
SliceTime: A platform for scalable and accurate network emulation

Elias Weingärtner, Florian Schmidt, Hendrik vom Lehn, Tobias Heer and Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University, Germany

Abstract

Network emulation brings together the strengths of net-
work simulation (scalability, modeling flexibility) and
real-world software prototypes (realistic analysis). Un-
fortunately network emulation fails if the simulation is
not real-time capable, e.g., due to large scenarios or com-
plex models. So far, this problem has generally been ad-
dressed by providing massive computing power to the
simulation, which is often too costly or even infeasible.

In this paper we present SliceTime, our platform for
scalable and accurate network emulation. It enables the
precise evaluation of arbitrary networking software with
event-based simulations of any complexity by relieving
the network simulation from its real-time constraint. We
achieve this goal by transparently matching the execu-
tion speed of virtual machines hosting the software pro-
totypes with the network simulation. We demonstrate the
applicability of SliceTime in a large-scale WAN scenario
with 15 000 simulated nodes and show how our frame-
work eases the analysis of software for 802.11 networks.

1 Introduction

We are still in need of adequate tools for performance in-
vestigations as well as for testing of real-world network
protocol implementations and large-scale distributed sys-
tems. In this regard, the first major requirement is scal-
ability. For example, in order to facilitate the analysis
of contemporary P2P applications, such a tool needs to
scale up to potentially thousands of nodes. Second, we
need experimentation platforms that isolate the protocol
implementation and its communication from real-world
communication networks. Such strong isolation is impor-
tant for the investigation of malware to prevent a poten-
tial outbreak. Isolated evaluation environments are also
well suited for the analysis of software for wireless net-
works as unwanted disturbances on the wireless channel
can be avoided.

Discrete event-based network simulation is a well-
established methodology for the evaluation of network
protocols. Network simulators, such as ns-3 [27] or OM-
NeT++ [37], facilitate the flexible analysis of arbitrary
network protocols. Due to their abstract modeling ap-
proach, network simulations scale well to network sizes
of up to many thousand nodes.

However, abstract simulation models focus only on the
most relevant aspects of the communicating nodes. They
disregard the system context of a network protocol and
its run-time environment, like the influence of an operat-
ing system regarding timing, concurrent processes, and
resource constraints. This fundamental concept of ab-
straction limits the applicability of network simulations
to network performance metrics. For instance, investiga-
tions of run-time performance, resource usage, and the
interoperability with other protocol implementations are
difficult to obtain by solely using simulations. The strict
event-based notion of network simulators also makes it
generally impossible to execute arbitrary networking ap-
plications inside the simulation environment. These is-
sues complicate performance studies that are very im-
portant for the applicability of communication systems.

Performance evaluations under real conditions are
mostly carried out within network testbeds of proto-
type implementations. However, setting up large-scale
testbeds is expensive and their maintenance is often
cumbersome. Shared testbeds such PlanetLab [7], Emu-
lab [42] and MoteLab [41] partially fill this gap. Yet their
flexibility is limited due to a lack of topology controlla-
bility, shared testbed usage or insufficient scalability.

Network emulation as introduced by Fall [10] brings
together the flexibility of discrete event-based of network
simulation with the precision of evaluation using real-
world testbeds. An event-based simulation modeling a
computer network of choice is connected to real-world
software prototype. Traffic from the prototype is fed to
the simulation and vice versa. This way, the software pro-
totype can be evaluated in any network that can be mod-

1



eled by the simulator. One fundamental issue of network
emulation are the different time representations of event-
based simulations and software prototypes. Event-based
simulations consist of a series of discrete events with an
associated event execution time. Once an event has been
processed, the simulation time is advanced to the execu-
tion time of the next event. By contrast, software pro-
totypes observe a continuously progressing wall-clock
time.

Existing implementations of network emulation pin
the execution of simulation events to the correspond-
ing wall-clock time. Unfortunately, this approach is only
useful if the simulation can be executed in real time. Oth-
erwise, a simulation without sufficient computational re-
sources will lag behind and thus be unable to deliver
packets timely. Such simulator overload may result from
complex network simulations, for example due to a high
number of simulated nodes or models of high compu-
tational complexity. Simulator overload has to be pre-
vented because deficient protocol behavior such as con-
nection time-outs, unwanted retransmissions, or the as-
sumption of network congestion would be the direct con-
sequence. Moreover, even slight simulator overload may
invalidate performance evaluations because the network
cannot be simulated within the required timing bounds.

Speeding up the simulation to make it real-time ca-
pable is the first obvious option to deal with simula-
tion overload. This speed-up can be achieved by sup-
plying the simulation machine with sufficient computa-
tional resources in forms of hardware or by parallelizing
the network simulation. However, we argue that this ap-
proach lacks generality because parallel processing can
only scale to the degree of possible parallelism within the
simulation. In addition, the amount of hardware needed
for real-time execution rapidly grows with the simulation
complexity, making this option inaccessible for many re-
search institutes and individuals.

So far, network emulation has merely been an arms
race between the complexity of the simulation model
and the computational power of the simulation hardware.
Hence, traditional approaches result in variable hard-
ware requirements and fixed execution time (real time).
By contrast, we aim at reducing the cost of precise net-
work emulation by designing a system with fixed hard-
ware demands but with variable execution time (real time
or slower). More specifically, the main contributions of
this paper are the following:

1. We thoroughly elaborate the design of Slice-
Time and its underlying concept of synchronized
network emulation [39, 40] (Section 2). It elimi-
nates the need of the network simulation to exe-
cute in real-time. This enables network emulation
scenarios using simulations of any complexity. We
achieve this goal by synchronizing the software pro-

totypes with the network simulation. Using virtual-
ization, we decouple the software prototypes’ per-
ceived progression of time from wall-clock time.

2. Our implementation of SliceTime (cf. Section 3) for
x86 systems enables the synchronized execution of
Xen-based [3] virtualized prototypes and ns-3 sim-
ulations with an accuracy down to 0.01 ms.

3. We show that SliceTime delivers a high degree of ac-
curacy and transparency, both regarding timing and
perceived network bandwidth (Section4). We fur-
ther demonstrate in our evaluation of SliceTime that
is run-time efficient and that the synchronization
overhead stays below 10% at an accuracy of 0.5 ms.

4. We illustrate how SliceTime simplifies testing and
performance evaluations of WiFi software for Linux
by remodeling a large-scale AODV field test en-
tirely in software. We further demonstrate the scal-
ability of SliceTime by applying it to a large-scale
wide-area network (WAN) scenario with 15 000
nodes (Section 5).

In Section 6 we discuss the related work before conclud-
ing this paper in Section 7.

2 SliceTime

We now present the design of SliceTime. A Slice-
Time setup incorporates three main components
(cf. Figure 1): The central synchronization component
(synchronizer), at least one virtual machine (VM) carry-
ing a software prototype of choice, and an event-based
network simulation. The synchronizer controls the
execution of the network simulation and the software
prototypes. In order to carry out such a synchronization,
the synchronizer must interrupt the execution of the
prototype or the simulation at times to achieve precise
clock alignment. To enable this suspension, the software
prototypes are hosted inside virtual machines for means
of control.

2.1 Synchronization Component

The synchronization component centrally coordinates a
SliceTime setup. Its task is to manage the synchronous
execution of the network simulation and the attached
virtual machines. It implements a synchronization algo-
rithm to prevent potential time drifts and clock misalign-
ments between the virtual machines and the network sim-
ulation. As choice for the synchronization algorithm, we
consider solutions known from the research domain of
parallel discrete event-based simulation (PDES) [11]. In
this regard, two classes of synchronization are distin-
guished, optimistic synchronization schemes and conser-
vative synchronization schemes.

2



Figure 1: Conceptual Overview of SliceTime: By relying
on entirely virtualized prototypes, we are able to syn-
chronize the execution speed of the simulation and the
prototypes. The simulation is relieved from its real-time
constraint, enabling large-scale network emulation sce-
narios on off-the-shelf hardware.

Optimistic schemes, most notably Time Warp [18], ex-
ecute the parallel simulation in a speculative fashion. In
case of synchronization errors, roll-backs are used to re-
store a consistent and error-free global state. For the abil-
ity to roll back to a consistent state, optimistic schemes
often incorporate regular snapshots of the synchronized
peers. As the state of a virtual machine includes the
memory allocated for the running operating system in-
stance, check-pointing is costly at the desired level of
synchronization granularity. Conservative synchroniza-
tion schemes, by contrast, guarantee a parallel execu-
tion without synchronization errors, and hence, do not
require a roll-back mechanism. However, most conser-
vative schemes, such as the null-message algorithm by
Chandy and Misra [6], require knowledge about the fu-
ture behavior (look-ahead) of a system. While the look-
ahead in event-based simulations can be determined by
inspecting their event queue, predicting the future run-
time behavior of a virtual machine is generally not possi-
ble. In effect, this limits the choice of a synchronization
algorithm for SliceTime to a scheme which neither makes
assumptions about the future behavior nor requires regu-
lar snapshots to be taken.

SliceTime uses a scheme similar to conservative time
windows (CTW) [23] for synchronizing network simu-
lations and VMs. In the following, we refer to this al-
gorithm as barrier synchronization. Figure 2 shows the
synchronization of two components, one VM and one
network simulation, via the barrier synchronization al-
gorithm. It allows every synchronized peer to run for
a certain amount of time, the so-called time slice, af-
ter which it blocks until all other peers reach the bar-
rier. At this point, the barrier is lifted, and a new future
barrier is set up to which the execution of the synchro-
nized components continues again. As the execution of
both the network simulation and the virtual machine is
always bounded by a barrier, the time drift between them
is limited to the size of one time slice at all times. Con-

Figure 2: Different steps of the barrier algorithm used
for the synchronization of one VM and one event-based
simulation. The execution of the simulation and the VM
is blocked until both have finished the time slice.

sequently, the synchronization accuracy is directly given
by the size of the time slice.

2.2 Virtual Machines

The virtual machines encapsulate the software prototype
to be integrated with the network simulation. We con-
sider a prototype to be an instance of any operating sys-
tem (OS) that carries arbitrary network protocol imple-
mentations or applications. The virtualization of OS in-
stances hosting software prototypes disassociates their
execution from the system hardware and hence allows
for obtaining full control over their run-time behavior.

Therefore, the execution of the prototype can be sus-
pended until all synchronized components have reached
the end of the time slice. This suspension avoids sim-
ulator overload by allowing the network simulator to
run while the virtual machines are waiting. However,
this suspension is typically detectable by the VMs, be-
cause they are relayed information from hardware time
sources. Under normal circumstances, this behavior is
desired to keep the clock synchronized to wall-clock time
and to make sure that timers expire at the right point of
time. However, since we suspend the VMs in order to
synchronize their time against each other and the sim-
ulation, we must avoid this behavior. Having full con-
trol over the VM’s perception of time we instead provide
them with a consistent and continuous logical time. This
leaves us with the possibility of transparently suspending
the execution of a prototype without the implementation
noticing the actual gap in real-world time.

2.3 Event-based Network Simulation

The key task of the network simulation is to model the
network that connects the virtual machines. Following
the terminology of Fall [10], we distinguish between an
opaque and a protocol-aware network emulation mode.
In the case of opaque network emulation, the simula-
tor merely influences the propagation of network traffic,

3



for example by delaying or duplicating packets. This ap-
proach is prevalent in many available tools [1, 2, 5, 30].
By contrast, we focus on protocol-aware network emula-
tion. In this case, the network simulation implements the
communication protocols that are used by the VM proto-
types. This enables the provision of simulated hosts that
interact with the VMs.

For integrating an event-driven network simulation
with a SliceTime setup, it needs to be interfaced to both
the synchronization component (timing control inter-
face) and the virtual machines (data communication in-
terface). The timing control interface is tightly coupled
with the event scheduler of the simulator. Recall that
an event-based network simulator maintains a list of all
scheduled events ordered by the time of execution. Typ-
ically, the simulation simply processes these events se-
quentially until the event queue is empty. In SliceTime, a
custom scheduler checks if the next event’s time of exe-
cution resides in the current time slice. If this is the case,
the event is executed. If not, the event scheduler notifies
the synchronization component through the timing con-
trol interface. The next event is processed after the barrier
has been shifted past the execution time of the event.

The data communication interface connects the simu-
lation and the virtual machines on the protocol level. The
functional integration between the VMs and the network
simulation takes place at gateway nodes inside the sim-
ulation, a concept adapted from [10]. These nodes can
be viewed as a simulation’s internal representation of the
virtual machine they are connected to. Their real func-
tionality is inside the virtual machine and their purpose is
to have a communication endpoint inside the simulation
at which the packet exchange with the virtual machines
takes place.

For performance reasons, many network simulation
frameworks use custom data structures to model a net-
work packet, and encapsulation is mostly expressed us-
ing pointers to secondary message structures. In contrast,
real systems exchange binary information, for example,
Ethernet frames. When a binary packet generated by a
VM arrives at the simulator, the gateway node takes care
of converting it into a network simulation message. Sim-
ilarly, an outgoing packet must be serialized in an ade-
quate fashion before it leaves the simulation.

3 Implementation

We now discuss our implementation of SliceTime com-
prising three types of main components (see Figure 3):
a synchronization component (synchronizer), the vir-
tual machine infrastructure and a network simulation.
Two different flows of communication are present in
our system. The synchronizer delivers the synchroniza-
tion information over the timing control interface using a

lightweight signaling protocol. A tunnel that carries Eth-
ernet frames from the VMs to the simulation and vice
versa serves as our data communication interface. The
VM implementation is based on the Xen hypervisor and
executes multiple instances of guest domains which host
an operating system and a prototype implementation.
Our implementation uses the ns-3 network simulator to
model the network to which the VMs are connected. For
this purpose we extend the existing emulation framework
of ns-3 for synchronized network emulation.

3.1 Synchronization component

The synchronizer is implemented as a user-space appli-
cation. Its main purpose is to implement the timing con-
trol interface. The synchronization component assigns
discrete slices of run-time to the simulation and to the
virtual machines. In order to distribute the synchronized
components across different physical systems, the syn-
chronization signaling is implemented on top of UDP.
In addition to the synchronization coordination, the syn-
chronizer also manages the set of synchronized compo-
nents. In particular, it allows peers to join and to leave
the synchronization during run-time. This allows to run
certain tasks (e.g., booting and configuring a virtual ma-
chine and the hosted software prototype) outside the the
synchronized setup.

3.1.1 Timing Control Interface

One challenge is the large amount of messages that needs
to be exchanged between the synchronized VMs and the
simulation. For example, if the time slices are config-
ured to a static logical duration of 0.1 ms, the synchro-
nization component needs to issue 10 000 time slices to
all attached VMs and the simulation for one second of
logical time. An additional massive amount of messages
is caused by the synchronized peers to signal the com-
pletion of every time slice individually to the synchro-
nizer. Therefore, in order to maintain a good run-time
efficiency, it is vital to limit the delays and the overhead
caused by synchronization signaling and message pars-
ing. For these reasons, we created a lightweight synchro-
nization protocol based on UDP for SliceTime. It pro-
vides all communication primitives of the timing con-
trol interface. The assignment of time slices to all syn-
chronized peers is carried out using UDP broadcasts,
while the remaining communication, such as signaling
time slice completion, takes place using unicast data-
grams. Moreover, the UDP packets have a fixed structure
and only carry the synchronization information in binary
form. This is necessary to keep both the packet size and
the parsing complexity at a very low level.

4



Figure 3: SliceTime consists of a central synchronization unit, at least one network simulation based on ns-3 and one
or more Xen hypervisor systems serving as the VM infrastructure.

3.2 Virtual Machines

We use the Xen hypervisor and its scheduling mecha-
nisms as the basis of our work. Xen is a virtual machine
monitor for x86 CPUs. The hypervisor itself takes care
of memory management and scheduling, while hardware
access is delegated to a special privileged virtual machine
(or domain, in Xen’s parlance) running a modified Linux
kernel. As the first domain that is started during booting,
it is often referred to as dom0.

Xen supports two modes of operation: para-
virtualization mode (PVM) and hardware virtualization
mode (HVM). SliceTime uses Xen HVM domains for
virtualizing operating systems and software prototypes.
In contrast to para-virtualization, HVM Xen domains do
not require the kernel of the guest system to be modified
for virtualization. This allows any x86 OS, also closed
source OS such as Windows, to be incorporated into a
SliceTime set-up.

We now describe the main parts of our work: a) the
data communication interface to couple virtual machines
and the simulator, b) the synchronization client that in-
terfaces with the synchronization component, and c) the
changes necessary to transparently interrupt and restart
the VM to align its execution speed to the run-time per-
formance of the simulator.

3.2.1 Data Communication Interface

For the network data communication between virtual ma-
chines and simulation, it is first important to note that ev-
ery virtual machine can have one or several virtual net-
work interfaces that look like real interfaces to the virtual
machine, and can be accessed inside dom0. We bridge
the virtual interface in the dom0 with a tap device and
redirect all Ethernet traffic from the VM to the computer
running the simulation. Conversely, all Ethernet frames
received from the simulation over the tunnel are fed back
to the virtual machine in the same way.

3.2.2 The Xen Synchronization Client

To keep the VM in sync with the communication, the
synchronization component communicates with a syn-
chronization client on the machine running Xen. Be-
cause of the potentially high number of synchronization
messages (depending on the the size of the chosen time
slices), the performance of the synchronization clients is
crucial to the overall performance of the system. For this
reason, the client was implemented as a Linux kernel
module. This is especially beneficial because Xen del-
egates hardware access to the privileged domain dom0.
Therefore, the implementation in kernel space of the
privileged domain saves half of the otherwise necessary
context switches for communication and our VM imple-
mentation. Since context switches (between user space,
kernel space, and, in addition here, hypervisor context)
are expensive operations, halving the number of them has
a very noticeable impact on the overall performance.

The client communicates with the synchronization
component via UDP datagrams as described in Section
3.1.1. It then instructs Xen’s scheduler via a hypercall
(the domain-hypervisor equivalent of a user-kernel sys-
tem call) to start the synchronized domain for the amount
of time specified by the synchronizer. The client also reg-
isters an interrupt handler to a virtual interrupt, that is,
an interrupt that can be raised by the hypervisor. When
the synchronized domain has finished its assigned time
slice, the interrupt is raised, the client’s handler is exe-
cuted, and it can inform the synchronizer via UDP. This
interrupt-based signaling ensures a prompt processing by
the involved entities.

3.2.3 Xen Extensions

The other tasks necessary for our synchronization
scheme are carried out within the Xen hypervisor. To
reach the goals we set forth, it is necessary to be able
to precisely start and stop the VM’s operation accord-
ing to the assigned time slices by the synchronization

5



component. However, since operating systems have ways
to detect the passing of time via hardware support (real
time clocks, hardware timers etc.), simply stopping and
restarting the VM will not lead to the desired effect. It
will still be aware of the passing of time while it was
stopped, and therefore, operations that depend on time
information (e.g., time-outs of TCP connections) will
still occur at the wrong times. Therefore, to reach trans-
parency, it is not only necessary to be able to start and
stop VMs accurately, but also to provide a consistent and
steady perception of time for the VM. Hence, all time
sources of the VM must be controlled and adjusted in
the hypervisor.

To reach the first goal, that is, starting and stopping
VMs and running them for precise number of times, we
extended the sEDF (simple earliest deadline first) sched-
uler that is part of the Xen hypervisor. Schedulers in Xen
schedule VMs in a similar fashion to an operating sys-
tem’s scheduler. In particular, the sEDF maintains peri-
odical deadlines for each domain, and an amount of time
the domain has to be executed up to that deadline. To
manage the domains, it utilizes several queues. A run
queue contains all domains that still need to run some
time until their next deadline; once this constraint is ful-
filled, a domain migrates to the wait queue until it reaches
its deadline, at which point it rejoins the run queue with
a new deadline and required execution time.

However, the synchronized domains have to be kept
outside this periodical scheme, because these are only
scheduled when the synchronization component issues
the instruction to do so. Therefore, we introduced another
queue, the sync queue, which works as a replacement of
the wait queue for synchronized domains. These domains
stay on that queue until they are to be scheduled again,
then migrate to the run queue, and back to the sync queue
afterwards. This way, synchronized domains can be kept
outside the normal scheduling on non-synchronized do-
mains. Hence non-synchronized domains may coexist
with synchronized domains on the same physical ma-
chine.

One issue that originally impaired precise timing in
the low microsecond range was rooted in the original
implementation of the Xen scheduling subsystem. The
Xen scheduler assumes itself to run instantly, not con-
suming any time. Therefore, a time stamp at the begin-
ning of the execution of the scheduling loop was taken.
This was considered the point of time the next scheduled
domain was started. Therefore, time spent in the sched-
uler was attributed to the domain chosen for execution.
We changed this to take a time-stamp before the con-
text switch to the domain. This causes the time spent in
the scheduler not to be attributed to any domain, there-
fore increasing accuracy. In addition, our modified sEDF
scheduler records overall assigned run-time and adjusts

itself to the small (generally sub-microsecond) inaccu-
racies that are inherent to Xen’s timer management and
lead to slightly early or late returns from the scheduled
VM to the hypervisor.

To reach the second goal, that is, masking the passing
of time from VMs while being stopped, different changes
had to be applied to the Xen hypervisor. In fact, one of
the reasons we decided to use a virtualization approach
for SliceTime was the specific characteristic of decou-
pling a virtualized operating system from the hardware
it, under normal circumstances, directly interfaces with.
This way, we can modify the information that the OS
receives from the hardware time sources, and therefore
reach our goal of masking the passing of time.

To facilitate this masking, we have to amend the two
main sources of time keeping: time counters and in-
terrupt timers. Within the modified scheduler, we take
timestamps whenever a domain is scheduled and un-
scheduled. This allows us to keep track of the total
amount of time the domain was not running since the
start of the synchronization. This delta value is subtracted
from the counter that domains use to measure the pass-
ing of time; in the case of Xen and HVM domains, this
measurement is chiefly based on the time stamp counter
(TSC), a CPU register whose value increases at regu-
lar intervals. Modern CPUs with hardware virtualization
support allow the virtualization of the TSC, which allows
us to change its value as realized by the VM by subtract-
ing the delta value. This way, the TSC progresses in a
linear fashion, even if the domain is unscheduled for ex-
tended amounts of time.

Timers, the second source of time keeping, must also
appear to act as if the domain was running continuously.
To facilitate this, the same scheduler timestamps are used
to keep track of the time the domain was last unsched-
uled. Whenever a domain is unscheduled, all timers that
belong to it are stopped; in particular, all timers that be-
long to the virtualized hardware timers such as the RTC
and APIC timers. When the domain is rescheduled again,
the time delta since the last unscheduling is added to the
expiry time of all timers, after which they are reactivated.
This way, timers expire at the correct point of virtual
time, upholding the notion of linearly progressing time.

3.3 Network Simulation

SliceTime relies on ns-3 as network simulator, as opposed
to our preliminary work [39,40] in which OMNeT++ was
used. In contrast to OMNeT++ and the vast majority of
all event-based network simulators, ns-3 internally repre-
sents packets as bit vectors in network byte order, resem-
bling real-world packet formats. This removes the need
of explicit message translation mechanisms and simpli-
fies the implementation of network emulation features.

6



The modular design of ns-3 facilitates the integration of
the additional components as needed by SliceTime. The
timing control as well as the communication interface are
implemented as completely separate components whose
implementation is not intermingled with existing code.

There are some similarities between the Slice-
Time simulation components and the emulation features
already provided by ns-3. Both have to synchronize the
event execution to an external time source. For the exist-
ing emulation implementation of ns-3 this is the wall-
clock time. In the case of SliceTime the synchronizer
acts as external time source. The so called simulator
implementations in ns-3 are responsible for scheduling,
unqueuing and executing events. There is one which
does this in a standard manner and another one for real-
time simulations (i.e., synchronized to wall clock time).
Which of these is used is determined by setting a global
variable in the simulation setup.

We added a third simulator implementation that con-
nects arbitrary ns-3 simulations to the timing control in-
terface. The simulation registers at the synchronizer be-
fore its actual run begins. Similarly, the simulation dereg-
isters itself at the synchronizer after all events have been
executed. Upon the execution of an event, our implemen-
tation checks whether its associated simulation time is in
the current time slice. If this is not the case, it sends a fin-
ish message to the synchronizer and waits for the barrier
being shifted. The actual communication with the syn-
chronizer is encapsulated in a helper class which holds
a socket, provides methods to establish and tear down
a connection and to exchange the synchronization mes-
sages. Another modification is the provision of a method
which schedules an event in the current time slice. This
is needed because the regular scheduling methods only
provide the time of the last executed event, which can be
wrong in case of network packets arriving from outside
the simulation.

The ns-3 simulator already provides two mechanisms
for data communication with external systems. Both can
be used with real-time simulations and synchronized em-
ulation. The emulation net device works like any ns-3
network device, but instead of being attached to a simu-
lated channel, it is attached to a real network device of
the system running the simulation. In contrast to this the
tap bridge attaches to an existing ns-3 network device
and creates a virtual tap device in the host system. With
both mechanisms, packets received on the host system
are scheduled in the simulation and packets received in
the simulation are injected into the host system.

Besides supporting these existing two ways, we added
a synchronized tunnel bridge. It implements the data
communication interface and connects the simulation to
a remote endpoint. The endpoint is usually formed by a
VM, however the tunnel protocol could also be used to

interconnect different instances of ns-3. Again the actual
communication is encapsulated in a helper class. This is
not only to keep the bridge itself small, but also to re-
duce the number of sockets needed. In a scenario where
multiple tunnel bridges are installed inside a simulation
it is sufficient to have one instance of this helper class.
Outgoing packets are sent through its socket to a destina-
tion specified by the bridge sending the packet. Incoming
packets are dispatched by an identifier included in our
tunnel protocol and then scheduled as event in the cor-
responding bridge to which the sender of the packet is
connected. Since incoming packets are not triggered by
an event inside the simulation but can occur at any time,
there is a separate thread running which uses a blocking
receive call on the socket. This technique has the advan-
tage to avoid polling and is also used by the emulation
net device and the tap bridge.

4 System Evaluation

We now examine the achievable accuracy of SliceTime.
First, we look into the timing precision and the accuracy
of the perceived throughput. Later on, we also measure
the performance impact introduced by the synchroniza-
tion process on the general run-time performance. We
further investigate how it affects the perceived CPU per-
formance on a VM. All experiments were carried out in
a testbed of four Dell Optiplex 960 PCs, each equipped
with a 3GHz Intel Core2 Quad CPU and 8 GB of RAM,
either executing our VM implementation based on Xen
or ns-3 with our synchronization extensions. The PCs
were interconnected using Gigabit Ethernet. Regarding
the VMs, we used Linux 2.6.18-xen for the control do-
main as well as the guest domains.

Most importantly, SliceTime needs to produce valid re-
sults for any run-time behavior of both the simulation and
the VMs attached. For this purpose, we investigate two
performance metrics at different levels of synchroniza-
tion accuracy. The round-trip time between a simulation
and a VM as well as the TCP throughput of two VMs
which are communicating using TCP over a simulated
network.

4.1 Timing Accuracy

In our first experiment, we captured 1 500 ICMP Echo
replies (Pings) between a VM and a simulated host for
different simulated link delays and time slice sizes. Fig-
ure 4 shows the measured RTT distributions for a fixed
time slice size of 0.1 ms. We visualize the RTT distribu-
tions using standard box plots. The boxes are bounded
by the upper and lower quartile of the corresponding
RTT distribution. The box represents the middle 50% of

7



Figure 4: RTTs for different simulated link delays: the
simulated delays are correctly perceived by the VM

Figure 5: RTT distributions for different time slice sizes:
smaller time slices lead to a higher synchronization ac-
curacy and less variance in the measured RTTs.

the RTT measurements and its width is given by the in-
terquartile range (IQR). The whiskers visualize the low-
est and the highest RTT measured within an interval of
1.5 IQR.

If no simulation delay is present, most RTTs fall into
a small range around 0.2 ms. We term this the base delay
and it comprises time for processing and packet prop-
agation. At all other simulation delays, the median and
the RTT distributions are correctly shifted by the sum of
twice the simulated link delay. For every series, few out-
liers are well above the expected range. We explain these
deviations with the non-deterministic processing delay of
ICMP frames inside the VM’s protocol stack. Figure 5
displays the relation of the chosen time slice size and the
resulting RTT distributions for a fixed simulated link de-
lay of 0.5 ms and a variable time slice size.

As expected, the variation decreases for smaller time
slices and converges towards the expected value of twice
the simulated link delay plus the base delay. First, this
result clearly demonstrates that a higher synchronization
accuracy directly impacts the accuracy of the measure-
ments themselves. Second, we see that it is important
to choose the time slice size considerably smaller than
the simulated link delay. Hence, the correct choice of the
adequate slice size is a crucial parameter of SliceTime.
For the simulation of many WAN scenarios (e.g., Inter-

Figure 6: Network Throughput at different time slice
sizes: the synchronization does not affect the throughput
perceived by the VMs. The measured throughput on the
VMs corresponds to the simulated link capacity.

net services) time slices in the range between 0.1 ms and
2 ms are sufficient, as RTTs are mostly in the range of
several milliseconds.

4.2 Throughput Accuracy

We now evaluate the accuracy of our implementation re-
garding the network throughput perceived by the VMs.
For this purpose we use a small ns-3 simulation, con-
sisting of one IP node to which two gateway nodes are
attached using full-duplex CSMA/CD channels. To each
of those two gateway nodes, one VM is connected. Using
the netperf [19] TCP STREAM benchmark, we measured
the throughput between both VMs. Figure 6 shows the
results for different simulated channel bandwidths and
varied time slice sizes. The data points are averages over
10 netperf runs, with every run lasting 20 seconds.

Most notably, the synchronization is transparent to the
VMs in terms of perceived TCP bandwidth, as the time
slice size has practically no influence on the measured
TCP throughput. In addition, the throughput measured
on the VMs very well reflects the simulated channel
bandwidth. On average, the measured net throughput on
the VMs is 5.4% lower than the simulated link capacity.

4.3 Synchronization Overhead

Because synchronized VMs are not operating in real-
time, we now analyze the overhead in terms of actual
run-time penalties introduced by the synchronization. We
measured the real-time duration for 120 seconds of logi-
cal time issued to the VMs by the synchronizer. All VMs
were executed on the same physical machine. We calcu-
lated the overhead ratio (OR) by dividing the consumed
real-time by the logical run-time. Figure 7(a) displays the
OR of one and two VMs (HVM mode) for varying time
slice sizes. Up to a size of 0.5 ms, the synchronization
overhead remains below 10%, which is still close to real-
time behavior. For smaller slice sizes, VMs need to be

8



(a) 1 to 2 synchronized virtual machines

(b) 1 to 20 synchronized virtual machines

Figure 7: Overhead introduced at the VM at different
synchronization levels: we observe less than 10% of run-
time overhead for time slices greater than 0.5 ms. The
overhead is linear in the number of VMs on one physical
machine.

suspended and unpaused more frequently, and the mes-
saging overhead increases. This leads to a higher OR.

The parallel execution of several VMs per physical
machine is not the main objective of our work. Never-
theless, our implementation nevertheless facilitates such
configurations. Figure 7(b) shows the OR also for a
higher number of VMs. The increase of the OR is lin-
ear in the number of VMs for all time slice sizes. This is
a straight consequence of our scheduling policy. Even if
a system is equipped with multiple processors or cores,
VMs are always executed in a pure sequential order. This
is a limitation of our current implementation and we
regard the parallel execution of multiple synchronized
VMs as future work.

4.4 CPU Performance Transparency

One of the major reasons for the run-time efficiency of
SliceTime is given by the fact that the VMs, once sched-
uled, are executed natively on the host machine instead
of a full simulation of system hardware. While we have
previously shown that the integration with the network
simulation is accurate in terms of timing and network

Figure 8: CoreMark CPU Benchmark score at different
time slice sizes: For smaller time slices, the CPU perfor-
mance of a VM decreases due to an increased amount of
L2 cache misses. Please note the inverted y-axis on the
right.

bandwidth, we now investigate the transparency of our
VM implementation regarding the perceived CPU per-
formance within a VM. In an ideal case, the perceived
CPU performance of a VM would be invariant at differ-
ent levels of synchronization accuracy.

In order to quantify the CPU performance of a VM, we
executed CoreMark [34] inside the synchronized VM.
CoreMark is a synthetic benchmark for CPUs and micro-
processors recently made available by the Embedded Mi-
croprocessor Benchmark Consortium (EEMBC). It per-
forms different standard operations, such as CRC cal-
culations and matrix manipulations, and outputs a sin-
gle CPU performance score. Figure 8 shows the Core-
Mark score for different time slice sizes. Most notably,
the CPU performance is rather stable above time slices
of 0.2 ms. For a time slice size of 0.1 ms, the impact of
the synchronization still is less then 5%. However, for
small values, the CPU performance decreases rapidly. At
the highest measured accuracy level (0.01 ms), the Core-
Mark score drops to about 73% of the score of an unsyn-
chronized VM on the same hardware.

We further investigated this effect using OProfile [28]
and its XenoProf [25] extension. By concurrently execut-
ing OProfile in the control domain while CoreMark was
running inside the VM, we were able to trace internal
CPU events caused by the VM. This way, we identified
an increased amount of L2 cache misses to cause the ob-
served performance degradation. As shown in Figure 8,
the number of L2 cache misses is negatively correlated to
the measured CoreMark scores. For smaller time slices,
the CPU needs to be switched more frequently between
the execution of the VM and the control domain, thus
decreasing the efficiency of L2 caching. Although this is
a conceptual issue, we argue that the effect is negligible
for time slices down to 0.1 ms. This means that for the
vast amount of application scenarios that will use larger

9



Figure 9: Simple P2P Network: the simulation consisted
of one VM and 15 000 simulated nodes (60 backbone
nodes with 250 host nodes each)

Figure 10: Throughput between VM and simulated hosts
at different hopcounts

slices, this minimal performance reduction will have no
negative influence on the produced results.

5 Applications

We now describe two typical use cases for SliceTime.

5.1 Simple P2P Network

A core motivation of our work is to enable large-scale
network emulation setups on customary hardware. In or-
der to stress our framework in this direction we first ap-
plied our framework to a large-scale WAN scenario in
which 15 000 simulated nodes exchange data in a P2P-
like fashion. Due to the simulation size and event load,
the whole setup executes about 15 times slower than real-
time. For this experiment we used just two of the four
testbed machines (cf. Section 4). One machine executed
the VM infrastructure and the synchronizer while the
simulation was running on the other one. Figure 9 illus-
trates the two-tier topology we used, consisting of 60 in-
terlinked backbone nodes, to which 250 host nodes each
are attached via an access router. All host nodes act both
as HTTP servers and HTTP clients, requesting a random
number of 64kb data blocks from each other. To one of
the access routers we connect one VM that runs a stan-
dard Linux distribution. The synchronization accuracy
was set to 0.1ms. Using the standard curl command-
line tool we measured the HTTP throughput between the

virtual machine and simulated hosts at different hop dis-
tances (see Figure 10). The observation of the throughput
decreasing for higher hop counts is expected and rather
straightforward. However, our point here is a different
one. First, we achieve valid and consistent measurements
on the VM despite both the simulation and the VM op-
erating only at a fraction of wall-clock time. Second,
this simple example shows that SliceTime enables one
to evaluate real-world networking software in a large-
scale simulated context at low hardware and minor setup
costs, especially if compared with equally sized physical
testbeds or simulation hardware capable of executing the
same simulation in real-time.

5.2 WiFi Software

SliceTime enables investigations of WiFi software for
Linux in a fully isolated, deterministic and reproducible
context. The 802.11 software is deployed on a set of
VMs, while the network simulation models the wireless
channel, the medium access control as well as potential
node movement. In addition, the network simulation can
optionally be used to also model other parts of the net-
work, such as 802.11 access points, other mobile hosts
or an arbitrary wide-area network connecting the 802.11
infrastructure. In the following, we briefly describe the
802.11 extensions of SliceTime before we use our frame-
work to remodel a real-world field test of an AODV rout-
ing daemon for Linux.

5.2.1 SliceTime 802.11 extensions

To enable WiFi support in SliceTime we designed a sec-
ond data communication interface (cf. Section 3.2.1).
Figure 11 illustrates its core components and layers.
On the VM a loadable kernel module forms the Slice-
Time device driver that provides a virtual WiFi interface.
The device driver implements the 802.11 wireless ex-
tensions for Linux network devices. This makes the vir-
tual WiFi interface look like a real wireless networking
card. For example, commands such as iwconfig may
be used to put the virtual WiFi device into monitor mode.
The actual WiFi software may directly access this inter-
face or rely on the Linux TCP/IP stack for its commu-
nication purposes. So-called WiFi gateway nodes repre-
sent the VMs inside the simulation. The WiFi gateway
nodes perform all 802.11 MAC layer operations, for in-
stance sending ACKs, that are normally carried out by
WiFi hardware. A major benefit of this approach is that
all communication events being sensitive to strict timing
constraints remain in the simulation domain. Typically
a relatively loose VM-simulation synchronization accu-
racy of 0.5ms and hence low overhead is sufficient for
most SliceTime WiFi set-ups. By contrast, implement-

10



Figure 11: SliceTime provides a virtual network device to
the VMs that integrates with ns-3 at the MAC layer. This
facilitates testing arbitrary WiFi and networking software
with, for example, reproducible channel conditions and
node movement.

Figure 12: Real-World AODV experiment vs. remodeled
SliceTime scenario: the hopcount distribution of received
packets obtained from the scenario remodeled with Slice-
Time well matches the hopcounts measured in the real-
world scenario.

ing the MAC behavior in the driver would require a syn-
chronization accuracy lower than the 802.11 inter-frame
spaces (IFS). Despite the IFS being smaller than the max-
imum synchronization accuracy of SliceTime, the high
messaging overhead for such tight intervals would also
render such a design impractical.

Besides implementing the data exchange between the
VM device driver and the ns-3 simulation model, the
WifiEmuBridge also maps configuration actions such as
triggered by iwconfig to corresponding operations in
ns-3. In addition it is able to export packet-level statistics
such as RSSI values to the software running on the VM
using Radiotap packet headers. A more elaborate discus-
sion of our ns-3 WiFi emulation extensions can be found
in [38].

5.2.2 AODV routing daemon study

We used SliceTime to remodel the AODV part of a real-
world field test [13] in which different mobile ad-hoc net-
work (MANET) routing protocol implementations were
evaluated. In the original experiment volunteers on an
athletic field carried around 33 laptops running an AODV
daemon. The AODV routing daemon used the 802.11b
ad-hoc demo mode for link layer communication. During
the experiment the mobile nodes recorded both routing
and traffic statistics as well as GPS traces to log the node
mobility. Corresponding trace files are publicly available
at the CRAWDAD repository [14]. To remodel the orig-
inal experiment entirely in software using SliceTime we
set up 33 VMs executing the AODV software bundled
with the trace files from CRAWDAD. The AODV dae-
mon was configured to use the virtual WiFi NetDevice
of SliceTime. We implemented a corresponding simula-
tion scenario in ns-3, which used the ns-3 log distance
propagation loss model and random fading for model-
ing the wireless channel. In addition we extended ns-3
with a mobility model that reproduces the nodes’ mo-
bility according to the GPS traces. We only used one of
our testbed machines for this experiment. It hosted all
33 VMs, the synchronizer and the ns-3 simulation. The
synchronization accuracy was configured to 0.5 ms. Fig-
ure 12 compares the AODV hopcount distributions of
received packets for the real-world data and the corre-
sponding remodeled scenario. The hopcounts measured
using SliceTime well match the observations from the
real-world field test. We also determined the average
packet delivery ratio (PDR) for the real-world experi-
ment and the emulated scenario. From the CRAWDAD
traces we calculated the avg. PDR to be 42.10% for the
real-world AODV experiment. In our remodeled scenario
the avg. PDR amounts to 46.39%.

There will always be differences between real-world
measurements and observations taken with systems such
as SliceTime. This is a direct consequence of the dispar-
ity between the real world and the environment modeled
in software. The 802.11 model of ns-3, for example, is
relatively sophisticated and quite accurately reproduces
the behavior of the 802.11 MAC and PHY layers. How-
ever, there are many factors that are not considered by
our remodeled scenario, like antenna characteristics or
even a hypothetical nearby microwave that could have
influenced the real-world measurements.

Nevertheless, this use case shows that SliceTime is
well able to provide a testing environment for 802.11
software that delivers results being close to reality. Re-
peating real-world experiments like the one conducted
by Gray [13] is costly and often challenging due to con-
tinually changing conditions, for example, regarding the
wireless channel. By contrast, SliceTime allows one to ar-

11



bitrarily modify and rerun WiFi software experiments at
the push of a button. SliceTime is also cost effective com-
pared to the hardware costs and manpower requirements
of the original experiment. While the original experiment
involved around 40 volunteers and the same number of
laptops, with SliceTime the same experiment can be con-
ducted on one desktop PC.

6 Related Work

Early contributions [1, 17, 30, 36] in the field of network
emulation focus on opaque network emulation in which
physical network systems are connected to an emulation
engine that models the network propagation. The model
affects the packet flow, either by introducing delay, jitter,
bandwidth limitations, or packet errors. Later contribu-
tions extend this methodology for the emulation of In-
ternet paths [31] or use real-world measurements [5] for
accurately reproducing the behavior of large-scale net-
works. Opaque network emulation is an effective method
to investigate the impact of network propagation charac-
teristics on protocol performance. However, because all
communicating peers are physical systems, the analysis
of large-scale scenarios (e.g., P2P and overlay networks)
with many hosts is difficult.

Protocol-aware network emulation was introduced by
Fall [10], proposing the combination of real network sys-
tems and discrete event-based simulations. This imple-
mentation has been improved later in terms of timing ac-
curacy [24]. Protocol-aware emulation features also ex-
ist for other event-based network simulators [35]. All of
these implementations are subject to potential simulation
overload. Kiddle [21] used massive computing power in
form of hardware to increase the execution speed of the
simulation to circumvent this problem. While this works
up to a certain point, our aim is in the opposite direction
of slowing down the real system, saving on hardware ex-
penses and setup complexity.

Erazo et al. recently proposed SVEET! [9], a hybrid
TCP evaluation environment that integrates Xen-based
VMs with an SSFNET [8]-based emulation engine. Al-
though SVEET! involves a mechanism to cope with sim-
ulation overload, it differs significantly from our work.
In order to match the execution speed of both the VMs
and the emulation engine, SVEET! utilizes a static time
dilation factor (TDF). The TDF is used to throttle down
the speed of both the simulator and the VMs to the worst-
case run-time performance of the emulation engine. The
main drawback here is the need to correctly choose the
TDF beforehand. If the chosen TDF is too large, the
run-time is increased without any benefit due to under-
utilization of system resources. If the chosen TDF is
too small, simulation overload and time drifts can occur,
leading to flawed results. In contrast, our approach does

not statically throttle the execution speed of any com-
ponent by a constant factor. Moreover, the conservative
barrier algorithm used in our work limits the drift of all
components to the duration of one time slice.

Different virtualization-based opaque network emu-
lation approaches have been discussed over the past
years. ENTRAPID [16] executes multiple instances of
the FreeBSD network stack in the user space. These vir-
tual network kernels (VNKs) are wired together and form
a network emulation environment. As the VNKs are ex-
ecuted simultaneously and operate in wall-clock time,
this limits the scalability of this approach. dONE [4]
proposes the virtualization of time to address this prob-
lem. Despite this similarity SliceTime differs signifi-
cantly from both dONE and ENTRAPID: first, neither
dONE nor ENTRAPID integrate software prototypes
with an event-based network simulation at all. By con-
trast, SliceTime relies on ns-3 as emulation backend. This
enables the set-up of emulation scenarios that access all
models and features of the network simulator. Second, in
opposition to SliceTime, neither dONE nor ENTRAPID
allow the investigation of entire network protocol stacks,
as both draw the line between the emulation environ-
ment and software prototypes right at the socket layer.
Diecast [15] and Time Jails [12] facilitate the setup of a
network emulation testbeds solely based on virtual ma-
chines. The main advantage compared to the aforemen-
tioned systems is that they allow one to execute unmod-
ified software and protocol stacks. Both are an attrac-
tive option for real-world experiments in which the num-
ber of nodes exceeds the quantity of physical hosts of
a testbed. In addition, Diecast not only scales time, but
also the performance of system components to accurately
model a realistic hardware behavior profile. SliceTime,
by contrast, follows a different goal. Instead of virtual-
izing time to increase the capacity of a physical testbed,
we employ it for synchronizing a VM with a network
simulation that forms the emulation engine. This has two
advantages. First, using a network simulator as backend
allows us to put concepts such as virtual node mobility
into action, which is not possible with neither DieCast
nor Time Jails. Second, the scalability of the simulator
opens up the possibility of implementing large-scale em-
ulation scenarios that could not be realized using VMs
alone without taking up much higher hardware resources.

Emulab [42] is a well-established large network
testbed allowing for the evaluation of networked soft-
ware in different communication environments. Its main
strength is the ability to specify network scenarios using
a configuration file which Emulab maps to the testbed
hardware. In order to reproduce the characteristics of
networks of many kinds, Emulab also employs opaque
network emulation between the testbed nodes. In direct
comparison with SliceTime, Emulab achieves its flexibil-

12



ity by incorporating a huge amount of networked com-
puters, network infrastructure as well as auxiliary com-
ponents. We admire the efforts and achievements of its
creators in this regard. SliceTime instead aims at provid-
ing a flexible and scalable network experimentation and
evaluation platform with very modest hardware require-
ments. This is reflected in our evaluation which at most
required two Desktop PCs to carry out the large-scale
WAN experiment. We achieve this goal by scaling execu-
tion time and by modeling large parts of the scenario us-
ing the ns-3 simulator. On one hand the use of a simulator
limits the possible degree of realism due to discrepancies
between the real world and the corresponding simulation
models. On the other hand relying on a simulation allows
the construction of “virtual network testbeds” that are not
dependant on the availability of physical hardware or real
network infrastructure.

Wireless network emulation tools, such as the CMU
Emulator [20], interconnect antenna connectors of stan-
dard wireless network hardware via cables. Complex
hardware, mostly based on FPGAs and DSPs, is used to
model the wireless channel. While this enables a quite re-
alistic emulation, it requires complete physical hardware
for each station. There is also number of pure software-
based wireless network emulation tools. Most of them,
such as [26,29,43], only mimic the propagation of pack-
ets on the wireless link and do not support simulated
wireless stations. A few wireless network emulation sys-
tems [22,32,33] are based on event-based network simu-
lators. They share some similarities with the WiFi exten-
sions of SliceTime, but differ significantly in the way they
interface the software prototypes with the 802.11 simula-
tion. In [22,32] the 802.11 simulation model is integrated
with the software at the IP layer, which prevents investi-
gations of 802.11 software using a different routing pro-
tocol than IP. VirtualMesh [33] bridges the gap between
the simulation and the WiFi software at the MAC layer,
but requires the modification of all applications making
use of the wireless extensions. By contrast, the 802.11
add-ons of SliceTime introduce a clean cut between the
simulation and the prototypes at the MAC layer. This en-
ables arbitrary WiFi software for Linux to be evaluated
without any changes to the software.

7 Conclusion

In this paper we presented SliceTime, a platform for scal-
able and accurate network emulation. SliceTime enables
the detailed analysis of protocol implementations and en-
tire instances of operating systems inside simulated net-
works of arbitrary size. We achieve this goal by matching
the execution speed of software prototypes encapsulated
in virtual machines to the run-time performance of the
event-based simulation. Our evaluation has shown that

SliceTime is accurate as it integrates network simulations
of any size with VM based prototypes regarding timing
and network bandwidth in a transparent way.

SliceTime is resource efficient. We model large parts
of the experiment with a simulation and match its overall
execution speed to the available hardware resources. This
makes it possible to conduct large-scale network emu-
lation studies with very moderate hardware costs, espe-
cially if compared to equally sized physical testbeds.

SliceTime opens up new application areas for network
emulation. In the past, only event-based simulations ex-
ecuting in real-time could form a basis for network em-
ulation. This is not true for the vast majority of network
simulations. For example, the computation complexity of
802.11 channel models so far hindered the use of net-
work emulation for larger WiFi scenarios. By eliminat-
ing this burden of real-time execution, SliceTime allows
any simulation to be used for network emulation. We
have demonstrated that this extends the applicability of
network emulation to large-scale WAN and 802.11 sce-
narios. As we believe that SliceTime will be useful for
a number of researchers and developers, we have made
the source code available to the public. It can be down-
loaded at http://www.comsys.rwth-aachen.
de/research/projects/slicetime.

Acknowledgements

We express our gratitude to our shepherd Remzi Arpaci-
Dusseau and our anonymous NSDI reviewers for their
valuable and helpful comments. We also greatly thank
Martin Lindner and Suraj Prabhakaran for conducting
additional measurements and Simon Rieche and Stefan
Götz for many fruitful discussions. This research was
partially funded by different DFG grants and the UMIC
excellence cluster, DFG EXC 89.

References

[1] ALLMAN, M., AND OSTERMANN, S. ONE: The Ohio Network
Emulator. Technical Report TR-19972, Ohio University, 1997.

[2] AVVENUTI, M., AND VECCHIO, A. Application-level network
emulation: the emusocket toolkit. Journal of Network and Com-
puter Applications 29, 4 (2006), 343–360.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proc.
SOSP’03 (Bolton Landing, NY, USA, Oct. 2003), ACM.

[4] BERGSTROM, C., VARADARAJAN, S., AND BACK, G. The dis-
tributed open network emulator: Using relativistic time for dis-
tributed scalable simulation. In Proc. PADS’06 (May 2006),
pp. 19–28.

[5] CARSON, M., AND SANTAY, D. NIST Net: A Linux-based net-
work emulation tool. ACM Comp. Commun. Rev. 33, 3 (2003),
111–126.

13

http://www.comsys.rwth-aachen.de/research/projects/slicetime
http://www.comsys.rwth-aachen.de/research/projects/slicetime


[6] CHANDY, K. M., AND MISRA, J. Distributed simulation: A case
study in design and verification of distributed programs. IEEE
Trans. on Software Engineering SE-5, 5 (Sept. 1979), 440–452.

[7] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETER-
SON, L., WAWRZONIAK, M., AND BOWMAN, M. PlanetLab:
An Overlay Testbed for Broad-Coverage Services. ACM Comp.
Commun. Rev. 33, 3 (2003), 3–12.

[8] COWIE, J., NICOL, D., AND OGIELSKI, A. Modeling the global
internet. Computing in Science & Engineering 1, 1 (Jan/Feb
1999), 42–50.

[9] ERAZO, M. A., LI, Y., AND LIU, J. SVEET! a scalable vir-
tualized evaluation environment for TCP. In Proc. TRIDENT-
COM’09 (2009), IEEE Computer Society, pp. 1–10.

[10] FALL, K. R. Network emulation in the Vint/NS simulator. In 4th
IEEE Symposium on Computers and Communication (1999).

[11] FUJIMOTO, R. M. Parallel discrete event simulation. Commun.
ACM 33, 10 (1990), 30–53.

[12] GRAU, A., MAIER, S., HERRMANN, K., AND ROTHERMEL, K.
Time Jails: A hybrid approach to scalable network emulation. In
Proc. PADS’08 (June 2008), pp. 7–14.

[13] GRAY, R. S., KOTZ, D., NEWPORT, C., DUBROVSKY, N.,
FISKE, A., LIU, J., MASONE, C., MCGRATH, S., AND YUAN,
Y. Outdoor experimental comparison of four ad hoc routing al-
gorithms. In Proc. MSWiM’04 (2004).

[14] GRAY, R. S., KOTZ, D., NEWPORT, C., DUBROVSKY, N.,
FISKE, A., LIU, J., MASONE, C., MCGRATH, S., AND
YUAN, Y. CRAWDAD data set dartmouth/outdoor (v.
2006-11-06). Downloaded from http://crawdad.cs.
dartmouth.edu/dartmouth/outdoor, Nov. 2006.

[15] GUPTA, D., VISHWANATH, K. V., AND VAHDAT, A. DieCast:
Testing distributed systems with an accurate scale model. In
NSDI’08 (San Francisco, CA, USA, 2008), USENIX.

[16] HUANG, X., SHARMA, R., AND KESHAV, S. The ENTRAPID
protocol development environment. INFOCOM ’99 (Mar. 1999).

[17] INGHAM, D. B., AND PARRINGTON, G. D. Delayline: A wide-
area network emulation tool. Comput. Syst. 7, 3 (1994), 313–332.

[18] JEFFERSON, D. R., AND SOWIZRAL, H. Fast concurrent sim-
ulation using the time warp mechanism. Simulation Series, Soc.
for Computer Simulation 24-26 Jan 1985 15 (1985), 63–69.

[19] JONES, R., CHOY, K., AND SHIELD, D. Netperf. [Online] Avail-
able http://www.netperf.org December 21, 2009.

[20] JUDD, G., AND STEENKISTE, P. Repeatable and realistic wire-
less experimentation through physical emulation. ACM SIG-
COMM Computer Communication Review 34, 1 (2004), 63–68.

[21] KIDDLE, C. Scalable Network Emulation. PhD thesis, Depart-
ment of Computer Science, University of Calgary, 2004.

[22] KROP, T., BREDEL, M., HOLLICK, M., AND STEINMETZ, R.
JiST/MobNet: combined simulation, emulation, and real-world
testbed for ad hoc networks. In Proc. WinTECH’07 (New York,
NY, USA, 2007), ACM, pp. 27–34.

[23] LUBACHEVSKY, B. D. Efficient distributed event-driven simu-
lations of multiple-loop networks. Comm. ACM 32 (1989), 111–
123.

[24] MAHRENHOLZ, D., AND IVANOV, S. Real-time network emula-
tion with ns-2. 8th IEEE International Symposium on Distributed
Simulation and Real-Time Applications (DS-RT) (2004).

[25] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN,
G. J., AND ZWAENEPOEL, W. Diagnosing performance over-
heads in the Xen virtual machine environment. In Proc. VEE
2005, Chicago,USA (2005).

[26] NOBLE, B., SATYANARAYANAN, M., NGUYEN, G., AND
KATZ, R. Trace-based mobile network emulation. In Proc. SIG-
COMM’97 (1997), ACM New York, NY, USA, pp. 51–61.

[27] ns-3 Website. http://www.nsnam.org/ (accessed Oct.
2010.

[28] OProfile: a system profiler for linux. http://oprofile.
sourceforge.net (accessed Oct. 2010).

[29] PUŽAR, M., AND PLAGEMANN, T. NEMAN: A network emu-
lator for mobile ad-hoc networks. Tech. Rep. 321, Department of
Informatics, University of Oslo, 3 2005.

[30] RIZZO, L. Dummynet: A simple approach to the evaluation of
network protocols. ACM Comp. Commun. Rev. 27, 1 (1997), 31–
41.

[31] SANAGA, P., DUERIG, J., RICCI, R., AND LEPREAU, J. Mod-
eling and emulation of internet paths. In Proceedings NSDI’09
(2009), USENIX Association, pp. 199–212.

[32] SEIPOLD, T. Emulation of radio access networks to facilitate the
development of distributed applications. JOURNAL OF COM-
MUNICATIONS 3, 1 (2008), 1.

[33] STAUB, T., GANTENBEIN, R., AND BRAUN, T. VirtualMesh: an
emulation framework for wireless mesh networks in OMNeT++.
In Proc. SIMUTools’09 (Brussels, Belgium, 2009), pp. 1–8.

[34] THE EMBEDDED MICROPROCESSOR BENCHMARK CONSOR-
TIUM. CoreMark. [Online] Available http://www.
coremark.org December 27, 2009.

[35] TUEXEN, M., RUENGELER, I., AND RATHGEB, E. P. Interface
connecting the INET simulation framework with the real world.
In Proc. 1st International Workshop on OMNet++ (2008).

[36] VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P.,
KOSTIC, D., CHASE, J. S., AND BECKER, D. Scalability and
accuracy in a large-scale network emulator. In Proc. OSDI’02
(2002).

[37] VARGA, A., AND HORNIG, R. An overview of the OMNeT++
simulation environment. In SIMUTools 2008 (Marseille, France,
March 2008).

[38] WEINGAERTNER, E., VOM LEHN, H., AND WEHRLE, K.
Device-driver enabled wireless network emulation. In Proc.
SIMUTools 2011 (Barcelona, Spain, March 2011).

[39] WEINGÄRTNER, E., SCHMIDT, F., HEER, T., AND WEHRLE,
K. Synchronized network emulation: matching prototypes with
complex simulations. SIGMETRICS Perform. Eval. Rev. 36, 2
(2008), 58–63.

[40] WEINGÄRTNER, E., SCHMIDT, F., HEER, T., AND WEHRLE,
K. Time accurate integration of software prototypes with event-
based network simulations. In Proc. of the Poster session at SIG-
METRICS 2009 (Seattle, USA, 2009).

[41] WERNER-ALLEN, G., SWIESKOWSKI, P., AND WELSH, M.
Motelab: a wireless sensor network testbed. In Proc. IPSN’05
(Piscataway, NJ, USA, 2005), IEEE Press, p. 68.

[42] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. SIGOPS Oper. Syst. Rev. 36, SI
(2002), 255–270.

[43] ZHANG, Y., AND LI, W. An integrated environment for testing
mobile ad-hoc networks. In Proc. MobiHoc’02 (New York, NY,
USA, 2002), ACM, pp. 104–111.

14

http://crawdad.cs.dartmouth.edu/dartmouth/outdoor
http://crawdad.cs.dartmouth.edu/dartmouth/outdoor
http://www.netperf.org
http://www.nsnam.org/
http://oprofile.sourceforge.net
http://oprofile.sourceforge.net
http://www.coremark.org
http://www.coremark.org

	Introduction
	SliceTime
	Synchronization Component
	Virtual Machines
	Event-based Network Simulation

	Implementation
	Synchronization component
	Timing Control Interface

	Virtual Machines
	Data Communication Interface
	The Xen Synchronization Client
	Xen Extensions

	Network Simulation

	System Evaluation
	Timing Accuracy
	Throughput Accuracy
	Synchronization Overhead
	CPU Performance Transparency

	Applications
	Simple P2P Network
	WiFi Software
	SliceTime 802.11 extensions
	AODV routing daemon study


	Related Work
	Conclusion

