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Q: How to build a fault-tolerant,
high-performance data store
from commodity parts?

A: Paxos replicated state
machines



* Paxos Replicated State Machines

— Sequentially consistent

— Persistent

— Fault tolerant

— Don’t rely on clock sync for correctness
— Thought to be too slow

* Conventional systems compromise on

— Semantics (e.g. data consistency after failures)

— Assumptions (e.g. clock sync for correctness)

— API (e.g. append only)

— Special hardware (e.g. FAB’s write timestamps)
* Paxos equaling the speed of a conventional

system is a win

— That we sometimes do better is a bonus



Take Away Point

* For datacenter-like systems that:

— Value Consistency and Availability over Partition
tolerance

— Have operation latencies > network latencies
e Paxos replicated state machines

— Perform very well
— While not compromising



Outline

Background: Replicated State Machines and
Paxos

SMARTER and Gaios
A new protocol for read-only operations

Performance evaluation and comparison to
primary-backup replication



Replicated State Machines

* For fault tolerance
— Of any deterministic computation
— Via replication
— Replicas see the same sequence of inputs
e Paxos is a protocol for guaranteeing input ordering,
even with:
— Multiple clients
— Unreliable networks
— No synchronized clocks
— Unlimited machine reboots
— Some permanent stopping faults (i.e., disk losses)
— But not Byzantine faults



Non Trade-Off

* RSMs’ one-at-a-time execution
model seems to be at odds with
disks’ need to reorder 10 for
efficiency. It’s not.

* Analogous to an out-of-order
processor.



Paxos Basics

* Paxos binds client requests to
sequentially numbered slots.

* |n normal operation requires a write to
persistent store to survive power loss.

* Has a dynamically selected and
changeable leader that drives the
protocol.



Client
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Getting Efficiency

* Mostly just lots of good engineering

1.

= W N

5.

Pipelining

Batched write behind
Overlap fetching with logging
Batching client requests

Zero-copy data path

* Novel read-only operation protocol that
allows consistent reads from any node



Outline

Background: Replicated State Machines and
Paxos

SMARTER and Gaios
A new protocol for read-only operations

Performance evaluation and comparison to
primary-backup replication



Read Consistency Property

Not-Before Constraint: When a read-only
request R completes, it reflects any data known
by any client to be written at the time R was

sent.



Read-Only Operations

* Read-only operations only need to run in
one place

e Using all disks is crucial

* Dynamically selecting location helps
— Avoid nodes that are writing



Read/Write Contention
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Randomize Checkpoint timing across nodes
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Primary-Backup Replication

e (Usually) Sends both read and write replies
from the primary in order to achieve the read
consistency property

e Uses leasing protocol for primary
— No need for a quorum check on reads

— Relies on clock sync for correctness, which in
practice means it trades failover time for
correctness



Read Distribution

* Primary-Backup forces reads to one node, while
SMARTER spreads them across all, which can
matter for random reads

* P-B can achieve spreading by striping data across
many groups and locating the primaries on
different nodes; this spreading is static

* Implemented two versions of P-B:
— Worst-case PB1 where all reads come from one node
— Best-case PBN which uses round-robin reads
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Transaction Processing

* Ran industry standard OLTP load
over Microsoft SQL Server 2008.

* Critical factors: SQL log write
latency, random read bandwidth.

* Even read/write ratio, mostly
~8K.



OLTP Performance
(3 nodes, 50% read workload)
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Conclusion

* Paxos RSMs are fine for high-performance
disk-based applications, it just takes careful
engineering.

* |n some cases, they outperform best-case P-B
due to flexibility in directing reads.

* There is no need to compromise on semantics,
buy special hardware, depend on clocks, etc.
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