Profiling Network Performance
in Multi-tier Datacenter Applications

Minlan Yu
Scalable _ . .
Net-App Princeton University

Profiler

Joint work with Albert Greenberg, Dave Maltz, Jennifer Rexford,
Lihua Yuan, Srikanth Kandula, Changhoon Kim

1

Applications inside Data Centers

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
g r‘ i ' ' ' ' :,,~ g g g

] < 4] ’ :] »i]]
; < ‘ 1 ; L
‘ §5- r ‘ fEE?" 'E“ M 'E“‘M | :=:='. ‘ :=:= ===‘_ I s 4

by G ooglg

Front end Aggregator
Server

Workers

Challenges of Datacenter Diagnosis

e Large complex applications
— Hundreds of application components
— Tens of thousands of servers

* New performance problems
— Update code to add features or fix bugs
— Change components while app is still in operation
e Old performance problems (Human factors)
— Developers may not understand network well

— Nagle’s algorithm, delayed ACK, etc.

Diagnosis in Today’s Data Center

Packet trace:

App logs: - ™ |

#Reqs/sec Host ::llterdmljt trace for
Response time N w ong delay r-eq.

1% req. >200ms delay \ App) Too expenswe
Application-specific % \

0S \[Pacflf<et]~ ’
: . sniffer
- %
SNAP: Switch logs:
Diagnose net-app interactions #bytes/pkts per minute

Generic, fine-grained, and lightweight Too coarse-grained

SNAP: A Scalable Net-App Profiler

that runs everywhere, all the time

SNAP Architecture

At each host for every connection

Collect
data

Collect Data in TCP Stack

 TCP understands net-app interactions
— Flow control: How much data apps want to read/write
— Congestion control: Network delay and congestion

e Collect TCP-level statistics
— Defined by RFC 4898
— Already exists in today’s Linux and Windows OSes

TCP-level Statistics

* Cumulative counters
— Packet loss: #FastRetrans, #Timeout
— RTT estimation: #SampleRTT, #SumRTT
— Receiver: RwinLimitTime
— Calculate the difference between two polls

* |[nstantaneous snapshots
— #Bytes in the send buffer
— Congestion window size, receiver window size
— Representative snapshots based on Poisson sampling

8

SNAP Architecture

At each host for every connection

Collect Performance
data Classifier

App

Sender}

Receiver

]
]

Life of Data Transfer

Application generates the data

Copy data to send buffer

TCP sends data to the network

Receiver receives the data and ACK

10

Taxonomy of Network Performance

Sender
— No network problem

— Send buffer not large enough

— Timeout

— Not reading fast enough (CPU, disk, etc.)

] — Fast retransmission
] — Not ACKing fast enough (Delayed ACK)

11

ldentifying Performance Problems

Sender App] — Not any other problems

Send Buffer — #bytes in send buffer —— Sampling

|
|
e

] — H#HFast retransmission

— #Timeout .
Direct
Mmeasure
— RwinLimitTime
Inference
Receiver _ Delayed ACK /

diff(SumRTT) > diff(SampleRTT)*MaxQueuingDelay

12

SNAP Architecture

Management
System

Topology, routing
Conn =2 proc/app

At each host for every connection N l

- N
— Cross-
Collect Performance ; connection
data Classifier , _correlation

Offending app,
host, link, or switch

13

Pinpoint Problems via Correlation

* Correlation over shared switch/link/host

— Packet loss for all the connections going through
one switch/host

Core

— Pinpoint the problematic switch
\4% Aggregation

/ (' ‘
1
\ \ ‘S Q,/ \p Edge

@3@$@ Yo ¥ @ SPED FDE.

Pinpoint Problems via Correlation

* Correlation over application
— Same application has problem on all machines
— Report aggregated application behavior

Core

’\a" ." ‘ .- h,/‘ *'! Aggregatlon
/ /

SNAP Architecture

Online, lightweight O.fﬂine, cross-conn v
processing & diagnosis diagnosis anagement

\ System
\\ Topology, routing
Conn =2 proc/app
At each host for every connection N l

Cross-

r A
\
Collect Performance ; connection
data Classifier | _correlation

Offending app,
host, link, or switch

16

Reducing SNAP Overhead

e SNAP overhead

— Data volume: 120 Bytes per connection per poll
— CPU overhead:

e 5% for polling 1K connections with 500 ms interval
* Increases with #connections and polling freq.

e Solution: Adaptive tuning of polling frequency
— Reduce polling frequency to stay within a target CPU
— Devote more polling to more problematic connections

SNAP in the Real World

Key Diagnosis Steps

* |dentify performance problems
— Correlate across connections
— |dentify applications with severe problems

* Expose simple, useful information to developers

— Filter important statistics and classification results

* |dentify root cause and propose solutions
— Work with operators and developers
— Tune TCP stack or change application code

19

SNAP Deployment

* Deployed in a production data center
— 8K machines, 700 applications
— Ran SNAP for a week, collected terabytes of data

* Diagnosis results
— |dentified 15 major performance problems
— 21% applications have network performance problems

Characterizing Perf. Limitations

#Apps that are limited
for > 50% of the time

Send 1App — Send buffer not large enough
Buffer

l

{Network] 6 Apps

l

{Receiver] 8 Apps — Not reading fast enough (CPU, disk, etc.,
144 Apps — Not ACKing fast enough (Delayed ACK)

— Fast retransmission

— Timeout

21

Three Example Problems

* Delayed ACK affects delay sensitive apps
* Congestion window allows sudden burst

* Significant timeouts for low-rate flows

22

Problem 1: Delayed ACK

* Delayed ACK affected many delay sensitive apps
— even #pkts per record =2 1,000 records/sec

odd #pkts per record =2 5 records/sec

— Delayed ACK was used to reduce bandwidth usage and
A B

server interrupts

Proposed solutions:
Delayed ACK

should be disabled
in data centers

—Daa

CK

}

Da tc'i

ACK

\

ACK every
other packet

I 200 ms

23

Send Buffer and Delayed ACK

 SNAP diagnosis: Delayed ACK and zero-copy send

N

oL Application buffer _
Application With Socket Send Buffer
-

1. Send complete

Socket send buffer Receiver
Network <
Stack 2. ACK

L Application buffer
Application Zero-copy send
I N
2. Send complete Receiver
Network _
Stack 1. ACK -

Problem 2:
Congestion Window Allows Sudden Bursts

* Increase congestion window to reduce delay
— To send 64 KB data with 1 RTT
— Developers intentionally keep congestion window large
— Disable slow start restart in TCP

Drops after an
. Window idle time

o — 1

25

Slow Start Restart

 SNAP diagnosis

— Significant packet loss
— Congestion window is too large after an idle period

* Proposed solutions
— Change apps to send less data during congestion

— New transport protocols that consider both congestion
and delay

Problem 3: Timeouts for Low-rate Flows

 SNAP diagnosis
— More fast retrans. for high-rate flows (1-10MB/s)
— More timeouts with low-rate flows (10-100KB/s)

* Proposed solutions
— Reduce timeout time in TCP stack
— New ways to handle packet loss for small flows

Conclusion

* Asimple, efficient way to profile data centers
— Passively measure real-time network stack information
— Systematically identify problematic stages

— Correlate problems across connections

* Deploying SNAP in production data center
— Diagnose net-app interactions
— A quick way to identify them when problems happen

e Future work

— Extend SNAP to diagnose wide-area transfers

Thanks!

