlen between Lowat and Hiwat. When Qlen grows
above Hiwat, the NIC is assumed to be overloaded and
should attempt to reduce the load by reducing Soft limit.
When Qlen drops below Lowat, the NIC is assumed to
be underloaded and should attempt to increase the load
by increasing Soft limit.

The state machine starts in the MONITOR state. When
Qlen becomes greater than Hiwat, the NIC reduces
Soft limit, sends a message to the device driver to ad-
vertise the new value, and transitions to the DECREASE

state. While in the DECREASE state, the NIC waits

Figure 3: State machine used by the NIC firmware to
dynamically control the number of connections on the
NIC.

for connections to terminate. Once Cnum drops below
Soft limit, the state machine transitions back to the MON-
ITOR state to assess the current load. If Qlen decreases
below Lowat, then the NIC increases Soft limit, sends
a message to the device driver to notify it of the new
Soft limit, and transitions to the INCREASE state. In the
INCREASE state, the NIC waits for new connections to
arrive. If Cnum increases to Soft limit, then the NIC tran-
sitions to the MONITOR state. However, while in the IN-
CREASE state, if Qlen increases above Hiwat, then the
NIC reduces Soft limit, sends a message to the device
driver to alert it of the new value, and transitions to the
DECREASE state. The state machine is simple and runs
only when a packet arrives, the host hands off a new con-
nection to the NIC, or an existing connection terminates.
Thus, the run-time overhead of the state machine is in-
significant.

As mentioned above, the NIC passively waits for con-
nections to terminate while in the DECREASE state. In-
stead, the NIC may also actively restore the connections
back to the host operating system and recover from an
overload condition more quickly. The described frame-
work easily supports such active restoration to the oper-
ating system. However, for this to be effective, the NIC
would also need a mechanism to determine which con-
nections are generating the most load, so should be re-
stored first. Actively restoring connections in this man-
ner was not necessary for the workloads studied in this
paper, but it may help improve performance for other
types of workloads.

While the receive packet queue length is easy to ex-
ploit, there are other measures of load such as idle time
and packet rate. The network interface could calculate
either of these metrics directly and use them to control
the load. However, packet processing time is extremely
dependent of the workload. Therefore, metrics such as
the packet rate are difficult to use, as they are not directly
related to the load on the NIC. This makes it more de-
sirable to control the load based on resource use, such
as the length of the receive queue or the idle time, than
based on packet rate. The receive queue length was cho-
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sen over idle time because it requires no NIC resources
to compute.

3.3 Connection Selection

Whenever the network interface can handle additional
connections, the operating system attempts to hand off
established connections. The connection selection pol-
icy component of the framework depicted in Figure 2
decides whether the operating system should attempt to
hand off a given connection. As described previously,
the device driver then performs the actual handoff. The
operating system may attempt handoff at any time after a
connection is established. For instance, it may hand off a
connection right after it is established, or when a packet
is sent or received. If the handoff attempt fails, the op-
erating system can try to handoff the connection again
in the future. For simplicity, the current framework in-
vokes the selection policy upon either connection estab-
lishments or send requests by the application and does
not consider connections for handoff if the first handoff
attempt for that connection fails.

The simplest connection selection policy is first-come,
first-served. If all connections in the system have simi-
lar packet rates and lifetimes, then this is a reasonable
choice, as all connections will benefit equally from off-
load. However, if connections in the system exhibit
widely varying packet rates and lifetimes, then it is ad-
vantageous to consider the expected benefit of offloading
a particular connection. These properties are highly de-
pendent on the application, so a single selection policy
may not perform well for all applications. Since appli-
cations typically use specific ports, the operating system
should be able to employ multiple application-specific
(per-port) connection selection policies.

Furthermore, the characteristics of the NIC can influ-
ence the types of connections that should be offloaded.
Some offload processors may only be able to handle a
small number of connections, but very quickly. For such
offload processors, it is advantageous to hand off con-
nections with high packet rates in order to fully utilize
the processor. Other offload processors may have larger
memory capacities, allowing them to handle a larger
number of connections, but not as quickly. For these pro-
cessors, it is more important to hand off as many connec-
tions as possible.

The expected benefit of handing off a connection is the
packet processing savings over the lifetime of the con-
nection minus the cost of the handoff. Here, the lifetime
of a connection refers to the total number of packets sent
and/or received through the connection. Therefore, it is
clear that offloading a long-lived connection is more ben-
eficial than a short-lived connection. The long-lived con-
nection would accumulate enough per-packet savings to
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Figure 4: Distribution of connection lifetimes from
SPECweb99 and the IBM and World Cup traces. Con-
nection rank is based on the number of sent packets.

compensate for the handoff cost and also produce greater
total saving than the short-lived connection during its
lifetime.

In order for the operating system to compute the ex-
pected benefit of handing off a connection, it must be
able to predict the connection’s lifetime. Fortunately,
certain workloads, such as web requests, show charac-
teristic connection lifetime distributions, which can be
used to predict a connection’s lifetime. Figure 4 shows
the distribution of connection lifetimes from several web
workloads. The figure plots the cumulative fraction of
sent packets and sent bytes of all connections over the
length of the run. As shown in the figure, there are many
short-lived connections, but the number of packets due
to these connections account for a small fraction of total
packets and bytes. For example, half of the connections
are responsible for sending less than 10% of all packets
for all three workloads. The other half of the connec-
tions send the remaining 90% of the packets. In fact,
more than 45% of the total traffic is handled by less than
10% of the connections. The data shown in Figure 4 as-
sumes that persistent connections are used. A persistent
connection allows the client to reuse the connection for
multiple requests. Persistent connections increase the av-
erage lifetime, but not the shape of distribution of life-
times. Previous studies have shown that web workloads
exhibit this kind of distribution [2, 7, 8]. The operating
system may exploit such distribution in order to identify
and hand off long-lived connections. For instance, since
the number of packets transfered over a long-lived con-
nection far exceeds that of a short connection, the system
can use a threshold to differentiate long and short-lived
connections. The operating system can simply keep track
of the number of packets sent over a connection and hand
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it off to the NIC only when the number reaches a certain
threshold.

4 Experimental Setup

The authors have previously implemented connection
handoff within FreeBSD 4.7 with the architecture de-
scribed in Section 2 [18]. To evaluate the policies de-
scribed in Section 3, this prototype is augmented with
these policies using the existing framework. Since there
are no offload controllers with open specifications, at
least to the authors’ best knowledge, an extended version
of the full-system simulator Simics [20] is used for per-
formance evaluations. Simics models the system hard-
ware with enough detail that it can run complete and un-
modified operating systems.

4.1 Simulation Setup

Simics is a functional full system simulator that allows
the use of external modules to enforce timing. For the
experiments, Simics has been extended with a memory
system timing module and a network interface card mod-
ule. The processor core is configured to execute one x86
instruction per cycle unless there are memory stalls. The
memory system timing module includes a cycle accurate
cache, memory controller, and DRAM simulator. All
resource contention, latencies, and bandwidths within
the memory controller and DRAM are accurately mod-
eled [29]. Table 2 summarizes the simulator configura-
tion.

The network interface simulator models a MIPS pro-
cessor, 32 MB of memory, and several hardware com-
ponents: PCI and Ethernet interfaces and a timer. The
PCI and Ethernet interfaces provide direct memory ac-
cess (DMA) and medium access control (MAC) capa-
bilities, respectively. These are similar to those found
on the Tigon programmable Gigabit Ethernet controller
from Alteon [1]. Additionally, checksums are computed
in hardware on the network interface. The firmware of
the NIC uses these checksum values to support check-
sum offload for host packets and to avoid computing
the checksums of NIC packets in software. The NIC
does not employ any other hardware acceleration fea-
tures such as hardware connection lookup tables [15].
The processor on the NIC runs the firmware and executes
one instruction per cycle at a rate of 400, 600, or 800
million instructions per second (MIPS). The instruction
rate is varied to evaluate the impact of NIC performance.
Modern embedded processors are capable of such in-
struction rates with low power consumption [11]. At
400MIPS, the NIC can achieve 1Gb/s of TCP through-
put for one offloaded connection and another 1Gb/s for
a host connection simultaneously, using maximum-sized

Configuration
CPU Functional, single-issue, 2GHz x86 processor

Instantaneous instruction fetch
L1 cache 64KB data cache

Line size: 64B, associativity: 2-way
Hit latency: 1 cycle

L2 cache 1MB data cache
Line size: 64B, associativity: 16-way
Hit latency: 15 cycles
Prefetch: next-line on a miss

DRAM DDR333 SDRAM of size 2GB
Access latency: 195 cycles

NIC Functional, single-issue processor
Varied instruction rates for experiments
Varied maximum number of connections
10Gb/s wire

Table 2: Simulator configuration.

1518B Ethernet frames. The maximum number of con-
nections that can be stored on the NIC is also varied in
order to evaluate the impact of the amount of memory
dedicated for storing connections. The network wire is
set to run at 10Gb/s in order to eliminate the possibility
of the wire being the bottleneck. The local I/O inter-
connect is not modeled due to its complexity. However,
DMA transfers still correctly invalidate processor cache
lines, as others have shown the importance of invalida-
tions due to DMA [5].

The testbed consists of a server and a client machine,
directly connected through a full-duplex 10Gb/s wire.
Both are simulated using Simics. The server uses the
configuration shown in Table 2, while the client is com-
pletely functional, so will never be a performance bottle-
neck.

4.2 Web Workloads

The experiments use SPECweb99 and two real web
traces to drive the Flash web server [25]. SPECweb99
emulates multiple simultaneous clients. Each client is-
sues requests for both static content (70%) and dynamic
content (30%) and tries to maintain its bandwidth be-
tween 320Kb/s and 400Kb/s. The request sizes are statis-
tically generated using a Zipf-like distribution in which
a small number of files receive most of the requests. For
static content, Flash sends HTTP response data through
zero-copy I/O (the sendfile system call). All other
types of data including HTTP headers and dynamically
generated responses are copied between the user and ker-
nel memory spaces.

The two web traces are from an IBM web site and
the web site for the 1998 Soccer World Cup. A sim-
ple trace replayer program reads requests contained in
the traces and sends them to the web server [4]. Like
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SPECweb99, the client program emulates multiple si-
multaneous clients. Unlike SPECweb99, it generates
requests for static content only and sends new requests
as fast as the server can handle. Both the replayer and
SPECweb99 use persistent connections by default. The
replayer uses a persistent connection for the requests
from the same client that arrive within a fifteen sec-
ond period in the given trace. SPECweb99 statistically
chooses to use persistent connections for a fraction of
all requests. To compare SPECweb99 against the two
traces, the experiments also evaluate SPECweb99 that
uses a non-default configuration where all requests are
for static content.

For all experiments, the first 400000 packets are used
to warm up the simulators, and measurements are taken
during the next 600000 packets. Many recent stud-
ies based on simulations use purely functional simula-
tors during the warmup phase to reduce simulation time.
However, one recent study shows that such method can
produce misleading results for TCP workloads and that
the measurement phase needs to be long enough to cover
several round trip times [16]. In this paper, the warmup
phase simulates timing, and 600000 packets lead to at
least one second of simulated time for the experiments
presented in the paper.

5 Experimental Results

5.1 Priority-based Packet Processing and
Load Control

Figure 5 shows the execution profiles of the simulated
web server using various configurations. The Y axis
shows abbreviated system configurations (see Table 3
for an explanation of the abbreviations). The first graph
shows the fraction of host processor cycles spent in the
user application, the operating system, and idle loop. The
second graph shows the amount of idle time on the NIC.
The third and fourth graphs show connection and packet
rates. These graphs also show the fraction of connections
that are handed off to the NIC, and the fraction of packets
that are consumed and generated by the NIC while pro-
cessing the connections on the NIC. The last two graphs
show server throughput in requests/s, and HTTP content
in megabits/s. HTTP content throughput only includes
HTTP response bytes that are received by the client. Re-
quests/s shows the request completion rates seen by the
client.

W-0-N-N-FCFS-400 in Figure 5 shows the baseline
performance of the simulated web server for the World
Cup trace. No connections are handed off to the NIC.
The host processor has zero idle time, and 57% of host
processor cycles (not shown in the figure) are spent ex-
ecuting the network stack below the system call layer.

Configuration shorthands have the form
Workload–NIC Connections–Packet Priority–Load

Control–Selection Policy–NIC MIPS.

Workload

Web server workload
W: World Cup, 2048 clients
I: IBM, 2048 clients
D: SPECweb99, 2048 clients
S: SPECweb99-static, 4096 clients

NIC
Connections

Maximum number of connections
on the NIC
0 means handoff is not used.

Packet
Priority

host first priority-based packet
processing on the NIC
P: Used
N: Not used

Load
Control

Load control mechanism on the NIC
L: Used
N: Not used

Selection
Policy

Connection selection policy used by
the operating system
FCFS: First-come, first-served
Tn: Threshold with value n

NIC MIPS
Instruction rate of the NIC in million
instructions per second

Table 3: Configuration shorthands used in Section 5

Since the NIC has 62% idle time, handoff should be able
to improve server performance. However, simply hand-
ing off many connection to the NIC can create a bottle-
neck at the NIC, as illustrated by W-1024-N-N-FCFS-
400.

In W-1024-N-N-FCFS-400, the NIC can handle a
maximum of 1024 connections at a time. At first,
2048 connections are established, and 1024 of them are
handed off to the NIC. As the NIC becomes nearly satu-
rated with TCP processing (only 3% idle time), it takes
too long to deliver host packets to the operating system.
On average, it now takes more than 1 millisecond for a
host packet to cross the NIC. Without handoff, it takes
less than 10 microseconds. The 62% idle time on the
host processor also shows that host packets are deliv-
ered too slowly. So, the connections on the NIC progress
and terminate much faster than the connections on the
host. When the client establishes new connections, they
are most likely to replace terminated connections on the
NIC, not the host. Consequently, the NIC processes a far
greater share of new connections than the host. Overall,
88% of all connections during the experiment are handed
off to the NIC. Note that at any given time, roughly half
the active connections are being handled by the NIC and
the other half are being handled by the host. Since the
NIC becomes a bottleneck in the system and severely
degrades the performance of connections handled by the
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Figure 5: Impact of host first packet processing and load control on the simulated web server.

host, the request rate drops by 30%. This configuration
clearly shows that naive offloading can degrade system
performance. In W-1024-P-N-FCFS-400, the NIC still
has a maximum of 1024 connections but employs host
first packet processing to minimize delays to host pack-
ets. The mean time for a host packet to cross the NIC
drops to less than 13 microseconds even though the NIC
is still busy with TCP processing (only 5% idle time).
The fraction of connections handed off to the NIC is now
48%, close to one half, as expected. The host processor
shows no idle time, and server throughput continues to
improve.

In W-4096-P-N-FCFS-400, the NIC can handle a max-
imum of 4096 connections at a time. 100% of connec-
tions are handed off to the NIC since there are only 2048
concurrent connections in the system. The NIC is fully
saturated and again becomes a bottleneck in the system.
Processing each packet takes much longer, and there are
also dropped packets. As a result, the host processor
shows 64% idle time, and the request rate drops by 52%
from 26663/s to 12917/s. Thus, giving priority to host
packets cannot prevent the NIC from becoming the bot-
tleneck in the system. Note that host first packet pro-
cessing still does it job, and host packets (mainly packets
involved in new connection establishment) take only sev-
eral microseconds to cross the NIC.

In W-4096-P-L-FCFS-400, the NIC can handle a max-
imum of 4096 connections at a time, just like W-4096-P-
L-FCFS-400, but uses the load control mechanism dis-
cussed in Section 3.2. Figure 6 shows how the NIC dy-
namically adjusts the number of connections during the
experiment. Initially 2048 connections are handed off to

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Wall Time (sec)

Soft_limit
Receive NIC Packet Queue Length
Active Connections

Figure 6: Dynamic adjustment of the number of connec-
tions on the NIC by the load control mechanism for con-
figuration W-4096-P-L-FCFS-400.

the NIC, but received packets start piling up on the re-
ceive packet queue. As time progresses, the NIC reduces
connections in order to keep the length of the receive
packet queue under the threshold 1024. The number
of connections on the NIC stabilizes around 1000 con-
nections. The resulting server throughput is very close
to that of W-1024-P-N-FCFS-400 in which the NIC is
manually set to handle up to 1024 concurrent connec-
tions. Thus, the load control mechanism is able to adjust
the number of connections on the NIC in order to avoid
overload conditions. The NIC now has 9% idle time,
slightly greater than 5% shown in W-1024-P-N-FCFS-
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Figure 7: Impact of first-come, first-served and threshold-based connection selections on the simulated web server.

400, which indicates that the watermark values used in
the load control mechanism are not optimal. Overall,
handoff improves server throughput by 12% in packet
rate, 12% in request rate, and 10% in HTTP content
throughput (compare W-0-N-N-FCFS-400 and W-4096-
P-L-FCFS-400). The server profiles during the execution
of the IBM trace also show that both host first packet pro-
cessing and the load control on the NIC are necessary,
and that by using both techniques, handoff improves
server throughput for the IBM trace by 19% in packet
rate, 23% in request rate, and 18% in HTTP content
throughput (compare I-0-N-N-FCFS-400 and I-4096-P-
L-FCFS-400).

Unlike the trace replayer, SPECweb99 tries to main-
tain a fixed throughput for each client. Figure 5 also
shows server performance for SPECweb99 Static and
SPECweb99. The static version is same as SPECweb99
except that the client generates only static content re-
quests, so it is used to compare against the results pro-
duced by the trace replayer. S-0-N-N-FCFS-400 shows
the baseline performance for SPECweb99 Static. Since
each client of SPECweb99 is throttled to a maximum of
400Kb/s, 4096 connections (twice the number used for
the trace replayer) are used to saturate the server. Like W-
0-N-N-FCFS-400, the host processor has no idle cycles
and spends more than 70% of cycles in the kernel, and
the NIC has 69% idle time. When 2048 connections are
handed off, the request rate actually drops slightly. As
in W-1024-N-N-FCFS-400, host packets are delivered to
the operating system too slowly, and the host processor
shows 50% idle time. The use of host first packet pro-
cessing on the NIC overcomes this problem, and server
throughput continues to increase. Increasing the num-
ber of connections further will simply overload the NIC
as there is only 8% idle time. S-4096-P-L-FCFS-400
uses both host first packet processing and the load control
mechanism on the NIC. Although the NIC can store all
4096 connections, the load control mechanism reduces

the number of connections to around 2000 in order to
avoid overload conditions. Overall, by using host first
packet processing and the load control mechanism on the
NIC, handoff improves the request rate for SPECweb99
Static by 31%. These techniques help improve server
performance for regular SPECweb99 as well. Handoff
improves the request rate by 28%.

5.2 Connection Selection Policy

As mentioned in Section 3.3, the system may use a
threshold to differentiate long-lived connections that
transfers many packets from short-lived ones. Handing
off long-lived connections has the potential to improve
server performance when the NIC has limited memory
for a small number of connections. For instance, offload
processors may use a small on-chip memory to store con-
nections for fast access. In this case, it is necessary to
be selective and hand off connections that transfer many
packets in order to utilize the available compute power
on the NIC as much as possible. On the other hand,
when the NIC can handle a much larger number of con-
nections, it is more important to hand off as many con-
nections as possible, and a threshold-based selection pol-
icy has either negligible impact on server throughput or
degrades it because fewer packets are processed by the
NIC.

Figure 7 compares FCFS and threshold-based con-
nection selection policies when the maximum number
of connections on the NIC is much smaller than the
value used in the previous section. For threshold-based
policies, denoted by Tn, the trailing number indicates
the minimum number of enqueue operations to the send
socket buffer of a connection that must occur before the
operating system attempts to hand off the connection.
The number of enqueue operations is proportional to the
number of sent packets. For instance, using T4, the op-
erating system attempts a handoff when the fourth en-
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Figure 8: Impact of the instruction rate of the NIC on the simulated web server.

queue operation to the connection’s send socket buffer
occurs. As shown in the figure, the use of threshold en-
ables the operating system to hand off longer connections
than FCFS, but the resulting throughput improvements
are small. For instance, W-256-P-L-FCFS-400 shows
a case in which the NIC can handle up to 256 connec-
tions and the operating system hands off connections on
a FCFS basis. 13% of connections and 12% of packets
are processed by the NIC, as expected. The NIC shows
47% idle time. When a threshold policy is used (W-256-
P-L-T20-400), the NIC now processes 24% of packets,
and the request rate improves by 6%. However, the NIC
still has 34% idle time. The lifetime distribution shown
in Figure 4 suggests that if the operating system were
able to pick longest 10% of connections, the NIC would
process over 60% of packets. Thus, with a more accu-
rate selection policy, the NIC would be able to process
a greater fraction of packets and improve system perfor-
mance further.

5.3 NIC Speed

The results so far have shown that the NIC must em-
ploy host first packet processing and dynamically con-
trol the number of connections. As the instruction rate
of the NIC increases, the NIC processes packets more
quickly. The load control mechanism on the NIC should
be able to increase the number of connections handed
off to the NIC. Figure 8 shows the impact of increasing
the instruction rate of the NIC. W-4096-P-L-FCFS-400
in the figure is same as the one in Figure 5 and is used
as the baseline case. As the instruction rate increases
from 400 to 600 and 800MIPS, the fraction of connec-
tions handed off to the NIC increases from 45% to 70%
and 85%. Accordingly, the request rate of the server in-

creases from 25830/s to 29398/s and 36532/s (14% and
41% increases). For the IBM trace, increasing the in-
struction rate from 400 to 600MIPS results in a 21%
increase in request rate. At 600MIPS, nearly all con-
nections (95%) are handed off to the NIC. So, the faster
800MIPS NIC improves the request rate by only 3%.

Faster NICs improve server throughput for
SPECweb99 Static as well. As the instruction rate
increases from 400 to 600MIPS, the request rate im-
proves by 16%. The 800MIPS NIC further improves
the request rate by 13%. Faster NICs do not bene-
fit SPECweb99 because the 400MIPS NIC already
achieves more than the specified throughput. With 2048
connections, SPECweb99 aims to achieve a maximum
HTTP throughput of about 819Mb/s = 2048 × 400Kb/s.
In reality, throughput can become greater than the
specified rate as it is difficult to maintain throughput
strictly under the specified rate. With the 400MIPS NIC,
HTTP content throughput is near 1Gb/s. So, faster NICs
simply have greater idle time.

These results show that the system can transparently
exploit increased processing power on the NIC by us-
ing the load control mechanism and host first packet pro-
cessing on the NIC. Thus, hardware developers can im-
prove NIC capabilities without worrying about software
changes as the firmware will adapt the number of connec-
tions and be able to use the increased processing power.

Finally, HTTP response times, measured as the
amount of time elapsed between when a request is sent
and when the full response is received, follow server re-
quest rates, as expected. For instance, the mean response
time for the World Cup trace is 61ms without offload
(W-0-N-N-FCFS-400). It increases to 99ms when 1024
connections are offloaded without host first packet pro-
cessing or load control (W-1024-N-N-FCFS-400). The
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use of both host first packet processing and load con-
trol drops the mean response time to 60ms (W-1024-P-
L-FCFS-400). Increasing the instruction rate of the NIC
from 400 to 600 and 800MIPS further reduces the mean
response time to 53ms and 40ms, respectively. Mean re-
sponse times for other workloads follow trends similar to
that of the World Cup trace, except that mean response
times for SPECweb99 are larger than those for the World
Cup and IBM traces because of throttling and dynamic
content generation.

6 Related Work

There are a number of previous studies on full TCP
offload to both network interfaces and dedicated pro-
cessors in the system. TCP servers was an early TCP
offload design [27]. TCP servers, based on the Split-
OS concept [3], splits TCP and the rest of the oper-
ating system and lets a dedicated processor or a ded-
icated system execute TCP. Brecht et al. expand this
concept by providing an asynchronous I/O interface to
communicate with the dedicated TCP processing re-
sources [6]. Intel has dubbed such approaches, which
dedicate a general-purpose processor to TCP processing,
TCP onloading [28]. Regardless of the name, these ap-
proaches are effectively full TCP offload, as TCP and the
rest of the system’s processing are partitioned into two
components.

Freimuth et al. recently showed that full offload re-
duces traffic on the local I/O interconnect [14]. They
used two machines for evaluations, one acting as the
NIC and the other as the host CPU. A central insight
is that with offload, the NIC and the operating system
communicate at a higher level than the conventional net-
work interface, which gives opportunities for optimiza-
tions. Westrelin et al. also evaluated the impact of
TCP offload [31]. They used a multiprocessor system
in which one processor is dedicated to executing TCP,
like TCP onloading, and show a significant improvement
in microbenchmark performance. Finally, an analyti-
cal study on performance benefits of TCP offload shows
that offload can be beneficial but its benefits can vary
widely depending on application and hardware charac-
teristics [30].

However, while these studies have shown the bene-
fits of TCP offload, they have not addressed the prob-
lems that have been associated with full TCP offload.
These problems include creating a potential bottleneck at
the NIC, difficulties in designing software interfaces be-
tween the operating system and the NIC, modifying the
existing network stack implementations, and introducing
a new source of software bugs (at the NIC) [24].

Connection handoff, which addresses some of these
concerns, has been previously proposed and imple-

mented. Microsoft has proposed to implement a device
driver API for TCP offload NICs based on connection
handoff in the next generation Windows operating sys-
tem, as part of the Chimney Offload architecture [22].
Mogul et al. argued that exposing transport (connec-
tion) states to the application creates opportunities for en-
hanced application features and performance optimiza-
tions, including moving connection states between the
operating system and offload NICs [23]. The authors
have implemented both the operating system and net-
work interface components of connection handoff, with
the architecture described in Section 2 [18]. The poli-
cies presented in this paper apply to all of these previous
proposals and implementations and will improve their ef-
ficiency and performance, and prevent the network inter-
face from becoming a performance bottleneck.

A recent study shows that a commercial offloading
NIC can achieve over 7Gb/s and substantially improve
web server throughput [13]. This is an encouraging re-
sult since it shows that a specialized offload processor
can handle high packet rates.

7 Conclusion

Offloading TCP processing to the NIC can improve sys-
tem throughput by reducing computation and memory
bandwidth requirements on the host processor. However,
the NIC inevitably has limited resources and can become
a bottleneck in the system. Offload based on connec-
tion handoff enables the operating system to control the
number of connections processed by the host processor
and the NIC, thereby controlling the division of work be-
tween them. Thus, the system should be able to treat
the NIC as an acceleration coprocessor by handing off as
many connections as the resources on the NIC will allow.

A system that implements connection handoff can em-
ploy the policies presented in this paper in order to fully
utilize the offload NIC without creating a bottleneck in
the system. First, the NIC gives priority to those pack-
ets that belong to the connections processed by the host
processor. This ensures that packets are delivered to the
operating system in timely manner and that TCP pro-
cessing on the NIC does not degrade the performance
of host connections. Second, the NIC dynamically con-
trols the number of connections that can be handed off.
This avoids overloading the NIC, which would create a
performance bottleneck in the system. Third, the oper-
ating system can differentiate connections and hand off
only long-lived connections to the NIC in order to bet-
ter utilize offloading NICs that lack memory capacity for
a large number of connections. Full-system simulations
of web workloads show that without any of the policies
handoff reduces the server request rate by up to 44%. In
contrast, connection handoff augmented with these po-
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lices successfully improves server request rate by 12–
31%. When a faster offload processor is used, the sys-
tem transparently exploits the increased processing ca-
pacity of the NIC, and connection handoff achieves re-
quest rates that are 33-72% higher than a system without
handoff.
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gren, G. Hállberg, J. Högberg, F. Larsson, A. Moestedt,
and B. Werner. Simics: A Full System Simulation Plat-
form. Computer, 35(2):50–58, 2002.

[21] P. E. McKenney and K. F. Dove. Efficient Demultiplex-
ing of Incoming TCP Packets. In Proceedings of the ACM
SIGCOMM ’92 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Commu-
nication, pages 269–279, 1992.

[22] Microsoft Corporation. Scalable Networking: Network
Protocol Offload – Introducing TCP Chimney, Apr. 2004.
WinHEC Version.

[23] J. Mogul, L. Brakmo, D. E. Lowell, D. Subhraveti, and
J. Moore. Unveiling the Transport. ACM SIGCOMM
Computer Communication Review, 34(1):99–106, 2004.

[24] J. C. Mogul. TCP offload is a dumb idea whose time has
come. In Proceedings of HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems, pages 25–30, 2003.

[25] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
Efficient and Portable Web Server. In Proceedings of the
USENIX 1999 Annual Technical Conference, pages 199–
212, June 1999.

[26] V. S. Pai, P. Druschel, and W. Zwaenepoel. I/O-Lite:
A Unified I/O Buffering and Caching System. In Pro-
ceedings of the Third USENIX Symposium on Operating
Systems Design and Implementation, pages 15–28, Feb.
1999.

[27] M. Rangarajan, A. Bohra, K. Banerjee, E. V. Car-
rera, R. Bianchini, L. Iftode, and W. Zwaenepoel.
TCP Servers: Offloading TCP/IP Processing in Inter-
net Servers. Design, Implementation, and Performance.
Computer Science Department, Rutgers University, Mar.
2002. Technical Report DCR-TR-481.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 305



[28] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong.
TCP Onloading for Data Center Servers. Computer,
37(11):48–58, Nov. 2004.

[29] S. Rixner. Memory Controller Optimizations for Web
Servers. In Proceedings of the 37th Annual International
Symposium on Microarchitecture, pages 355–366, Dec.
2004.

[30] P. Shivam and J. S. Chase. On the Elusive Benefits of
Protocol Offload. In Proceedings of the ACM SIGCOMM
Workshop on Network-I/O Convergence, pages 179–184,
2003.

[31] R. Westrelin, N. Fugier, E. Nordmark, K. Kunze, and
E. Lemoine. Studying Network Protocol Offload With
Emulation: Approach And Preliminary Results. In Pro-
ceedings of the 12th Annual IEEE Symposium on High
Performance Interconnects, pages 84–90, Aug. 2004.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association306




