
KernelSec: An Authorization Model in the Operating System

Kernel

Manigandan Radhakrishnan and Jon A. Solworth
University of Illinois at Chicago

{mani, solworth}@rites.uic.edu http://www.rites.uic.edu/kernelSec

An authorization system is at the core of the mech-
anisms that provide system security. It is responsible
for allowing or denying user actions (like request to
read or write a file, to connect to a website or kill a
process). Despite considerable research in authoriza-
tion systems, widely deployed authorization systems
struggle to cope with today’s security needs.

Some of the challenges facing today’s computer sys-
tems are

1. the programs installed on (or downloaded onto)
a system come from a variety of sources, not all
are equally trusted,

2. the users of computer systems vary widely in
terms of their understanding of the underlying
computer security mechanisms, and

3. the lack of sufficient operating system security
mechanisms, in the past, has lead to applications
providing their own security features. This has
several negative consequences, including the fact
that a successful exploitation of a bug in the ap-
plication can render these protections ineffective.

Hence there is a need for sound operating system
based authorizations that can secure the system in
the face of these challenges.

KernelSec Project: KernelSec is a general-
purpose authorization model that provides

strong protections using a mandatory access con-
trol model implemented as part of the operating
system kernel;

easy configuration using a two-level approach to
configuration;

robustness by allowing security changes to the sys-
tem to be encoded as part of the authorization
state; and

better compatibility or usability by making the
enforcement transparent to applications.

Enforcement Model: The privileges a process has
is a reflection of the set of actions that the process
is allowed to perform. Traditionally, the set of privi-
leges primarily depends on the user running the pro-
cess The disadvantage is that all the processes of a
user are executed with the entire set of user priv-
ileges. In KernelSec, the enforcement engine bases
the authorization not only on the user, but also on
the executable (or the program) and the history of ac-
cesses. Keeping track of the history allows KernelSec
to change the privileges available (dynamically) at
run-time.

Associated with every process is a domain which
describes its privileges. In KernelSec, the domain
may be changed to obtain a needed (but miss-
ing) privilege. Such dynamic domain transitions al-
lows KernelSec to track process history and suitably
change privileges by switching to a different domain.

Sometimes user actions need to be recorded beyond
the lifetime of a process. KernelSec implements ac-
tive transitions to support this. KernelSec also imple-
ments a sophisticated group mechanism that among
other things can represent relationship among groups.

Implementation: The project at this time is be-
ing implemented as part of the GNU/Linux operat-
ing system, with the enforcement engine being imple-
mented as part of the Linux kernel (v2.6) using the
Linux Security Modules (LSM).

Poster and Demo: We use the particular case
of Sandboxing to illustrate how the general-purpose
mechanisms of KernelSec can be used to dynam-
ically confine an application inside a sandboxed-
environment in the event that it is subjected to un-
trusted data.

1


