
An Operating System Framework for
Transparent Service Resiliency

Mark Aiken

Microsoft Research
maiken@microsoft.com

Hiroo Ishikawa
Waseda University

ishikawa@cs.waseda.ac.jp

The Singularity project at Microsoft
Research is a cross-discipline effort to
construct reliable systems by applying
recent innovations in systems design, safe
programming languages, and tools. The
project’s main artifact, Singularity, is an
operating system written almost entirely in
safe languages, and meant to serve as a
laboratory for developing new techniques
and tools for ensuring system reliability
and correctness.

Recent work within this project has
focused on building facilities to support
automatic and transparent resiliency of
system services, and a framework to
facilitate the development of such
services. “Resiliency”, here, means the
ability to recover from failures by
restarting the offending service.
“Transparent” means that the recovery
process is undetectable by client
applications interacting with the service.
We believe this approach can provide the
means for recovering from bugs whose
manifestation depends on events that are
nondeterministic from the perspective of
the service, including race conditions
sensitive to specific interleavings of
concurrent operations, and bugs on error
paths when processing messages received
from other components.

In our approach, a tool mechanically
generates a companion component to
each resilient service, based on a
specification of each service’s interaction
with client applications, along with

resiliency-specific annotations indicating
the points at which the service’s state
should be captured. Each companion
component intercepts and records its
service’s interactions with the system,
coordinates the creation of periodic
checkpoints that include a distillation of
its service’s state, and coordinates failure
recovery by reconstituting its service from
saved state and replaying recent messages.
Authoring a resilient service requires
conformance to various restrictions; the
process is facilitated by a development
framework.

Future generalizations include an
expansion of scenarios in which recovery
is possible by enabling “resiliency-aware”
client applications to participate in the
recovery process, enhancements to
techniques for detecting service
corruption or misbehavior, efficiency
improvements, and extensions of the
conceptual model to better support
complete stacks of interoperating system
services. We also intend to extend support
to the application layer to achieve
application resiliency.

Demonstration

A demonstration of the Singularity
operating system running on commodity
PC hardware, including an example
resilient system service that can be crashed
and transparently restarted without
impairing multiple connected client
sessions, will be provided.

