Paxos Replicated State Machines
as the Basis of a High-
Performance Data Store

William J. Bolosky,
Dexter Bradshaw, Randolph B. Haagens,
Norbert P. Kusters and Peng Li

March 30, 2011

Q: How to build a fault-tolerant,
high-performance data store
from commodity parts?

A: Paxos replicated state
machines

* Paxos Replicated State Machines

— Sequentially consistent

— Persistent

— Fault tolerant

— Don’t rely on clock sync for correctness
— Thought to be too slow

* Conventional systems compromise on

— Semantics (e.g. data consistency after failures)

— Assumptions (e.g. clock sync for correctness)

— API (e.g. append only)

— Special hardware (e.g. FAB’s write timestamps)
* Paxos equaling the speed of a conventional

system is a win

— That we sometimes do better is a bonus

Take Away Point

* For datacenter-like systems that:

— Value Consistency and Availability over Partition
tolerance

— Have operation latencies > network latencies
e Paxos replicated state machines

— Perform very well
— While not compromising

Outline

Background: Replicated State Machines and
Paxos

SMARTER and Gaios
A new protocol for read-only operations

Performance evaluation and comparison to
primary-backup replication

Replicated State Machines

* For fault tolerance
— Of any deterministic computation
— Via replication
— Replicas see the same sequence of inputs
e Paxos is a protocol for guaranteeing input ordering,
even with:
— Multiple clients
— Unreliable networks
— No synchronized clocks
— Unlimited machine reboots
— Some permanent stopping faults (i.e., disk losses)
— But not Byzantine faults

Non Trade-Off

* RSMs’ one-at-a-time execution
model seems to be at odds with
disks’ need to reorder 10 for
efficiency. It’s not.

* Analogous to an out-of-order
processor.

Paxos Basics

* Paxos binds client requests to
sequentially numbered slots.

* |n normal operation requires a write to
persistent store to survive power loss.

* Has a dynamically selected and
changeable leader that drives the
protocol.

Client

4K Write Latency Timeline

(One-at-a-Time Operations)

Time (ms)

mm Request Send

== Proposal Send
wm Logging (first)

mm Logging (second)
mm ACK Send

wm Execute

w=Reply Send

Outline

Background: Replicated State Machines and
Paxos

SMARTER and Gaios
A new protocol for read-only operations

Performance evaluation and comparison to
primary-backup replication

Net

Gaios Architecture

Standard Application e

Client Machine

NTFS Kernel
Gaios Disk Driver

SMARTER Client

SMARTER Server

Stream Gaios RSM
Store

User

Server Machine

Getting Efficiency

* Mostly just lots of good engineering

1.

= W N

5.

Pipelining

Batched write behind
Overlap fetching with logging
Batching client requests

Zero-copy data path

* Novel read-only operation protocol that
allows consistent reads from any node

Outline

Background: Replicated State Machines and
Paxos

SMARTER and Gaios
A new protocol for read-only operations

Performance evaluation and comparison to
primary-backup replication

Read Consistency Property

Not-Before Constraint: When a read-only
request R completes, it reflects any data known
by any client to be written at the time R was

sent.

Read-Only Operations

* Read-only operations only need to run in
one place

e Using all disks is crucial

* Dynamically selecting location helps
— Avoid nodes that are writing

Read/Write Contention

v Vv
Read 600 T
Write 97
, 10 | 42 | 66 | 97 | 212 | 235|270
Write 66
Write 42 3311344 | 389 (401 | 416 | 444 | 469
Write 10 511 | 580 | 616 | 629 | 689 | 704 | 765
830 | 845 | 866 | 914 | 919 | 952 | 953

Randomize Checkpoint timing across nodes

Leader

Member

LieBsientsRrbkk

Client

4K Read Latency Timeline

(One-at-a-Time Operations)

M Client Send
M Leader Check

W Execute

M Reply

0 2 4 6 8 10
Time (ms)

Outline

Background: Replicated State Machines and
Paxos

SMARTER and Gaios
A new protocol for read-only operations

Performance evaluation and comparison to
primary-backup replication

Primary-Backup Replication

e (Usually) Sends both read and write replies
from the primary in order to achieve the read
consistency property

e Uses leasing protocol for primary
— No need for a quorum check on reads

— Relies on clock sync for correctness, which in
practice means it trades failover time for
correctness

Read Distribution

* Primary-Backup forces reads to one node, while
SMARTER spreads them across all, which can
matter for random reads

* P-B can achieve spreading by striping data across
many groups and locating the primaries on
different nodes; this spreading is static

* Implemented two versions of P-B:
— Worst-case PB1 where all reads come from one node
— Best-case PBN which uses round-robin reads

w N0 -

8K Random Read Throughput

(Lots of outstanding operations)

500
450
400
350

300

—@Gaios
250
200 N / —=PBN
150 PB1

100 m Local
50

Replicas

Transaction Processing

* Ran industry standard OLTP load
over Microsoft SQL Server 2008.

* Critical factors: SQL log write
latency, random read bandwidth.

* Even read/write ratio, mostly
~8K.

OLTP Performance
(3 nodes, 50% read workload)

120%
100%
80%
60%
40%

20%

Normalized Transactions/s

0%
Gaios PBN PB1

Conclusion

* Paxos RSMs are fine for high-performance
disk-based applications, it just takes careful
engineering.

* |n some cases, they outperform best-case P-B
due to flexibility in directing reads.

* There is no need to compromise on semantics,
buy special hardware, depend on clocks, etc.

-

e) * - ‘n-‘"
™ I - S a3

el . el T -,

axos, Greece

el »

—
—

‘e L
-— -

