FATE and DESTINI
A Framework for
Cloud Recovery Testing

Haryadi S. Gunawi, Pallavi Joshi, Peter Alvaro,

/e *‘of ?f‘L/ro D
R
i A
H> FATH
@ Berke Cy
XYL R A/ UNIVERSITY OF CALIFORNIA
<. Y .,

Joseph M. Hellerstein, and Koushik Sen

TTTTTTTTTTTTT Thanh Do, Andrea C. Arpaci-Dusseau,
AAAAAA and Remzi H. Arpaci-Dusseau

facebook. Dhruba Borthakur

Cloud and failure recovery

d Cloud

* Thousands of commodity machines
= “Rare (HW) failures become frequent” [Hamilton]

A Failure recovery
= “... has to come from the software” [Dean]
= “... must be a first-class op” [Ramakrishnan et al.]
" But ... hard to get right

with a chance of

failure

Web stal

With what sha/&:
Bl More in liferati’®
Pl - Data loss, whof§-system £#0wni inpGoogie Chubkb

[Burrows06]
- 91 recovery issues found in HDJS over 4 years

Why?

0 Testing is not advanced enough
* Cloud systems face complex multiple, diverse failures

d Recovery is under-specified

" Lots of custom recovery
* Implementation is complex

2 Need two advancements:

= Exercise complex failure modes

* Write recovery specifications and
test the implementation

Cloud testing

O]
LU
(L)
3
g
O
(7]
-
-
O
@,

Failure Test

ing

ICE

Serv

DESTINI

ing

Declarative Test

fications

Spec

Contributions
d FATE

= Exercise multiple, diverse failures
- Over 40,000 unique combinations (80 hours)
- Challenge: combinatorial explosion of multiple failures

* Pruning strategies for failure exploration
- An order of magnitude speedup
- Found the same #bugs

0 DESTINI

* Facilitate recovery specifications
- Reliability and availability related

* Clear and concise (use Datalog, 5 lines/check)
= Design patterns

sSummary of results

a Target 3 cloud systems

* HDFS (primary target), Cassandra, and
ZooKeeper

A HDFS recovery bugs

* Found |6 new bugs (+6 in newest)

d Problems found
= Data loss
- Buggy recovery wipes out all replicas

= Unavailability
- Broken rack-aware policy
- Can’t restart after failures

Outline

2 Introduction

Q FATE

* Failure IDs: abstraction for failure exploration
* Pruning strategies

0 DESTINI

2 Evaluation

2 Conclusion

Setup
0 C 1 2 3\ Stage

HadoopFS
(H DFS) Alloc

. Req
Write
PrOtOCOI Data
No failures \ransfer
M C 1 p) 3 4 M C 1 , ,
|
I ,(:) —
> > |
PR—
| g |
|
I |
I |
Setup Recovery: Data Transfer Recovery:

Recreate fresh pipeline (1, 2, 4) Continue on surviving nodes (1, 2)

Failures and FATE

A Failures
= Anytime: different stages > different recovery
= Anywhere: N2 crash,and then N3
= Any type: bad disks, partitioned nodes/racks

a FATE

= Systematically exercise multiple, diverse failures
7 ¢¢ I o o o
* How! need to “remember” failures — via failure IDs

) e D A D £ A
Client DataNode DataNode DataNode

putfile() |e«—ecH create() |«———¢H create() |«—— ¢« create()

(.} (.} (.} (.}

stream() i stream() 1 stream()
LA /K{...} AL o FEND S))
I / f . A
=0 QP Y ﬁ o ure

Failure IDs

2 Abstraction of I/O failures
3 Building failure IDs

* Intercept every |/O
" |nject
- Ex: crash, network partition, disk failure (LSE/corruption)

OutputStream.read() in
Node?2 Node3 BlockReceiver.java

!/ O - <stack trace>
information: Net I/O from N3 to N2

s “Data Ack”
Note:
FIDs

9 ABC,.. /

"

Brute-force exploration

M C 1 2 3 M C 1 2 3

I
Exp #1: Ii\
|

= A
Exp #2: | | |
B * S

| L

Outline

2 Introduction

Q FATE

= Failure IDs: abstraction of failures
" Pruning strategies for failure exploration

0 DESTINI

2 Evaluation

2 Conclusion

13

Combinatorial explosion

0 Exercised over 40,000 unique combinations of 1,
2, and 3 failures per run
= 80 hours of testing time!

New challenge:
Combinatorial explosion of multiple failures

2 failures / run

Al A2
Al BZ
Bl A2
Bl B2

14

Pruning multiple failures

A Properties of multiple failures
* Pairwise dependent failure IDs
" Pairwise independent failure IDs

0 Goal: exercise distinct recovery

behaviors
* Key: some failures result in similar recovery
= Result: > |0x faster, and found the same bugs

15

Dependent failures

Q Failure dependency graph FID
= Inject single failures first A |
= Record subsequent dependent IDs B
- Ex: X depends on A C I
* Brute-force: AX,BX, CX,DX, CY,DY D

a Recovery clustering
= Two clusters: {X} and {X,Y}

3 Only exercise distinct clusters

= Pick a failurelD that triggers a recovery
cluster

= Results:AX, CX, CY

16

Independent failure IDs

3 Independent

combinations
« Ex:FP=2,N =3
* FP2x N (N - 1)

Q Symmetric code

= Just pick two nodes 1 2 3

" N(N-1) > 2

 Pina "‘v@ ?
& @ ®

17

Independent failure IDs

0 FP2 bottleneck
" Ex:FP = 4
= Real example: FP = 15

Qa Recovery clustering

= Cluster A and B if:
fail(A) == fail(B)

= Reduce FP2 to FP?

"= E.g.15 FPs to 8 FPs

clustered

clustered

18

FATE Summary

2 Contributions

= Exercise multiple, diverse failures (via failure IDs)
* Pruning strategies (> |0x improvement)

d Limitations
* |/O reordering
= |nclusion of states to failure IDs

* More failure modes
- Transient, slow-down, and data-center partitioning

19

Outline

3 Introduction

a FATE

Q DESTINI: Declarative Testing Specifications
3 Evaluation

2 Conclusion

20

DESTINI: declarative specs

3 Is the system correct under failures?
* Need to write specifications

FATE needs DESTINI

[It is] great to document (in a spec)
the HDFS write protocol ...

..., but we shouldn't spend too Implemen-

much time on it, ... a formal spec tation
may be overkill for a protocol we Q

plan to deprecate imminently.

Declarative specs

0 How to write specifications?
* Developer friendly (clear, concise, easy)

A Datalog: a declarative relational logic language

= Easy to express logical relations
* (just for writing specifications)

22

Specs in DESTINI

0 How to write specs?
= Violations
= Expectations

" Facts
Implemen-

. tati
1 How to write recovery specs!? ation

= “..recovery is under specified” [Hamilton]
= Precise failure events
* Precise check timings

0 How to test implementation?

* Interpose I/O calls (lightweight)
* Deduce expectations and facts from |/O events

23

Specification template

“Throw a if
an expectation is different from
the actual behavior”

(...) :-
expectationTable(...),
NOT-IN actualTable(...)

head() :- predicates(), ...

Datalog syntax: .- derivation

, AND

24

Data transfer recovery

M c 1 2 3

“Block replicas should

| .
exist in surviving nodes”
|
B B

Data

Transfer

incorrectNodes expectedNodes actualNodes
(Block, Node) (Block, Node) (Block, Node)

Node 2 Node 2

incorrectNodes(B, N) :- expectedNodes(B, N), NOT-IN actualNodes(B,
N);

Recovery bug

M C 1 2 3

incorrectNodes expectedNodes actualNodes

(Block, Node) (Block, Node) (Block, Node)

Node 2

incorrectNodes(B, N) :- expectedNodes(B, N), NOT-IN actualNodes(B,
N);

Building expectations

d Ex: which nodes should
have the blocks? N :

* Deduce expectations
from I/O events (italic)

expectedNodes
(Block, Node)

getBlockPipe(...)
Give me 3 nodes for B

expectedNodes (B} N) :- N A ,
getBlockPipe (BY N);

|
|
:
|
|
|
\

#1:incorrectNodes(B, N) :{expectedNodes(B, N), NOT-IN actualNodes(B, N);

27

Updating expectations

(Block, Node) DEL expectedNodes (B, N) :-

expectedNodes (B, N),
(N)

6 [neser
| sz
LAV VLA

M c 1 2 3

| ' DESTINI
needs
' FATE

#1:incorrectNodes(B, N) :- expectedNodes(B, N), NOT-IN actualNodes(B, N);

#2: expectedNodes(B, N) :- getBlockPipe(B,N);

Precise failure events

DEL expectedNodes (B, N) :-
expectedNodes (B, N),

(N),
writeStage (B, Stage),
Stage == “Data Transfer”;

#1:incorrectNodes(B,N) :- expectedNodes(B,N), NOT-IN actualNodes(B,N)

#2: expectedNodes(B,N) - (B,N);

#3: expectedNodes(B,N) .- expectedNodes(B,N), fateCrashNode(N),
writeStg (B,Stage), Stage == “DataTr”

#4: writeStg(B,“DataTr”) :- writeStg (B, “Setup”), nodesCnt(Nc), acksCnt (Ac), Nc==Ac

#5: nodesCnt (B, CNT<N>) :- pipeNodes (B, N);

#6: pipeNodes (B, N) - (B, N);
#7:acksCnt (B, CNT<A>) :- setupAcks (B, P,“OK");
#8: setupAcks (B, PA) - (B, PRA);

Violation and check-=
timing

#1: 0 Recovery # invariant
incorrectNodes(B, N) :- * If recovery is ongoing,

expectedNodes(B, N), invariants are violated

NOT-IN actualNodes(B, = Don’t want false alarms

N),
) (B); 0 Need precise check timings

= Ex: upon block completion

30

DESTINI Summary

Q Support recovery specs
= Reliability and availability related
= Clear and concise (use Datalog)

0 Design patterns
= Add detailed specs
" Write specs from different views (global, client, ...)
* Incorporate diverse failures (crashes, rack
partitions)
= ...more in the paper

31

Outline

2 Introduction

a FATE
0 DESTINI

Q Evaluation and conclusion

32

Evaluation

A Implementation complexity
= ~6000 LOC in Java

A Target 3 popular cloud systems
= HDFS (primary), ZooKeeper, Cassandra

a HDFS recovery bugs
* Found 22 new bugs

- 8 bugs due to multiple failures
- Data loss, unavailability bugs

= Reproduced 51 old bugs

33

Availability bug
“If multiple racks are available (reachable),
a block should be stored in a minimum of two racks”

Rack #1 Rack #2

———
m_’ - locations are not checked
Bis migrated to R2

34

Availability bug
“If multiple racks are available (reachable),
a block should be stored in a minimum of two racks”

errorSingleRack(B) :- rackCnt(B,Cnt), Cnt==1, blkRacks(B,R), connected(R,Rb),

endOfReplicationMonitor (_);

rackCnt blkRacks connected

B, 1 B, R1 R1, R2

35

Pruning Efficiency

0 Reduce #experiments by an order of magnitude
= Each experiment = 4-9 seconds

a Found the same number of bugs
= (by experience)

5000 t-----—---——--———- - __EER___.
Exps

Pruned

618
o - — — i
Write + Append + Write + Append +
2 crashes 2 crashes 3 crashes 3 crashes

Specification simplicity

Framework #Chks Lines/Chk
D3S [NSDI ’08] 10 53
Pip [NSDI ’06] 44 43
WiDS [NSDI ’07] |5 22
P2 Monitor [EuroSys | | 12
'06]
DESTINI 74 5

0 Compared to other related work

37

Conclusion

A Cloud software systems
* Must deal with HWV failures

a FATE and DESTINI

= Explore multiple, diverse failures systematically
* Facilitate concise recovery specifications

= A unified framework
- FATE needs DESTINI
- DESTINI needs FATE

3 Real-world adoption in progress

38

Thank you!

B%sM

Benkeley Ordens Of Maguctude
http://boom.cs.berkeley.edu

Questions?

C

http://cs.wisc.edu/adsl

39

