
Reducing Memory Bandwidth for Chip-
Multiprocessors using Cache Injection

Edgar A. León Arthur B. Maccabe
leon@cs.unm.edu maccabe@cs.unm.edu

Computer Science Department
University of New Mexico

Current and future high-performance systems will be con-
structed using multi-core chips. These systems impose higher
demands to the memory system. Lack of adequate mem-
ory bandwidth will limit application performance. To reduce
memory bandwidth we propose to usecache injection of in-
coming network messages. The objective of this work is to
demonstrate benefits of cache injection and provide a basis
for studying injection policies.

Current architectures place incoming network data into
main memory and it is up to the processor to fetch data
into a cache. Fetching data into a cache is usually done by
prefetching which anticipates accesses to blocks of memory.
Cache injection provides an alternative approach by placing
incoming network data directly into a processor’s cache. This
technique reduces memory bandwidth by eliminating fetching
data from main memory.

In this work, we quantify the difference between cache in-
jection and prefetching. Through simulation we show: (1)
cache injection significantly reduces memory bandwidth; and
(2) cache injection outperforms prefetching on memory band-
width. In addition, cache injection reduces execution time
comparatively to prefetching.

Cache injection is not a new idea and has been used in pre-
vious work [2, 3] to improve uniprocessor application perfor-
mance in commodity protocols (TCP/IP). Our study extends
previous work by quantifying the difference between cache
injection and prefetching in a zero-copy, OS-bypass environ-
ment which is typical for high-performance applications.

We evaluated cache injection and prefetching using IBM’s
PowerPC full-system simulator, Mambo [1], running the K42
research OS. We used a Power5-like architectural configura-
tion with a cache injection implementation to the L3 cache.

Our evaluation consists of measuring memory bandwidth
and execution time of an application in three configurations:
(1) base case with no optimizations; (2) prefetching; and (3)
cache injection. The application used in this evaluation isa
user-level program that receives data from the network and
reads every word of the incoming message sequentially. To
evaluate cache injection in a suitable environment for high-
performance applications, we implemented a zero-copy, OS-
bypass messaging system based on UDP semantics [4].

In our first experiment, we measure the memory bandwidth
used by the application in terms of the number of memory
reads requested to the memory controller. The base case and
prefetching perform equally as prefetching has to fetch in-
coming network data from memory. Prefetching anticipates
data accesses correctly due to the sequential access pattern
used by the application. Cache injection reduces the number

of memory reads by 96% as all application accesses to incom-
ing network data hit the L3 cache.

Our second experiment measures the execution time of the
application in processor cycles. Both cache injection and
prefetching outperform the base case as they both reduce
the number of cache misses. Prefetching reduces execution
time by 37% while cache injection by 30%. Prefetching
performs better because it fetches blocks to the L2 and L1
caches, while our cache injection implementation targets the
L3 cache. We expect that injections to the L2 will perform as
good as prefetching or better.

Since cache injection reduces memory bandwidth for in-
coming network data, its benefits are directly proportionalto
the ratio of incoming network data and local data used by
the application. In addition, cache injection benefits increase
as the pressure on the memory bus increases (several proces-
sors).

Cache injection also presents some challenges. In our eval-
uation, the application uses the data shortly after it is in-
jected into the cache. If the application does not use the data
promptly, cache injection may create cache pollution taking
the application’s working set out of the cache. Thus, the per-
formance benefits of this technique rely on agood injection
policy. This policy is dependent upon the usage pattern of an
application.

In conclusion, cache injection (1) alleviates memory band-
width in a zero-copy, OS-bypass environment typical for
high-performance applications, and (2) outperforms prefetch-
ing on memory bandwidth. In addition, cache injection has a
positive effect on execution time by reducing execution time
comparatively to prefetching. This work demonstrates ben-
efits of cache injection on memory bandwidth and provides
a basis for studying injection policies in a high-performance
computing environment. Exploration of these policies re-
mains as future work. We plan on using information from
the OS and the compiler to make such decisions.

References

[1] Patrick Bohrer et al. Mambo – a full system simulator
for the PowerPC architecture.ACM SIGMETRICS Per-
formance Evaluation Review, 31(4):8–12, March 2004.

[2] Patrick Bohrer et al. Method and apparatus for accel-
erating Input/Output processing using cache injections,
March 2004. US Patent No. US 6,711,650 B1.

[3] Ram Huggahalli et al. Direct cache access for high band-
width network I/O. In32nd Annual International Sympo-
sium on Computer Architecture (ISCA 2005), pages 50–
59, Madison, WI, June 2005.

[4] Edgar A. León and Michal Ostrowski. An infrastruc-
ture for the development of kernel network services. In
20th ACM Symposium on Operating Systems Principles
(SOSP’05). Poster Session, Brighton, United Kingdom,
October 2005. ACM SIGOPS.


