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Applications inside Data Centers
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Challenges of Datacenter Diagnosis

e Large complex applications
— Hundreds of application components
— Tens of thousands of servers

* New performance problems
— Update code to add features or fix bugs
— Change components while app is still in operation
e Old performance problems (Human factors)
— Developers may not understand network well

— Nagle’s algorithm, delayed ACK, etc.



Diagnosis in Today’s Data Center
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SNAP: A Scalable Net-App Profiler

that runs everywhere, all the time



SNAP Architecture

At each host for every connection

Collect
data




Collect Data in TCP Stack

 TCP understands net-app interactions
— Flow control: How much data apps want to read/write
— Congestion control: Network delay and congestion

e Collect TCP-level statistics
— Defined by RFC 4898
— Already exists in today’s Linux and Windows OSes



TCP-level Statistics

* Cumulative counters
— Packet loss: #FastRetrans, #Timeout
— RTT estimation: #SampleRTT, #SumRTT
— Receiver: RwinLimitTime
— Calculate the difference between two polls

* |[nstantaneous snapshots
— #Bytes in the send buffer
— Congestion window size, receiver window size
— Representative snapshots based on Poisson sampling
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SNAP Architecture

At each host for every connection

Collect Performance
data Classifier




App

Sender}

Receiver

]
]

Life of Data Transfer

Application generates the data

Copy data to send buffer

TCP sends data to the network

Receiver receives the data and ACK
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Taxonomy of Network Performance

Sender
— No network problem

— Send buffer not large enough

— Timeout

— Not reading fast enough (CPU, disk, etc.)

] — Fast retransmission
] — Not ACKing fast enough (Delayed ACK)
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ldentifying Performance Problems

Sender App ] — Not any other problems

Send Buffer — #bytes in send buffer ——  Sampling

|
|
e

] — H#HFast retransmission

— #Timeout .
Direct
Mmeasure
— RwinLimitTime
Inference
Receiver _ Delayed ACK /

diff(SumRTT) > diff(SampleRTT)*MaxQueuingDelay
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SNAP Architecture

Management
System

Topology, routing
Conn =2 proc/app
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Pinpoint Problems via Correlation

* Correlation over shared switch/link/host

— Packet loss for all the connections going through
one switch/host

Core

— Pinpoint the problematic switch
\4% Aggregation
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Pinpoint Problems via Correlation

* Correlation over application
— Same application has problem on all machines
— Report aggregated application behavior

Core
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SNAP Architecture

Online, lightweight O.fﬂine, cross-conn v
processing & diagnosis diagnosis anagement
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Reducing SNAP Overhead

e SNAP overhead

— Data volume: 120 Bytes per connection per poll
— CPU overhead:

e 5% for polling 1K connections with 500 ms interval
* Increases with #connections and polling freq.

e Solution: Adaptive tuning of polling frequency
— Reduce polling frequency to stay within a target CPU
— Devote more polling to more problematic connections



SNAP in the Real World



Key Diagnosis Steps

* |dentify performance problems
— Correlate across connections
— |dentify applications with severe problems

* Expose simple, useful information to developers

— Filter important statistics and classification results

* |dentify root cause and propose solutions
— Work with operators and developers
— Tune TCP stack or change application code
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SNAP Deployment

* Deployed in a production data center
— 8K machines, 700 applications
— Ran SNAP for a week, collected terabytes of data

* Diagnosis results
— |dentified 15 major performance problems
— 21% applications have network performance problems



Characterizing Perf. Limitations

#Apps that are limited
for > 50% of the time

Send 1App — Send buffer not large enough
Buffer

l

{Network] 6 Apps

l

{Receiver] 8 Apps — Not reading fast enough (CPU, disk, etc.,
144 Apps — Not ACKing fast enough (Delayed ACK)

— Fast retransmission

— Timeout
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Three Example Problems

* Delayed ACK affects delay sensitive apps
* Congestion window allows sudden burst

* Significant timeouts for low-rate flows
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Problem 1: Delayed ACK

* Delayed ACK affected many delay sensitive apps
— even #pkts per record =2 1,000 records/sec

odd #pkts per record =2 5 records/sec

— Delayed ACK was used to reduce bandwidth usage and
A B

server interrupts

Proposed solutions:
Delayed ACK

should be disabled
in data centers

—Daa

CK

}

Da tc'i

ACK

\

ACK every
other packet

I 200 ms

23



Send Buffer and Delayed ACK

 SNAP diagnosis: Delayed ACK and zero-copy send

N

oL Application buffer _
Application With Socket Send Buffer
-

1. Send complete

Socket send buffer Receiver
Network <
Stack 2. ACK

L Application buffer
Application Zero-copy send
I N
2. Send complete Receiver
Network _
Stack 1. ACK -




Problem 2:
Congestion Window Allows Sudden Bursts

* Increase congestion window to reduce delay
— To send 64 KB data with 1 RTT
— Developers intentionally keep congestion window large
— Disable slow start restart in TCP

Drops after an
. Window idle time

o — 1
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Slow Start Restart

 SNAP diagnosis

— Significant packet loss
— Congestion window is too large after an idle period

* Proposed solutions
— Change apps to send less data during congestion

— New transport protocols that consider both congestion
and delay



Problem 3: Timeouts for Low-rate Flows

 SNAP diagnosis
— More fast retrans. for high-rate flows (1-10MB/s)
— More timeouts with low-rate flows (10-100KB/s)

* Proposed solutions
— Reduce timeout time in TCP stack
— New ways to handle packet loss for small flows



Conclusion

* Asimple, efficient way to profile data centers
— Passively measure real-time network stack information
— Systematically identify problematic stages

— Correlate problems across connections

* Deploying SNAP in production data center
— Diagnose net-app interactions
— A quick way to identify them when problems happen

e Future work

— Extend SNAP to diagnose wide-area transfers



Thanks!



