
Plush: An Infrastructure for Managing and
Visualizing Distributed Applications

Jeannie Albrecht, Ryan Braud, Darren Dao, John Jersin,
Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat

{jalbrecht, rbraud, ctuttle, snoeren, vahdat} @ cs.ucsd.edu

{hdao, jjersin} @ ucsd.edu

1 Research summary

Installing, configuring, deploying, and monitoring a dis-
tributed application is currently a time-consuming and
error-prone process. In any environment made up of hun-
dreds or even thousands of physical machines distributed
across the Internet, failures are inevitable . Hence, appli-
cations running across these platforms must be carefully
monitored and controlled to ensure continued operation
and sustained performance. Operators in charge of de-
ploying and managing these applications face a daunting
list of challenges: discovering and acquiring appropriate
resources, distributing files, and appropriately configur-
ing hosts (and reconfiguring them when operating con-
ditions change). It is not surprising, then, that a number
of tools have been developed to address various aspects
of this process. Unfortunately, no solution has been pre-
sented that flexibly automates the entire task while grace-
fully handling the variety of failures that often present
themselves in large-scale, wide-area deployments.

We present Plush, a framework of tools that, when
taken together, provide a unified environment support-
ing the distributed application design and deployment
life cycle. Plush users describe distributed applications
using an extensible XML specification language that al-
lows users to customize various aspects of the deploy-
ment life cycle to fit the needs of an application and its
target infrastructure. This functionality is used, for ex-
ample, to specify a particular resource discovery or al-
location tool to use during application deployment. In
addition, Plush provides extensive failure management
support to adapt to failures in both the application and
the underlying computational infrastructure.

Plush manages resource discovery and acquisition,
software distribution, and process execution in a fully
configurable fashion. Once an application is running,
Plush monitors it for failures or application-level errors
for the duration of its execution. Upon detecting a prob-
lem, Plush can perform a number of user-configurable
recovery actions, such as restarting the application, auto-

matically reconfiguring it, or even searching for alternate
resources. For applications requiring wide-area synchro-
nization, Plush provides several efficient synchronization
primitives. In particular, Plush provides two new barrier
semantics, which relax traditional barrier semantics for
increased performance and robustness in failure-prone
environments.

2 Poster and demo details

Our poster highlights the main components of Plush and
focuses on some of the new features that have been re-
cently added for increased usability. For example, Plush
now exposes its API through an XML-RPC interface, al-
lowing programmatic interaction in addition to the ter-
minal interface. We show a screenshot of Nebula, a vi-
sualization application that uses this API to present the
status of a PlanetLab application in a graphical manner.
All stages of a distributed application’s execution are vi-
sualized and manipulated with Nebula, making it easier
for users to debug their programs and deal with failures
quickly. Plush also now supports integration with virtual
machine management infrastructures, allowing users to
create and destroy virtual machines through Plush as part
of their application’s execution.

In conjunction with the poster, we present a demo
of Plush in action. The demo focuses on how Plush is
used to manage PlanetLab applications. In particular,
we show Plush being used with Nebula. Nebula includes
a tool that allows users to create their application spec-
ifications for Plush graphically, rather than having to
manually edit XML files. After building the application
specification, we show how to deploy our application
on some subset of PlanetLab resources. We then show
how we use Nebula to visually monitor the status of our
application as it runs.

For more information and details regarding Plush,
please visithttp://plush.ucsd.edu.


