Profiling Network Performance in Multi-tier Datacenter Applications

Minlan Yu Princeton University

Joint work with Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua Yuan, Srikanth Kandula, Changhoon Kim

Applications inside Data Centers

Challenges of Datacenter Diagnosis

- Large complex applications
 - Hundreds of application components
 - Tens of thousands of servers
- New performance problems
 - Update code to add features or fix bugs
 - Change components while app is still in operation
- Old performance problems (Human factors)
 - Developers may not understand network well
 - Nagle's algorithm, delayed ACK, etc.

Diagnosis in Today's Data Center

App logs: #Reqs/sec Response time 1% req. >200ms delay Application-specific

SNAP:

Diagnose net-app interactions

Generic, fine-grained, and lightweight

Switch logs: #bytes/pkts per minute Too coarse-grained

SNAP: A Scalable Net-App Profiler

that runs everywhere, all the time

SNAP Architecture

At each host for every connection

Collect data

Collect Data in TCP Stack

- TCP understands net-app interactions
 - Flow control: How much data apps want to read/write
 - Congestion control: Network delay and congestion

- Collect TCP-level statistics
 - Defined by RFC 4898
 - Already exists in today's Linux and Windows OSes

TCP-level Statistics

- Cumulative counters
 - Packet loss: #FastRetrans, #Timeout
 - RTT estimation: #SampleRTT, #SumRTT
 - Receiver: RwinLimitTime
 - Calculate the difference between two polls
- Instantaneous snapshots
 - #Bytes in the send buffer
 - Congestion window size, receiver window size
 - Representative snapshots based on Poisson sampling

SNAP Architecture

Life of Data Transfer

Taxonomy of Network Performance

Identifying Performance Problems

SNAP Architecture

Pinpoint Problems via Correlation

- Correlation over shared switch/link/host
 - Packet loss for all the connections going through one switch/host
 - Pinpoint the problematic switch

Pinpoint Problems via Correlation

- Correlation over application
 - Same application has problem on all machines
 - Report aggregated application behavior

SNAP Architecture

Reducing SNAP Overhead

- SNAP overhead
 - Data volume: 120 Bytes per connection per poll
 - CPU overhead:
 - 5% for polling 1K connections with 500 ms interval
 - Increases with #connections and polling freq.

- Solution: Adaptive tuning of polling frequency
 - Reduce polling frequency to stay within a target CPU
 - Devote more polling to more problematic connections

SNAP in the Real World

Key Diagnosis Steps

- Identify performance problems
 - Correlate across connections
 - Identify applications with severe problems
- Expose simple, useful information to developers
 - Filter important statistics and classification results
- Identify root cause and propose solutions
 - Work with operators and developers
 - Tune TCP stack or change application code

SNAP Deployment

- Deployed in a production data center
 - 8K machines, 700 applications
 - Ran SNAP for a week, collected terabytes of data

- Diagnosis results
 - Identified 15 major performance problems
 - 21% applications have network performance problems

Characterizing Perf. Limitations

#Apps that are limited for > 50% of the time

Three Example Problems

Delayed ACK affects delay sensitive apps

Congestion window allows sudden burst

Significant timeouts for low-rate flows

Problem 1: Delayed ACK

Delayed ACK affected many delay sensitive apps

– even #pkts per record → 1,000 records/sec
 odd #pkts per record → 5 records/sec

Delayed ACK was used to reduce bandwidth usage and

server interrupts

Proposed solutions:
Delayed ACK
should be disabled
in data centers

Send Buffer and Delayed ACK

SNAP diagnosis: Delayed ACK and zero-copy send

Problem 2: Congestion Window Allows Sudden Bursts

- Increase congestion window to reduce delay
 - To send 64 KB data with 1 RTT
 - Developers intentionally keep congestion window large
 - Disable slow start restart in TCP

Slow Start Restart

SNAP diagnosis

- Significant packet loss
- Congestion window is too large after an idle period

Proposed solutions

- Change apps to send less data during congestion
- New transport protocols that consider both congestion and delay

Problem 3: Timeouts for Low-rate Flows

SNAP diagnosis

- More fast retrans. for high-rate flows (1-10MB/s)
- More timeouts with low-rate flows (10-100KB/s)

Proposed solutions

- Reduce timeout time in TCP stack
- New ways to handle packet loss for small flows

Conclusion

- A simple, efficient way to profile data centers
 - Passively measure real-time network stack information
 - Systematically identify problematic stages
 - Correlate problems across connections
- Deploying SNAP in production data center
 - Diagnose net-app interactions
 - A quick way to identify them when problems happen
- Future work
 - Extend SNAP to diagnose wide-area transfers

Thanks!