
Stop Polling! The Case Against OS Ticks

Dan Tsafrir∗ Yoav Etsion Dror G. Feitelson
The Hebrew University of Jerusalem, Israel

1 The Problem
All general-purpose operating systems (GPOSs) use periodic
clock interrupts called “ticks” to regain control and measure the
passage of time. On each tick the kernel performs administrative
tasks like accounting the CPU time used by the current process,
designating it for preemption if needed, waking processes with
pending signals, etc. This mechanism has been in use since the
late 1960s. However, due to the rapidly growing applicability of
GPOSs (ranging from as little as mobile phones and PDAs to as
large as supercomputers), drawbacks of periodic timing accumu-
late into a critical mass, suggesting it’s time for a change.Indeed,
we have identified quite a few mainstream system domains that
inherently conflict with the polling nature of ticks:

Mobile and embedded devices waste poweron unnecessary
ticks that happen even if the machine is otherwise idle; power is
also wasted even if the machine is busy, as tasks run longer than
necessary due to the indirect overhead of ticks (see below).We
show an idle “crippled” laptop (disconnected from its screen and
hard disk) consumes 4W due to ticks, and more, for increased
tick rates. This is the result of ticks continuously preventing the
processor from maintaining a power save mode [1].

Virtual machine settings suffer from excessive overhead.The
base overhead of ticks is intensified when a VMM/hypervisor is
positioned between the ticking OS and the hardware. Further,
VM servers can be overwhelmed by ticking guest OSs. One ex-
ample is an S/390 mainframe for which servicing clock inter-
rupts of multiple idle VMs (running Linux) led to 100% utiliza-
tion of the physical processor [2].

Ticks enable denial-of-service attacks.CPU consumption ac-
counting is done in tick resolution. We show that any unprivi-
leged “cheater” process can take advantage of this to monopolize
the machine, by sleeping when ticks take place and systemati-
cally avoiding being billed. The fact cheaters appear to consume
no CPU makes their priority very high and allows them to run
whenever they choose while starving “honest” processes [3].

Ticks are a security breach. A side-effect of being able not
to be billed is that monitoring applications like the UNIX ’top’
utility report such cheater processes as consuming 0% CPU, es-
sentially making them “invisible”. We show that cheaters can get
as much or as little CPU cycles as they want, without this infor-
mation showing up on monitors [3]. Knowing about an attack
is essential to stopping it, and so the fact offending processes do
not appear on CPU monitors constitute a serious security breach.

Parallel applications suffer from “noise” (OS activity unre-
lated to the application), where one late process holds up hun-
dreds to thousands of peers with which it synchronizes, leaving
the entire parallel machine idle until the late process catches up.
We analytically quantify the effect and empirically show ticks’

∗Current affiliation: IBM T. J. Watson Research Center.

noise is a major source of degraded performance in supercom-
puter settings [4].
Desktop applications suffer from slowdown due to indirect
overheads of useless kernel-user context switching that istrig-
gered by ticks. We show that this penalty can be as high as 8%
for various commodity Pentium-IV machines [4].
Soft realtime and multimedia tasks suffer from limited clock
resolution. For example, we show that a movie player display-
ing a clip can lose up to a third of its frames because the reso-
lution of alarm-timers is limited by the tick rate. We also show
that alarm latency can be greatly reduced when increasing the
tick rate, but that this incurs severe overhead penalties [5].
Hard realtime systems experience difficulties in predicting
deterministic timing behavior, as ticks may occur while tasks are
running. We show the duration of periodic work is susceptible
to significant variance [4], which e.g. may even be dependenton
the number of processes present in the system [6].
Micro kernels complexity is increased if tick-related code is
included in the kernel. Reducing the size of the kernel is es-
sential for obtaining more dependable systems. Micro kernels’
code base could be further reduced if the timing mechanisms
are pushed away from the kernel, but this is not done due to
overhead considerations as ticks are too frequent (e.g. Minix3’s
4,000-lines kernel includes the timing subsystem). Eliminating
ticks can largely solve this problem.

2 The Solution
The source of the above problems is periodic ticks that, as men-
tioned earlier, turn the OS into a polling-based system. Theal-
ternative is to go event-based by leveraging the fast “one-shot
timers” mechanisms (timers that are set only for specific needs)
made available by commodity hardware (e.g. APIC and HPET).
However, simply doing this in a general-purpose setting is not an
option, as it allows for any user to essentially bring the system
down e.g. by generating numerous events with nanosecond dif-
ferences. This can be solved by aggregating the events, e.g.by
using a modified version of “firm timers” [7] that eliminates the
periodic component from this mechanism. A description of our
solution can be found in [1].

References
[1] D. Tsafrir, Y. Etsion, and D. G. Feitelson. General-purpose timing: The failure of

periodic timers. Tech. Report 2005-6, The Hebrew University, Feb 2005.
[2] M. Schwidefsky, A. Cox, and many others. No 100 HZ timer! URL

http://lkml.org/lkml/2001/4/9/79, Apr 2001. Linux Kernel Mailing List.
[3] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Is your PC secretly running nuclear

simulations? Tech. Report 2006-78, The Hebrew University,Sep 2006. Submitted.
[4] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick. System noise, OS clock

ticks, and fine-grained parallel applications. InACM ICS, Jun 2005.
[5] Y. Etsion, D. Tsafrir, and D. G. Feitelson. Effects of clock resolution on the scheduling

of interactive and soft real-time processes. InACM SIGMETICS, Jun 2003.
[6] D. Tsafrir. Barrier synchronization on a loaded SMP using two-phase waiting

algorithms. Master’s thesis, The Hebrew University, Sep 2002.
[7] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. Supporting time-sensitive

applications on a commodity OS. InUSENIX OSDI, Dec 2002.


