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Cloud and failure recovery

d Cloud

* Thousands of commodity machines
= “Rare (HW) failures become frequent” [Hamilton]

A Failure recovery
= “... has to come from the software” [Dean]
= “... must be a first-class op” [Ramakrishnan et al.]
" But ... hard to get right
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Why?

0 Testing is not advanced enough
* Cloud systems face complex multiple, diverse failures

d Recovery is under-specified

" Lots of custom recovery
* Implementation is complex

2 Need two advancements:

= Exercise complex failure modes

* Write recovery specifications and
test the implementation
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Contributions
d FATE

= Exercise multiple, diverse failures
- Over 40,000 unique combinations (80 hours)
- Challenge: combinatorial explosion of multiple failures

* Pruning strategies for failure exploration
- An order of magnitude speedup
- Found the same #bugs

0 DESTINI

* Facilitate recovery specifications
- Reliability and availability related

* Clear and concise (use Datalog, 5 lines/check)
= Design patterns



sSummary of results

a Target 3 cloud systems

* HDFS (primary target), Cassandra, and
ZooKeeper

A HDFS recovery bugs

* Found |6 new bugs (+6 in newest)

d Problems found
= Data loss
- Buggy recovery wipes out all replicas

= Unavailability
- Broken rack-aware policy
- Can’t restart after failures



Outline

2 Introduction

Q FATE

* Failure IDs: abstraction for failure exploration
* Pruning strategies

0 DESTINI

2 Evaluation

2 Conclusion
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Failures and FATE

A Failures
= Anytime: different stages > different recovery
= Anywhere: N2 crash,and then N3
= Any type: bad disks, partitioned nodes/racks

a FATE

= Systematically exercise multiple, diverse failures
7 ¢¢ I o o o
* How! need to “remember” failures — via failure IDs
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Failure IDs

2 Abstraction of I/O failures
3 Building failure IDs

* Intercept every |/O
" |nject
- Ex: crash, network partition, disk failure (LSE/corruption)

OutputStream.read() in
Node?2 Node3 BlockReceiver.java

!/ O - <stack trace>
information: Net I/O from N3 to N2

s “Data Ack”
Note:
FIDs

9 ABC,.. /
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Brute-force exploration
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Outline

2 Introduction

Q FATE

= Failure IDs: abstraction of failures
" Pruning strategies for failure exploration

0 DESTINI

2 Evaluation

2 Conclusion
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Combinatorial explosion

0 Exercised over 40,000 unique combinations of 1,
2, and 3 failures per run
= 80 hours of testing time!

New challenge:
Combinatorial explosion of multiple failures

2 failures / run

Al A2
Al BZ
Bl A2
Bl B2
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Pruning multiple failures

A Properties of multiple failures
* Pairwise dependent failure IDs
" Pairwise independent failure IDs

0 Goal: exercise distinct recovery

behaviors
* Key: some failures result in similar recovery
= Result: > |0x faster, and found the same bugs
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Dependent failures

Q Failure dependency graph FID
= Inject single failures first A |
= Record subsequent dependent IDs B
- Ex: X depends on A C I
* Brute-force: AX,BX, CX,DX, CY,DY D

a Recovery clustering
= Two clusters: {X} and {X,Y}

3 Only exercise distinct clusters

= Pick a failurelD that triggers a recovery
cluster

= Results:AX, CX, CY
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Independent failure IDs

3 Independent

combinations
« Ex:FP=2,N =3
* FP2x N (N - 1)

Q Symmetric code

= Just pick two nodes 1 2 3

" N(N-1) > 2

 Pina "‘v@ ?
& @ ®
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Independent failure IDs

0 FP2 bottleneck
" Ex:FP = 4
= Real example: FP = 15

Qa Recovery clustering

= Cluster A and B if:
fail(A) == fail(B)

= Reduce FP2 to FP?

"= E.g.15 FPs to 8 FPs

clustered

clustered
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FATE Summary

2 Contributions

= Exercise multiple, diverse failures (via failure IDs)
* Pruning strategies (> |0x improvement)

d Limitations
* |/O reordering
= |nclusion of states to failure IDs

* More failure modes
- Transient, slow-down, and data-center partitioning
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Outline

3 Introduction

a FATE

Q DESTINI: Declarative Testing Specifications
3 Evaluation

2 Conclusion
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DESTINI: declarative specs

3 Is the system correct under failures?
* Need to write specifications

FATE needs DESTINI

[It is] great to document (in a spec)
the HDFS write protocol ...

..., but we shouldn't spend too Implemen-

much time on it, ... a formal spec tation
may be overkill for a protocol we Q

plan to deprecate imminently.




Declarative specs

0 How to write specifications?
* Developer friendly (clear, concise, easy)

A Datalog: a declarative relational logic language

= Easy to express logical relations
* (just for writing specifications)
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Specs in DESTINI

0 How to write specs?
= Violations
= Expectations

" Facts
Implemen-

. tati
1 How to write recovery specs!? ation

= “..recovery is under specified” [Hamilton]
= Precise failure events
* Precise check timings

0 How to test implementation?

* Interpose I/O calls (lightweight)
* Deduce expectations and facts from |/O events
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Specification template

“Throw a if
an expectation is different from
the actual behavior”

(...) :-
expectationTable(...),
NOT-IN actualTable(...)

head() :- predicates(), ...

Datalog syntax: .- derivation

, AND
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Data transfer recovery

M c 1 2 3

“Block replicas should

| .
exist in surviving nodes”
|
B B

Data

Transfer

incorrectNodes expectedNodes actualNodes
(Block, Node) (Block, Node) (Block, Node)

Node 2 Node 2

incorrectNodes(B, N) :- expectedNodes(B, N), NOT-IN actualNodes(B,
N);



Recovery bug

M C 1 2 3

incorrectNodes expectedNodes actualNodes

(Block, Node) (Block, Node) (Block, Node)

Node 2

incorrectNodes(B, N) :- expectedNodes(B, N), NOT-IN actualNodes(B,
N);



Building expectations

d Ex: which nodes should
have the blocks? N :

* Deduce expectations
from I/O events (italic)

expectedNodes
(Block, Node)

getBlockPipe(...)
Give me 3 nodes for B

expectedNodes (B} N) :- N A ,
getBlockPipe (BY N);

|
|
:
|
|
|
\

#1:incorrectNodes(B, N) :{expectedNodes(B, N), NOT-IN actualNodes(B, N);
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Updating expectations

(Block, Node) DEL expectedNodes (B, N) :-

expectedNodes (B, N),
(N)

6 [ neser
| sz
LAV VLA

M c 1 2 3

| ' DESTINI
needs
' FATE

#1:incorrectNodes(B, N) :- expectedNodes(B, N), NOT-IN actualNodes(B, N);

#2: expectedNodes(B, N) :- getBlockPipe(B,N);



Precise failure events

DEL expectedNodes (B, N) :-
expectedNodes (B, N),

(N),
writeStage (B, Stage),
Stage == “Data Transfer”;

#1:incorrectNodes(B,N)  :- expectedNodes(B,N), NOT-IN actualNodes(B,N)

#2: expectedNodes(B,N) - (B,N);

#3: expectedNodes(B,N) .- expectedNodes(B,N), fateCrashNode(N),
writeStg (B,Stage), Stage == “DataTr”

#4: writeStg(B,“DataTr”) :- writeStg (B, “Setup”), nodesCnt(Nc), acksCnt (Ac), Nc==Ac

#5: nodesCnt (B, CNT<N>) :- pipeNodes (B, N);

#6: pipeNodes (B, N) - (B, N);
#7:acksCnt (B, CNT<A>) :- setupAcks (B, P,“OK");
#8: setupAcks (B, PA) - (B, PRA);




Violation and check-=
timing

#1: 0 Recovery # invariant
incorrectNodes(B, N) :- * If recovery is ongoing,

expectedNodes(B, N), invariants are violated

NOT-IN actualNodes(B, = Don’t want false alarms

N),
) (B); 0 Need precise check timings

= Ex: upon block completion
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DESTINI Summary

Q Support recovery specs
= Reliability and availability related
= Clear and concise (use Datalog)

0 Design patterns
= Add detailed specs
" Write specs from different views (global, client, ...)
* Incorporate diverse failures (crashes, rack
partitions)
= ...more in the paper

31



Outline

2 Introduction

a FATE
0 DESTINI

Q Evaluation and conclusion
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Evaluation

A Implementation complexity
= ~6000 LOC in Java

A Target 3 popular cloud systems
= HDFS (primary), ZooKeeper, Cassandra

a HDFS recovery bugs
* Found 22 new bugs

- 8 bugs due to multiple failures
- Data loss, unavailability bugs

= Reproduced 51 old bugs
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Availability bug
“If multiple racks are available (reachable),
a block should be stored in a minimum of two racks”

Rack #1 Rack #2

———
m_’ - locations are not checked
Bis migrated to R2
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Availability bug
“If multiple racks are available (reachable),
a block should be stored in a minimum of two racks”

errorSingleRack(B) :- rackCnt(B,Cnt), Cnt==1, blkRacks(B,R), connected(R,Rb),

endOfReplicationMonitor (_);

rackCnt blkRacks connected

B, 1 B, R1 R1, R2
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Pruning Efficiency

0 Reduce #experiments by an order of magnitude
= Each experiment = 4-9 seconds

a Found the same number of bugs
= (by experience)

5000 t-----—---——--———- - __EER___.
# Exps

Pruned

618
o - — — i
Write + Append + Write + Append +
2 crashes 2 crashes 3 crashes 3 crashes




Specification simplicity

Framework #Chks Lines/Chk
D3S [NSDI ’08] 10 53
Pip [NSDI ’06] 44 43
WiDS [NSDI ’07] |5 22
P2 Monitor [EuroSys | | 12
'06]
DESTINI 74 5

0 Compared to other related work
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Conclusion

A Cloud software systems
* Must deal with HWV failures

a FATE and DESTINI

= Explore multiple, diverse failures systematically
* Facilitate concise recovery specifications

= A unified framework
- FATE needs DESTINI
- DESTINI needs FATE

3 Real-world adoption in progress
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Thank you!
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Questions?

C

http://cs.wisc.edu/adsl
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