

PIE in the Sky: Online Passive Interference Estimation for Enterprise WLANs

Vivek Shrivastava*

Nokia Research Center, Palo Alto

Shravan Rayanchu, Suman Banerjee University of Wisconsin-Madison

Konstantina Papagiannaki Intel Labs, Pittsburgh

*vivek.2.shrivastava@nokia.com

Enterprise WLAN setting

Enterprise WLAN setting

Enterprise WLAN setting

"The wireless is being flaky."

"Flaky how?"

"Well my connection dropped earlier and now it seems to be slow"

"We will take a look."

"Wait, now it seems fine."

Support

^{*}Slide borrowed from Cheng et. al (Jigsaw, Sigcomm '06)

6

Rate anomaly

Interference management in WLANs

Interference management in WLANs

assignment)

Interference management in WLANs

assignment)

Use bandwidth tests

But are bandwidth tests practical?

- Can we use bandwidth tests in live settings
 - Good accuracy –
 - Network downtime required X
 - Not scalable (~ 1 hr for 20 AP-Client pair network) X
 - Not based on realistic rates and packet sizes X
 - Inefficient in dynamic scenario (client mobility) X

But are bandwidth tests practical?

- Can we use bandwidth tests in live settings
 - Good accuracy –
 - Network downtime required X
 - Not scalable (~ 1 hr for 20 AP-Client pair network) X
 - Not based on realistic rates and packet sizes X
 - Inefficient in dynamic scenario (client mobility) X

Can we estimate interference in a passive, real-time way?

PIE Outline

- Motivation
 - Conventional bandwidth tests not sufficient
- Passive Interference Estimation (PIE)
 - Polling period of PIE
 - Accuracy of PIE
 - Realistic trace replay with PIE
- Applications of PIE
- Summary

43

Vivek Shrivastava

NSDI 2011

Computing interference measure in PIE

- Compute Isolation loss rate
 - Fraction of non-overlapping packets lost
- Compute Interference loss rate
 - Fraction of overlapping packets lost
- Interference measure (LIR):
 - (1 Interference loss) / (1 Isolation loss)

How quickly can PIE converge?

- Time taken by PIE to converge depends on two key properties
 - Periodicity with which sniffer reports are collected by the controller
 - Traffic patterns for the links which dictate the number of interference events captured in a time interval

How quickly can PIE converge?

- Time taken by PIE to converge depends on two key properties
 - Periodicity with which sniffer reports are collected by the controller
 - What is the minimum polling period?
 - Traffic patterns for the links which dictate the number of interference events captured in a time interval
 - How much time does PIE take under realistic access patterns?

PIE Outline

- Motivation
 - Conventional bandwidth tests not sufficient
- Passive Interference Estimation (PIE)
 - Polling period of PIE
 - Accuracy of PIE
 - Realistic trace replay with PIE
- Applications of PIE
- Summary

Stability of interference measure for saturated traffic

PIE Outline

- Motivation
 - Conventional bandwidth tests not sufficient
- Passive Interference Estimation (PIE)
 - Polling period of PIE
 - Accuracy of PIE
 - Realistic trace replay with PIE
- Applications of PIE
- Summary

How accurate is PIE?

Vivek Shrivastava 62

How accurate is PIE?

Vivek Shrivastava 63

How accurate is PIE?

Vivek Shrivastava 64

PIE Outline

- Motivation
 - Conventional bandwidth tests not sufficient
- Passive Interference Estimation (PIE)
 - Polling period of PIE
 - Accuracy of PIE
 - Realistic trace replay with PIE
- Applications of PIE
- Summary

- Evaluate PIE using realist traffic patterns on a 15 node topology (7 AP – 8 laptops)
- Each client laptop replays the traffic patterns of an actual client from a real wireless trace
- Three activity periods: heavy (> 40 % medium busy), medium (40 – 20% busy), light (< 20% busy)

Traffic period

- Convergence is faster for higher client activity
- Even for light activity, median time of estimate
 LIR is less than 650 ms

PIE Outline

- Motivation
 - Conventional bandwidth tests not sufficient
- Passive Interference Estimation (PIE)
 - Polling period of PIE
 - Accuracy of PIE
 - Realistic trace replay with PIE
- Applications of PIE
- Summary

What is the impact on WLAN applications?

- 1. Estimate interference using PIE
- 2. Input estimate to a centralized data scheduler

- 1. Estimate interference using PIE
- 2. Input estimate to a centralized data scheduler
- 3. Evaluate performance under dynamic scenarios

- PIE can also be used to monitor production systems (like Jigsaw)
- We monitored two production WLANs
- Use testbed nodes in proximity of production APs as sniffers
- Identify hidden terminals and rate anomaly problems

WLANs	Hidden terminal cases (LIR < 0.7)	Rate anomaly cases (Ratio of rates < 0.2)
WLAN1	8%	21%
WLAN2	11%	22%

WLANs	Hidden terminal cases (LIR < 0.7)	Rate anomaly cases (Ratio of rates < 0.2
WLAN1	8%	21%
WLAN2	11%	22%

- •Hidden terminals are rare, but can become pain points for clients
- Rate anomaly is more frequent, but do not cause drastic performance issues

Vivek Shrivastava 84

PIE Outline

- Motivation
 - Conventional bandwidth tests not sufficient
- Passive Interference Estimation (PIE)
 - Polling period of PIE
 - Accuracy of PIE
 - Realistic trace replay with PIE
- Applications of PIE
- Summary

Related Work

- PIE leverages techniques from Jigsaw, WIT (Sigcomm 2006) and builds on their ideas
- Focus of Jigsaw, WIT was to understand interference, ours is to compute it in real-time
- CMAP also infers interference to harness exposed terminals, but requires physical layer change
- Active techniques like Microprobing (CoNext 2008) still require downtime and do not use realistic traffic

PIE Limitations

- Does not handle non-WiFi interferer like microwaves.
- Can miss external interferers if none of the enterprise APs can listen to the interferer
- May miss client conflicts, can use client participation in PIE to enhance the system
- Interference detection techniques at the physical layer may be more accurate in some scenarios where diversity is too low for PIE to function

PIE Summary

- Online interference estimation important for interference mitigation
 - BW test incurs high overhead, requires downtime
- PIE is a passive mechanism, generates interference estimates in real time
 - Leverages centralized infrastructure to collect real time reports from APs
 - Non-intrusive with good accuracy

Thank you!

vivek.2.shrivastava@nokia.com www.cs.wisc.edu/~viveks