
ETTM: A Scalable Fault Tolerant Network Manager
Colin Dixon Hardeep Uppal Vjekoslav Brajkovic Dane Brandon

Thomas Anderson Arvind Krishnamurthy
University of Washington

Abstract
In this paper, we design, implement, and evaluate a

new scalable and fault tolerant network manager, called
ETTM, for securely and efficiently managing network
resources at a packet granularity. Our aim is to pro-
vide network administrators a greater degree of control
over network behavior at lower cost, and network users a
greater degree of performance, reliability, and flexibility,
than existing solutions. In our system, network resources
are managed via software running in trusted execution
environments on participating end-hosts. Although the
software is physically running on end-hosts, it is logi-
cally controlled centrally by the network administrator.
Our approach leverages the trend to open management
interfaces on network switches as well as trusted com-
puting hardware and multicores at end-hosts. We show
that functionality that seemingly must be implemented
inside the network, such as network address translation
and priority allocation of access link bandwidth, can be
simply and efficiently implemented in our system.

1 Introduction
In this paper, we propose, implement, and evaluate a new
approach to the design of a scalable, fault tolerant net-
work manager. Our target is enterprise-scale networks
with common administrative control over most of the
hardware on the network, but with complex quality of
service and security requirements. For these networks,
we provide a uniform administrative and programming
interface to control network traffic at a packet granular-
ity, implemented efficiently by exploiting trends in PC
and network switch hardware design. Our aim is to pro-
vide network administrators a greater degree of control
over network behavior at lower cost, and network users a
greater degree of performance, reliability, and flexibility,
compared to existing solutions.

Network management today is a difficult and complex
endeavor. Although IP, Ethernet and 802.11 are widely
available standards, most network administrators need
more control over network behavior than those proto-
cols provide, in terms of security configuration [21, 14],
resource isolation and prioritization [36], performance
and cost optimization [4], mobility support [22], prob-
lem diagnosis [27], and reconfigurability [7]. While most
end-host operating systems have interfaces for configur-
ing certain limited aspects of network security and re-
source policy, these configurations are typically set inde-
pendently by each user and therefore provide little assur-

ance or consistent behavior when composed across mul-
tiple users on a network.

Instead, most network administrators turn to middle-
boxes - a central point of control at the edge of the net-
work where functionality can be added and enforced on
all users. Unfortunately, middleboxes are neither a com-
plete nor a cost-efficient solution. Middleboxes are usu-
ally specialized appliances designed for a specific pur-
pose, such as a firewall, packet shaper, or intrusion de-
tection system, each with their own management inter-
face and interoperability issues. Middleboxes are typi-
cally deployed at the edge of the (local area) network,
providing no help to network administrators attempting
to control behavior inside the network. Although middle-
box functionality could conceivably be integrated with
every network switch, doing so is not feasible at line-rate
at reasonable cost with today’s LAN switch hardware.

We propose a more direct approach, to manage net-
work resources via software running in trusted execution
environments on participating endpoints. Although the
software is physically running on endpoints, it is logi-
cally controlled centrally by the network administrator.
We somewhat whimsically call our approach ETTM, or
End to the Middle. Of course, there is still a middle,
to validate the trusted computing stack running on each
participating node, and to redirect traffic originating from
non-participating nodes such as smart phones and print-
ers to a trusted intermediary on the network. By moving
packet processing to trusted endpoints, we can enable a
much wider variety of network management functional-
ity than is possible with today’s network-based solutions.

Our approach leverages four separate hardware and
software trends. First, network switches increasingly
have the ability to re-route or filter traffic under admin-
istrator control [7, 30]. This functionality was origi-
nally added for distributed access control, e.g., to pre-
vent visitors from connecting to the local file server. We
use these new-generation switches as a lever to a more
general, fine-grained network control model, e.g., allow-
ing us to efficiently interpose trusted network manage-
ment software on every packet. Second, we observe
that many end-host computers today are equipped with
trusted computing hardware, to validate that the endpoint
is booted with an uncorrupted software stack. This al-
lows us to use software running on endpoints, and not
just network hardware in the middle of the network, as
part of our enforcement mechanism for network man-
agement. Third, we leverage virtual machines. Our

network management software runs in a trusted virtual
machine which is logically interposed on each network
packet by a hypervisor. Despite this, to the user each
computer looks like a normal, completely configurable
local PC running a standard operating system. Users can
have complete administrative control over this OS with-
out compromising the interposition engine. Finally, the
rise of multicore architectures means that it is possible
to interpose trusted packet processing on every incom-
ing/outgoing packet without a significant performance
degradation to the rest of the activity on a computer.

In essence, we advocate converting today’s closed ap-
pliance model of network management to an open soft-
ware model with a standard API. None of the function-
ality we need to implement on top of this API is par-
ticularly complex. As a motivating example, consider a
network administrator needing to set up a computer lab
at a university in a developing country with an underpro-
visioned, high latency link to the Internet. It is well un-
derstood that standard TCP performance will be dread-
ful unless steps are taken to manipulate TCP windows
to limit the rate of incoming traffic to the bandwidth of
the access link, to cache repeated content locally, and to
prioritize interactive traffic over large background trans-
fers. As another example, consider an enterprise seek-
ing to detect and combat worm traffic inside their net-
work. Current Deep Packet Inspection (DPI) techniques
can detect worms given appropriate visibility, but are ex-
pensive to deploy pervasively and at scale. We show that
it is possible to solve these issues in software, efficiently,
scalably, and with high fault tolerance, avoiding the need
for expensive and proprietary hardware solutions.

The rest of the paper discusses these issues in more
detail. We describe our design in § 2, sketch the network
services which we have built in § 3, summarize related
work in § 4 and conclude in § 5.

2 Design & Prototype
ETTM is a scalable and fault-tolerant system designed to
provide a reliable, trustworthy and standardized software
platform on which to build network management ser-
vices without the need for specialized hardware. How-
ever, this approach begs several questions concerning se-
curity, reliability and extensibility.
• How can network management tasks be entrusted to

commodity end hosts which are notorious for being
insecure? In our model, network management tasks
can be relocated to any trusted execution environment
on the network. This requires the network manage-
ment software be verified and isolated from the host
OS to be protected from compromise.

• If the management tasks are decentralized, how can
these distributed points of control provide consistent
decisions which survive failures and disconnections?

Hypervisor w/TPM

Commodity OS

AEEApp App

Netwk
Service

Netwk
Service

µvrouter paxos

Figure 1: The architecture of an ETTM end-host. Network
management services run in a trusted virtual machine (AEE).
Application flows are routed to appropriate network manage-
ment services using a micro virtual router (µvrouter).

The system should not break simply because a user,
or a whole team of users, turn off their computers.
In particular, management services must be available
in face of node failures and maintain consistent state
regarding the resources they manage.

• How can we architect an extensible system that en-
ables the deployment of new network management
services which can interpose on relevant packets?
Network administrators need a single interface to in-
stall, configure and compose new network manage-
ment services. Further, the implementation of the in-
terface should not impose undue overheads on net-
work traffic.

While many of the techniques we employ to surmount
these challenges are well-known, their combination into
a unified platform able to support a diverse set of net-
work services is novel. The particular mechanisms we
employ are summarized in Table 1, and the architecture
of a given end-host participating in management can be
seen in Figure 1.

The function of these mechanisms is perhaps best il-
lustrated by example, so let us consider a distributed Net-
work Address Translation (NAT) service for sharing a
single IP address among a set of hosts. The NAT service
in ETTM maps globally visible port numbers to private
IP addresses and vice versa. First, the translation table
itself needs to be consistent and survive faults, so it is
maintained and modified consistently by the consensus
subsystem based on the Paxos distributed coordination
algorithm. Second, the translator must be able to inter-
pose on all traffic that is either entering or leaving the
NATed network. The micro virtual router (µvrouter)’s
filters allow for this interposition on packets sourced by a
ETTM end-host, while the physical switches are set up to

Mechanism Description Tech Trends Goals Section
Trusted Authoriza-
tion

Extension to the 802.1X network access control pro-
tocol to authorize trusted stacks

TPM Trust 2.1

Attested Execution
Environment

Trusted space to run filters and control plane pro-
cesses on untrusted end-hosts

Virtualization,
Multicore

Scalability 2.2

Physical Switches In-network enforcers of access control and rout-
ing/switching policy decisions

Open interfaces Standardization 2.3

Filters End-host enforcers of network policy running inside
the Attested Execution Environment

Multicore Extensibility 2.4

Consensus Agreement on management decisions and shared
state

Fault tolerance
techniques

Reliability,
Extensibility

2.5

Table 1: Summary of mechanisms in ETTM.

deliver incoming packets to the appropriate host.1 Lastly,
because potentially untrusted hosts will be involved in
the processing of each packet, the service is run only in
an isolated attested execution environment on hosts that
have been verified using our trusted authorization proto-
col based on commodity trusted hardware.

2.1 Trusted Authorization
Traditionally, end-hosts running commodity operating
systems have been considered too insecure to be en-
trusted with the management of network resources.
However, the recent proliferation of trusted computing
hardware has opened the possibility of restructuring the
placement of trust. In particular, using the trusted plat-
form module (TPM) [39] shipping with many current
computers, it is possible to verify that a remote com-
puter booted a particular software stack. In ETTM, we
use this feature to build an extension to the widely-used
802.1X network access control protocol to make autho-
rization decisions based on the booted software stack of
end-hosts rather than using traditional key- or password-
based techniques. We note that the guarantees provided
by trusted computing hardware generally assume that an
attacker will not physically tamper with the host, and we
make this assumption as well.

The remainder of this section describes the particular
capabilities of current trusted hardware and how they en-
able the remote verification of a given software stack.

2.1.1 Trusted Platform Module

The TPM is a hardware chip commonly found on moth-
erboards today consisting of a cryptographic processor,
some persistent memory, and some volatile memory. The
TPM has a wide variety of capabilities including the se-
cure storage of integrity measurements, RSA key cre-
ation and storage, RSA encryption and decryption of
data, pseudo-random number generation and attestation
to portions of the TPM state. Much of this functionality

1This is possible with legacy ethernet switches using a form of de-
tour routing or more efficiently with programmable switches [30].

is orthogonal to the purposes of this paper. Instead, we
focus on the features required to remotely verify that a
machine has booted a given software stack.

One of the keys stored in the TPM’s persistent memory
is the endorsement key (EK). The EK serves as an iden-
tity for the particular TPM and is immutable. Ideally, the
EK also comes with a certificate from the manufacturer
stating that the EK belongs to a valid hardware TPM.
However many TPMs do not ship with an EK from the
manufacturer. Instead, the EK is set as part of initializing
the TPM for its first use.

The volatile memory inside the TPM is reset on ev-
ery boot. It is used to store measurement data as well
as any currently loaded keys. Integrity measurements of
the various parts of the software stack are stored in regis-
ters called Platform Configuration Registers (PCRs). All
PCR values start as 0 at boot and can only be changed
by an extend operation, i.e., it is not possible to replace
the value stored in the PCR with an arbitrary new value.
Instead, the extend operation takes the old value of the
PCR register, concatenates it with a new value, computes
their hash using Secure Hash Algorithm 1 (SHA-1), and
replaces the current value in the PCR with the output of
the hash operation.

2.1.2 Trusted Boot

The intent is that as the system boots, each software com-
ponent will be hashed and its hash will be used to ex-
tend at least one of the PCRs. Thus, after booting, the
PCRs will provide a tamper evident summary of what
happened during the boot. For instance, the post-boot
PCR values can be compared against ones corresponding
to a known-good boot to establish if a certain software
stack has been loaded or not.

To properly measure all of the relevant components
in the software stack requires that each layer be instru-
mented to measure the integrity of the next layer, and
then store that measurement in a PCR before passing ex-
ecution on. Storing measurements of different compo-
nents into different PCRs allows individual modules to

be replaced independently.
As each measurement’s validity depends on the cor-

rectness of the measuring component, the PCRs form a
chain of trust that must be rooted somewhere. This root
is the immutable boot block code in the BIOS and is
referred to as the Core Root of Trust for Measurement
(CRTM). The CRTM measures itself as well as the rest
of BIOS and appends the value into a PCR before pass-
ing control to any software or firmware. This means that
any changeable code will not acquire a blank PCR state
and cannot forge being the “bottom” of the stack.

It should be noted that the values in the PCRs are only
representative of the state of the machine at boot time.
If malicious software is loaded or changes are made to
the system thereafter, the changes will not be reflected
in the PCRs until the machine is rebooted. Thus, it is
important that only minimal software layers are attested.
In our case, we attest the BIOS, boot loader, virtual ma-
chine monitor, and execution environment for network
services. We do not need to attest the guest OS running
on the device, as it is never given access to the raw pack-
ets traversing the device.

2.1.3 Attestation

Once a machine is booted with PCR values in the TPM,
we need a verifiable way to extract them from the TPM
so that a remote third party can verify that they match
a known-good software stack and that they came from
a real TPM. In theory this should be as simple as sign-
ing the current PCR values with the private half of the
EK, but signing data with the EK directly is disallowed.2

Instead, Attestation Identity Keys (AIKs) are created to
sign data and create attestations. The AIKs can be as-
sociated with the TPM’s EK either via a Privacy CA or
via Direct Anonymous Attestation [39] in order to prove
that the AIKs belong to a real TPM. As a detail, because
many TPMs do not ship with EKs from their manufactur-
ers, these computers must generate an AIK at installation
and store the public half in a persistent database.

To facilitate attestation, TPMs provide a quote opera-
tion which takes a nonce and signs a digest of the current
PCRs and that nonce with a given AIK. Thus, a verifier
can challenge a TPM-equipped computer with a random,
fresh nonce and validate that the response comes from a
known-good AIK, contains the fresh nonce, and repre-
sents a known-good software stack.

2.1.4 ETTM Boot

When a machine attempts to connect to an ETTM net-
work, the switch forwards the packets to a verification
server which can be either an already-booted end-host
running ETTM, a persistent server on the LAN or even

2This is to avoid creating an immutable identity which is revealed
in every interaction involving the TPM.

ETTM Switch

End-Host

1
2

4

3

5
6

7 Verification
Server

Figure 2: The steps required for an ETTM boot and trusted
authorization.

a cloud service.3 On recognizing the connection of a
new host, the switch establishes a tunnel to the verifica-
tion server and maintains this tunnel until the verification
server can reach a verdict about authorization.

If the host is verified as running a complete, trusted
software stack then it is simply granted access to the
network. If the host is running either an incomplete or
old software stack, the ETTM software on the end-host
attempts to download a fresh copy and retries. Traffic
from non-conformant hosts are tunneled to a participat-
ing host; our design assumes this is a rare case.

Our trusted authorization protocol creates this ex-
change via an extension to the 802.1X and EAP proto-
cols. We have extended the wpa supplicant [28]
802.1X client and the FreeRADIUS [16] 802.1X server
to support this extension and provide authorization to
clients based purely on their attested software stacks.

This process is shown in Figure 2. First, the end-
host connects to an ETTM switch, receives an EAP Re-
quest Identity packet (1), and responds with an EAP
Response/Identity frame containing the desired AIK to
use (2). The switch encapsulates this response inside
an 802.1x packet which is forwarded to the verifica-
tion server running our modified version of FreeRA-
DIUS (3). The FreeRADIUS server responds with a sec-
ond EAP Request Trusted Software Stack frame contain-
ing a nonce again encapsulated inside an 802.1X packet
(4), and the end-host responds with an EAP Response
Trusted Software Stack frame containing the signed PCR
values proving the booted software stack (5). This con-
cludes the verification stage.

The verification server can then either render a verdict
as to whether access is granted (7) or require the end-host
to go through a provisioning stage (6) where extra code
and/or configuration can be loaded onto the machine and
the authorization retried.

2.1.5 Performance of ETTM Boot

Table 2 presents microbenchmarks for various TPM op-
erations (including those which will be described later in
this section) on our Dell Latitude e5400 with a Broad-
com TPM complying to version 1.2 of the TPM spec, an
Intel 2 GHz Core 2 Duo processor and 2 GB of RAM.

3We assume the existence of some persistently reachable computer
to bootstrap new nodes and store TPM configuration state. Under nor-
mal operation, this is a currently active verified ETTM node.

Operation Time (s) Std. Dev. (s)
PCR Extend 0.0253 0.001
Create AIK 34.3 8.22
Load AIK 1.75 0.002
Sign PCR 0.998 0.001

Table 2: The time (in seconds) it takes for a variety of TPM
operations to complete.

Operation Wall Clock Time (s)
client start 0
receive first server message +0.049
receive challenge nonce +0.021
send signed PCRs +0.998
receive server decision +0.018
Total 1.09

Table 3: The time (in seconds) it takes for an 802.1X EAP-TSS
authorization with breakdown by operation.

The time to create the AIK is needed only once at sys-
tem initialization. The total time added to the normal
boot sequence for an ETTM enabled host is negligible
as most actions can be trivially overlapped with other
boot tasks. Assuming the challenge nonce is received,
the signing time can be overlapped with the booting of
the guest OS as no attestation is required to its state.

Table 3 shows a breakdown of how long each step
takes in our implementation of trusted authorization as-
suming an up-to-date trusted software stack is already in-
stalled on the end-host and the relevant AIK has already
been loaded. The total time to verify the boot status is
just over 1 second. This is dominated by the time that
it takes to sign the PCR values after having received the
challenge nonce.

2.2 Attested Execution Environment
In ETTM, we require that each participating host has a
corresponding trusted virtual machine which is responsi-
ble for managing that host’s traffic. We call this virtual
machine an Attested Execution Environment (AEE) be-
cause it has been attested by Trusted Authorization. In
the common case, this virtual machine will run alongside
the commodity OS on the host, but in some cases a host’s
corresponding AEE may run elsewhere with the physical
switching infrastructure providing an constrained tunnel
between the host and its remote VM.

The AEE is the vessel in which network management
activities take place on end-hosts. It provides three key
features: a mechanism to intercept all incoming and out-
going traffic, a secure and isolated execution environ-
ment for network management tasks and a common plat-
form for network management applications.

To interpose the AEE on all network traffic, the hyper-
visor (our implementation makes use of Xen [3]) is con-

figured to forward all incoming and outgoing network
traffic through the AEE. This configuration is verified as
part of trusted authorization. Once the AEE has been in-
terposed on all traffic, it can apply the ETTM filters (de-
scribed in § 2.4) giving each network service the required
points of visibility and control of the data path.

Further, the hypervisor is configured to isolate the
AEE from any other virtual machines it hosts. Thus, the
AEE will be able to faithfully execute the prescribed fil-
ters regardless of the configuration of the commodity op-
erating system. 4 The AEE can also execute network
management tasks which are not directly related to the
host’s traffic. For example, it could redirect traffic to a
mobile host, verify a new host’s software stack or recon-
figure physical switches. It is even possible for a host to
run multiple AEEs simultaneously with some being run
on behalf of other nodes in the system. A desktop with
excess processing power can stand-in to filter the traffic
from a mobile phone.

Lastly, the AEE provides a common platform to build
network management services. Because this platform
is run as a VM, it can remain constant across all end-
hosts providing a standardized software API. Our cur-
rent AEE implementation is a stripped-down Linux vir-
tual machine, however, we have augmented it with APIs
to manage filters (described in § 2.4) as well as to manage
reliable, consistent, distributed state (described in § 2.5).

While in most cases, the added computational re-
sources required to run an AEE do not pose a problem,
ETTM allows for AEEs (or some parts of an AEE) to
be offloaded to another computer. In our prototype, this
is handled by applications themselves. In the future, we
hope to add dynamic offloading based on machine load.

2.3 Physical Switches
Physical switches are the lowest-level building block in
ETTM. Their primary purpose is to provide control and
visibility into the link layer of the network. This includes
access control, flexible control of packet forwarding, and
link layer topology monitoring.
• Authorization/Access Control: As described ear-

lier, switches redirect and tunnel traffic from as of yet
unauthorized hosts until an authorization decision has
been made.

• Flexible Packet Forwarding: The ability to install
custom forwarding rules in the network enables sig-
nificantly more efficient implementations of some
network management services (e.g., NAT), but is not
required. Flexible forwarding also enables more ef-
ficient routing by not constraining traffic within the

4We make use of a VM other than the root VM (e.g., Dom0 in Xen)
for the AEE to both maintain independence from any particular hyper-
visor and to protect any such root VM from misbehaving applications
in the AEE.

traditional ethernet spanning tree protocol.
• Topology Monitoring: In order to properly manage

available network resources, end-hosts must be able
to discover what network resources exist. This in-
cludes the set of physical switches and links along
with the links’ latencies and capacities.

At a minimum, ETTM only requires the first of these
capabilities and since we implement access control via
an extension to 802.1X and EAP, most current ethernet
switches (even many inexpensive home routers [31, 10])
can serve as ETTM switches. There are advantages
to more full-featured switches, however. For instance,
a physical switch that supports the 802.1AE MACSec
specification can provide a secure mechanism to differ-
entiate between the different hosts attached to the same
physical port and authorize them independently, while
denying access to other unauthorized hosts attached to
the port.

Additionally, ETTM can better manage network re-
sources when used in conjunction with an OpenFlow
switch [30]. OpenFlow provides a wealth of network
status information and supports packet header rewriting
and flexible, rule-based packet forwarding. We currently
leave interacting with programmable switches to applica-
tions. Many applications function correctly using simple
Ethernet spanning tree routing and do not require con-
trol over packet-forwarding. Those that do, like the NAT,
must either implement packet redirection in the applica-
tion logic by having AEEs forward packets to the ap-
propriate host or manage configuring the programmable
switches themselves. We are in the process of creating a
standard interface to packet forwarding in ETTM.

2.4 Micro Virtual Router
On each end-host, we construct a lightweight virtual
router, called the micro virtual router (µvrouter), which
mediates access to incoming and outgoing packets by the
various services. Services use the µvrouter to inspect
and modify packets as well as insert new packets or drop
packets. The core idea of filters in ETTM is that they
are the mechanism to interpose on a per-packet basis and
their behavior can be controlled by consensus operations
which occur at a slower time scale: one operation per
flow or one operation per flow, per RTT.

The µvrouter consists of an ordered list (by priority)
of filters which are applied to packets as they depart and
arrive at the host. The current Filter API is described
in Table 4. The filters which we have implemented so
far (described in § 3) correspond to tasks that would cur-
rently be carried out by a special-purpose middlebox like
a NAT, web cache, or traffic shaper.

The µvrouter is approximately 2250 lines of C++ code
running on Linux using libipq and iptables to cap-
ture traffic. This has simplified development by allowing

matchOnHeader()
returns true if the filter can match purely on IP, TCP and
UDP headers (i.e., without considering the payload) and
false if the filter must match on full packets
getPriority()
returns the priority of the filter, this is used to establish the
order in which filters are applied
getName()
simply returns a human readable name of the filter
matchHeader(iphdr, tcphdr, udphdr)
returns true if the filter is interested in a packet with these
headers; undefined filters are set to NULL and behavior is
undefined if matchOnHeader() returns false
match(packet)
returns true if the filter is interested in the packet; behavior
is undefined if matchOnHeader() returns true
filter(packet)
actually processes a packet; returns one of ERROR,
CONTINUE, SEND, DROP or QUEUED and possibly modi-
fies the packet
upkeep()
this function is called ‘frequently’ and enables the filter to
perform any maintenance that is required
getReadyPackets()
this returns a list of packets that the filter would like to either
dequeue or introduce; this is called ‘frequently’

Table 4: The filter API.

the µvrouter to run as a user-space application. However,
the user-space implementation has a downside in that it
imposes performance overheads that limit the sustained
throughput for large flows. To address the performance
concerns, we split the functionality of the µvrouter into
two components—a user-space module supporting the
full filter API specified in Table 4 and a kernel-level
module that supports a more restricted API used only for
header rewriting and rate-limiting. In applications such
as the NAT, the user-space filter is invoked only for the
first packet in order to assign a globally unique port num-
ber to the flow, while the kernel module is used for filling
in this port number in subsequent packets.

The µvrouter enables an administrator to specify a
stack of filters that carry out the data-plane management
tasks for the network. That is, it handles traffic that is
destined for or emanates from an end-host on the net-
work. Traffic destined to or emanating from AEEs or
physical switches constitutes the control plane of ETTM
and is not handled by the filters.

2.5 Consensus
If network management is going to be distributed among
a large number of potentially unreliable commodity com-
puters, there must be a layer to provide consistency and
reliability despite failures. For example, a desktop unex-
pectedly being unplugged should not cause any state to

be lost for the remaining functioning computers. Fortu-
nately, there is a vast literature on how to build reliable
systems out of inexpensive, unreliable parts. In our case
we build reliability using the Paxos algorithm for dis-
tributed consensus [25].

We expose a common API which provides a simple
way for ETTM network services to manage their consis-
tent state including the ability to define custom rules for
what state should be semantically allowed and ways to
choose between liveness and safety in the event that it is
required. We expose our consensus implementation via
a table abstraction in which each row corresponds to a
single service’s state and each cell in a given row corre-
sponds to an agreed upon action on the state managed by
the service. Thus, each service has its own independently
ordered list of agreed upon values, with each row entirely
independent of other rows from the point of view of the
Paxos implementation.

In building the API and its supporting implementation
we strove to overcome several key challenges:

Application Independent Agreement: The actual
agreement process should be entirely independent of the
particular application. As a consequence, the abstrac-
tion presented is agreement on an ordered list of blobs of
bytes for each application or service, with the following
operations allowed on this ordered list.

• put(name, value): Attempts to place value
as a cell in the row named name. This will not return
immediately specifying success or failure, but if the
value is accepted, a later get call or subscription will
return value.

• get(name, seqNum): Attempts to retrieve cell
number seqNum from the row named name. Re-
turns an error if seqNum is invalid and the relevant
value otherwise.

For example, our NAT implementation creates a row in
the table called “NAT”. When an outgoing connection is
made an entry is added with the mapping from the private
IP address and port to the public IP address and a glob-
ally visible port along with an expiration time. Nodes
with long-running connections can refresh by appending
a new entry. Thus, each node participating in the NAT
can determine the shared state by iteratively processing
cells from any of the replicas.

Publish-Subscribe Functionality: A network service
can subscribe to the set of agreed upon values for a row
via the subscribeAPI call. The service running on an
ETTM node receives a callback (using notify) when
new values are added to a given row through the put
API calls. This is useful not just for letting services
manage their own state, but also for subscribing to spe-
cial rows that contain information about the network in

general. For instance, there is one row which describes
topology information and another row which logs autho-
rization decisions. The consensus system invokes

• subscribe(name, seqNum): Asks that the
values of all cells in the row name starting with the
cell numbered seqNum be sent to the caller. This
includes all cells agreed on in the future.

• unsubscribe(name): Cancels any existing sub-
scription to the row name.

• notify(name, value, seqNum): This is the
callback from a subscription call and lets the
client know that cell number seqNum of row name
has the value value.

Balance Reliability and Performance: Invariably
adding more nodes and thus increasing expected relia-
bility causes performance to degrade as more responses
are required. Thus, we allow for a subset of the partici-
pating ETTM nodes to form the Paxos group rather than
the whole set. ETTM nodes use the following API calls
to join and depart from consensus groups and to identify
the set of cells that have been agreed upon by the con-
sensus group.

• join(name)Asks the local consensus agent to par-
ticipate in the row name.

• leave(name) Asks the local consensus agent to
stop participating in row name. A graceful ETTM
machine shutdown involves informing each row that
the node is leaving beforehand.

• highestSequenceNumber(name) Returns the
current highest valid cell number in the row named
name.

Allow Application Semantics: While we wish to be ap-
plication agnostic in the details of agreement, we also
would like services to be able to enforce some seman-
tics about what constitute valid and invalid sequences of
values. Coming back to the NAT example, the seman-
tic check can ensure that a newly proposed IP-port map-
ping does not conflict with any previously established
ones and can even deal with the leased nature of our IP-
port mappings making the decision once (typically at the
leader of the Paxos group) as to whether the old lease
has expired or not. We accomplish this by having net-
work services optionally provide a function to check the
validity of each value before it is proposed.

• setSemanticCheckPolicy(name,
policyhandler): Sets the semantic check
policy for row name. policyhandler is an
application-specific call-back function that is used to
check the validity of the proposed values.

• check(policyhandler, name, value,
seqNum): Asks the consensus client if value is

a semantically valid value to be put in cell number
seqNum of row name. Returns true if the value
is semantically valid, false if it is not and with an
error if the checker has not been informed of all cells
preceding cell number seqNum.

Finally, each row maintained by the consensus sys-
tem can have a different set of policies about whether
to check for semantic validity, whether to favor safety or
liveness (as described below), and even which nodes are
serving as the set of replicas.

2.5.1 Catastrophic Failures

Paxos can make progress only when a majority of the
nodes are online. If membership changes gradually, the
Paxos group can elect to modify its membership. The
two critical parameters that determine the robustness of
the quorum are the churn rate and the time it takes to
detect failure and change the group’s membership. The
consensus group can continue to operate if fewer than
half of the nodes fail before their failure is detected. In
such cases, since a majority of the machines in the con-
sensus group are still operating, we have that set vote on
any changes necessary to cope with the churn [26].

But if a large number of nodes leave simultaneously
(e.g., because of a power outage), we allow services to
opt to make progress despite inconsistent state. Each
service can pick they want to handle this case for its
row, deciding to either favor liveness or safety via the
setForkPolicy call. If the row favors safety, then
the row is effectively frozen until a time when a majority
of the nodes recover and can continue to make progress.
However, we allow for a row to favor liveness, in which
case the surviving nodes make note of the fact that they
are potentially breaking safety and fork the row.

Forking effectively creates a new row in which the first
value is an annotation specifying the row from which it
was forked off, the last agreed upon sequence number
before the fork and the new set of nodes which are be-
lieved to be up. This enables a minority of the nodes to
continue to make progress. Later on, when a majority of
the nodes in the original row return to being up, it is up to
the service to merge the relevant changes (and deal with
any potential conflicts) from the forked row back into the
main row via the normal put operation and eventually
garbage collect the forked row via a delete operation.
The details of this API are described in Table 5.

While, in theory, building services that can handle po-
tentially inconsistent state is hard, we have found that, in
practice, many services admit reasonable solutions. For
instance, a NAT which experiences a catastrophic fail-
ure can continue to operate and when merging conflicts
it may have to terminate connections if they share the
same external IP and port, though most of the time there
will be no such conflicts.

setForkPolicy(name, policy)
Sets the forking policy for the row name in the case of catas-
trophic failures. The valid values of policy are ‘safe’ and
‘live’.
delete(name)
Cleans up the state associated with row name. Fails if called
on a row which is not a fork of an already existing row.
forkNotify(name, forkName)
Informs the consensus client that because the client asked to
favor liveness over safety, the row name has been forked and
that a new copy has been started as row forkName where
potentially unsafe progress can be made, but may need to be
later merged.

Table 5: API for dealing with catastrophic failures.

 0

 0.5

 1

 1.5

 2

 2.5

4 8 12 16 20

La
te

nc
y

(m
s)

Group size

Paxos
Leader Paxos

Figure 3: The average time for a Paxos round to complete with
and without a leader as we vary the size of the Paxos group.

2.5.2 Implementation

Our current implementation of consensus is approxi-
mately 2100 lines of C++ code implementing a straight-
forward and largely unoptimized adaptation of the Paxos
distributed agreement protocol. In Paxos, proposals are
sent to all participating nodes and accepted if a majority
of the nodes agree on the proposal. In our implemen-
tation, one leader is elected per row and all requests for
that row are forwarded to the leader. If progress stalls, the
leader is assumed to have failed and a new one is elected
without concern for contention. If progress on electing
a leader stalls, then the row can be unsafely forked de-
pending on the requested forking policy. As nodes fail,
the Paxos group reconfigures itself to remove the failed
node from the node set and replace it with a different
ETTM end-host.

Figure 3 shows the average time for a round of our
Paxos implementation to complete when running with
varying numbers of pc3000 nodes (with 3GHz, 64-bit
Xeon processors) on Emulab [15]. The results show that
a Paxos round can be completed within 2 ms when there
is no leader and within 1 ms with a leader. While the
computation necessarily grows linearly with the number
of nodes, this effect is mitigated by running Paxos on a
subset of the active ETTM nodes. For example, as we

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06

Fl
ow

 th
ro

ug
hp

ut
 (M

bp
s)

Flow size (KB)

Direct flow
NAT flow

Figure 4: Bandwidth throughput of flows traversing ETTM
NAT as we vary the flow size.

will show in our evaluation of the NAT, a Paxos group
of only 10 nodes—with new machines brought in only to
replace any departing nodes in the subset—provides suf-
ficient throughput and availability for the management of
a large number of network flows.

3 Network Management Services
We next describe the design, implementation, and eval-
uation of several example services we have built using
ETTM. These services are intended to be proof of con-
cept examples of the power of making network admin-
istration a software engineering, rather than a hardware
configuration, problem. In each case the functionality
we describe can also be implemented using middleboxes.
However, a centralized hardware solution increases costs
and limits reliability, scalability, and flexibility. Propos-
als exist to implement several of these services as peer-
to-peer applications on end-hosts [23, 38], but this raises
questions of enforcement and privacy. Instead, ETTM
provides the best of both worlds: safe enforcement of
network management without the limitations of hard-
ware solutions.

3.1 NATs
Network Address Translators (NATs) share a single
externally-visible IP address among a number of differ-
ent hosts by maintaining a mapping between externally
visible TCP or UDP ports and the private, internally-
visible IP addresses belonging to the hosts. Mappings
are generated on-demand for each new outgoing connec-
tion, stored and transparently applied at the NAT device
itself. Traffic entering the network which does not be-
longing to an already-established mapping is dropped.
As a result, passive listeners such as servers and peer-to-
peer systems can have connectivity problems when lo-
cated behind NATs. Mappings are usually not replicated,
so a rebooted NAT will break all connections.

In contrast, Our ETTM NAT is distributed and fault-
tolerant. We store the mappings using the consensus API
allowing any participating AEE to access the complete
list of mappings. When the NAT filter running in a host’s

 0

 2000

 4000

 6000

 8000

 10000

4 8 12 16 20

N
AT

 T
hr

ou
gh

pu
t (

ne
w

 fl
ow

s/
se

c)

Group size

Figure 5: Throughput performance of ETTM NAT as we vary
the Paxos group size.

AEE detects a new outgoing flow, it temporarily hold the
flow and requests a mapping to an available, externally-
visible port. This request is satisfied only if the port is
actually available. Once this request completes, the NAT
filter begins rewriting the packet headers for the flow and
allows packets to flow normally.

Handling incoming traffic is slightly more compli-
cated. If the physical switches on the network sup-
port flexible packet forwarding (as with OpenFlow hard-
ware), they can be configured with soft state to forward
traffic to the appropriate host where its NAT filter can
rewrite the destination address.5 If the soft state has not
yet been installed or has been lost due to failure, default
forwarding rules result in the packet being delivered to
some host which can appropriately forward the packet
and install rules in the physical switches as needed.

Our NAT also works if the physical switches do not
support re-configurable routing. Instead, we assign the
globally-visible IP address to a specific AEE and have
that AEE forward traffic to appropriate hosts. While this
might appear to be similar to proxying all external traf-
fic through an end-host, such an approach would be nei-
ther fault tolerant nor privacy preserving. In contrast, in
ETTM the AEE allows for packets to be silently redi-
rected to the appropriate host without those packets being
visible to the user of the forwarding host. Also, the fail-
ure of that AEE can be detected and another can be cho-
sen with no lost state. When selecting an AEE, we use
historical uptime data as well as information about cur-
rent load to avoid using unreliable hosts and to avoid un-
necessarily burdening loaded hosts. While it is possible
that a determined snoop might physically tap their ether-
net wire to see forwarded packets, deployments that wish
to prevent this could enforce end-to-end encryption using
a combination of SSL, IPsec and/or 802.1AE MACsec to
encrypt all traffic entering or exiting the organization.

Our NAT can be configured to allow passive connec-

5We implement address translation in the AEE despite OpenFlow
support because some of our OpenFlow hardware has worse perfor-
mance when modifying packets. Further, keeping translation tables
reliably in AEEs keeps no hard state in the network.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0 2 4 6 8 10 12

N
AT

 F
ai

lu
re

 P
ro

ba
bi

lit
y

Group size

Figure 6: Availability of ETTM NAT as we vary the Paxos
group size. Note the y-axis is in log scale.

tions to establish mappings. We have implemented a
Linux kernel module that can be installed in the guest
OS to explicitly notify the NAT filter whenever bind()
or listen() is called, triggering a request for a valid
mapping to an external IP address and port. This allows
the ETTM system to direct incoming connections to the
appropriate host without having the administrator set up
customized port forwarding rules. We attempt to provide
passive connections with the same external port as its in-
ternal one; if this is not possible, the kernel module can
be queried for the external port number.

Note that the ETTM approach for implementing NATs
reinstates the fate sharing principle. We trivially support
multiple ingress points to the network because there is
no hard state stored in the network. A connection only
fails if either endpoint fails or there is no path between
them, but not if the middlebox fails. Even if the consen-
sus group fails entirely, existing flows will still continue
as long as one member of the group remains; of course,
new flows may be delayed in this case.

We evaluated the performance of our NAT module on
a cluster of pc3000 nodes on Emulab. Figure 4 depicts
the flow throughputs with and without the NAT module
for TCP flows of various sizes over a 1 Gbps LAN link.
The NAT filter imposes some added cost in terms of the
latency of the first packet (about 1-2 ms), which affects
the throughput of short flows in the LAN. For all other
flows, the throughput of the NAT filter matches that of
the direct communications channel, and it achieves the
maximum possible throughput of 1 Gbps for large flows.

Figure 5 plots the throughput of ETTM NAT by mea-
suring the number of NAT translations that it can estab-
lish per second as we vary the size of the Paxos group
operating on behalf of the NAT. While the throughput
falls with the number of nodes, it is still able to sustain an
admission rate of 2000 new flows per second even with
large Paxos groups. Additional scalability would be pos-
sible if the external port space were partitioned among
multiple Paxos groups.

We also model the NAT failure probability using end-
host availability data collected for hosts within the Mi-

!

!"#$

!"$

!"%$

&

! $! &!! &$! #!! #$! '!! '$! (!! ($! $!!

!
"#
$"%
&'

(&
)*
)"%
&*
(%
+&

,"
-.
/0

123&"*#")&%425&"%&'(&)*"-3)0

.&+*%6728&,".659&": ;<=">?<"@A<=",2)B

)*+,

-..

/*,,0,

Fr
ac

tio
n

of
 re

qu
es

ts
 re

tu
rn

ed
 (C

D
F)

(a) Latency by request type with a single centralized cache.

!

!"#$

!"$

!"%$

&

! $! &!! &$! #!! #$! '!! '$! (!! ($! $!!

!
"#
$"%
&'

(&
)*
)"%
&*
(%
+&

,"
-.
/0

123&"*#")&%425&"%&'(&)*"-3)0

62)*%27(*&,".859&": ;<=">?<"@A<=",2)B

)*+,-./012

345*14./012

6--

702242

Fr
ac

tio
n

of
 re

qu
es

ts
 re

tu
rn

ed
 (C

D
F)

(b) Latency by request type with a distributed cache across 6 nodes.

Figure 7: The cumulative distribution of latencies by type of
request with a centralized (Figure 7(a)) and distributed (Fig-
ure 7(b)) web caches.

crosoft corporate network [12, 5]. The trace data has
81% of the end-hosts available at any time, and the me-
dian session length of these end-hosts was in excess of
16 hours. Figure 6 plots the probability of catastrophic
failures assuming independent failures and a generous
failure detection and group reconfiguration delay of 1
minute. As we can see from this analysis, a handful of
end-systems would suffice for most enterprise settings.

3.2 Transparent Distributed Web Cache
It is common for large networks to employ a transparent
web cache such as Akamai [1] or squid [38] to improve
performance and reduce bandwidth costs. These caches
exploit similarity in different users’ browsing habits to
reduce the total bandwidth consumption while also im-
proving throughput and latency for requests served from
the cache.

Even though a shared cache is often very effective,
many small and medium sized networks do not use one
because of the administrative overhead of setting it up
and the potential performance bottleneck if the central-
ized cache is misconfigured. An alternative is to coordi-
nate caches on each end-host [23], but this requires re-
configuration by each user and it raises privacy concerns
since requests can be snooped by anyone with adminis-
trative privileges on any machine.

We implemented a distributed and privacy preserving

distributed cache. The cache runs as an ETTM network
management service that is triggered by a µvrouter filter
capturing all traffic headed to port 80. The service first
checks the local AEE’s web cache to see if the request
can be served from the local host. If it cannot be served
locally, the service computes a consistent hash of the re-
quest url and forwards it to a participating remote AEE
based on the computed hash value. If the remote AEE
does not have the content cached, it retrieves the content
from the origin server, stores a copy in its local cache,
and returns the fetched content to the requesting node.
Note that the protocol traffic in ETTM is captured by the
web cache filter and is not visible to any of the guest
OSes. Also, communication between the caches can be
optionally encrypted to prevent snooping. We adapted
squid [38] to serve as the cache in each AEE and to pro-
vide the logic for interpreting http header directives, such
as when to forward requests to the origin due to cache
timeouts or outright disabling of caching.

We evaluated our end-host based web-cache imple-
mentation using a trace driven simulation. In order to
generate trace data we aggregated the browser history of
three of the authors and replayed the trace data on six
nodes on Emulab [15]. In the centralized experiments,
all clients but one have their cache disabled and were
configured to send all requests to the one remaining ac-
tive cache. In the distributed experiments each node runs
its own cache. In the centralized case, the single cache is
set to 600 MB, while in the distributed experiments the
cache size for each of the six nodes is set to 100 MB.

Cache hit rates are similar in both cases. For brevity
we omit detailed analysis of hit rates and instead focus on
latency. The cumulative distribution of latencies for the
centralized and distributed caches is shown in Figure 7.
The latency for objects found in the other node’s caches
is at most a few milliseconds more than local cache hits,
indicating that the distributed nature of our implementa-
tion imposes little or no performance penalty.

3.3 Deep Packet Inspection
The ability to filter traffic based on the full packet
contents and often the contents of multiple packets—
commonly called deep packet inspection (DPI)—has
quickly become a standard tool alongside traditional fire-
walls and intrusion detection systems for detecting se-
curity breaches. However, the computation required for
deep packet inspection is still limits its deployment.

The ETTM approach opens the door to ‘outsourcing’
the DPI computation to end-hosts where there is almost
certainly more aggregate compute power than inside a
dedicated DPI middlebox. Traditionally, the idea of run-
ning this DPI code at end-hosts would flounder because
they could not be trusted to execute the code faithfully—
a virus infecting one host could undermine network secu-

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600

Si
ng

le
 c

or
e

C
PU

 U
til

iz
at

io
n

(%
)

Transfer rate (Mbps)

Figure 8: CPU load of ETTM DPI module as we vary the
transfer rate of our trace.

rity. While no security is invulnerable, we offer a narrow
attack surface similar to middleboxes, and also use attes-
tation to be able to make claims about booted software
and detect malicious changes on reboots.

Our implementation of DPI is based on the Snort [37]
engine and renders decisions either by delaying or drop-
ping traffic or by tagging flows with metadata. The DPI
filter is run within the end-host AEE and inspects the
flows being sourced from or received by the end-host. In
addition, the DPI modules running on end-hosts period-
ically exchange CPU load information with each other.
In situations where the end-host CPU is overloaded, as
in highly-loaded web servers, the flows are redirected to
some other lightly loaded end-host running the ETTM
stack in order to perform the DPI tasks.

The two commonly used applications of DPI are to
detect possible attacks and to discover obfuscated peer-
to-peer traffic. In the case of detecting attacks, the filter
releases traffic after it has been scanned for attack sig-
natures and found to be clean. If a flow is flagged as an
attack, no further traffic is allowed, and the source is la-
beled as being believed to be compromised. In the case
of obfuscated peer-to-peer traffic, normal traffic is passed
through the DPI filter without delay, but when a flow is
categorized as peer-to-peer the flow is labeled with meta-
data. The next section describes how we can use these
labels to adjust priorities for peer-to-peer traffic.

Figure 8 shows benchmark results from a trace-based
evaluation of our DPI filter. We ran the ETTM stack on a
quad-core Intel Xeon machine with 4 GB of RAM where
each core runs at 2 GHz. However, we only make use of
one core as snort-2.8 is single-threaded. The traces
are from DEFCON 17 “capture the flag” dataset [13],
which contain numerous intrusion attempts and serve as
commonly used benchmarks for evaluating DPI perfor-
mance. We vary the trace playback rate from 1x to 1024x
and measured the CPU load imposed by our DPI filter
at various traffic rates. Figure 8 shows the load on the
ETTM CPU to analyze traffic to/from that CPU. This
demonstrates that running DPI on a single core per host
is feasible. Stated in other terms, the ETTM approach

of performing DPI computation on end-hosts scales with
the number of ETTM machines; centralizing DPI com-
putation on specialized hardware is more expensive and
less scalable.

3.4 Bandwidth Allocation
The ability for ETTM to control network behavior on a
packet granularity provides an opportunity for more ef-
ficient bandwidth management. In TCP, hosts increase
their send rates until router buffers overflow and start
dropping packets. As a result, it is well-known that the
latency of short flows degrades whenever a congested
link is shared with a bandwidth-intensive flow. Many
large enterprises deploy hardware-based packet shapers
at the edge of the network to throttle high bandwidth
flows before they overwhelm the bottleneck link. In
this subsection, we demonstrate a backwardly compat-
ible software-based ETTM solution to this issue; we use
this as an illustration of how ETTM can be used to im-
prove quality-of-service in an enterprise setting.

We call our bandwidth allocation strategy TCP with
reservations or TCP-R; the approach is similar to the ex-
plicit bandwidth signaling in ATM. In TCP-R, bandwidth
allocations for the bottleneck access link are performed
by a controller replicated using the consensus API. End-
points managing TCP flows make bandwidth allocation
requests to the controller, which responds with reserva-
tions for short periods of time. We next describe the logic
executed end-hosts followed by the controller logic.

Endpoint: Whenever a new flow crossing the access link
appears and every RTT after that, the bandwidth alloca-
tion filter on the local host issues a bandwidth reservation
request to the controller. The request is for the maximum
bandwidth the host needs, that can be allocated safely
without causing queueing at the congested link. The con-
troller responds with an allocation and a reservation for
the subsequent round-trips.

Once the reservation has been agreed upon, the filter
limits the flow to using that amount of bandwidth until
it issues a subsequent reservation. The amount of the
new reservation is based on the last RTT of behavior. Let
Af (i− 1) be the bandwidth allocated to flow f in period
i − 1, and let Uf (i − 1) be the bandwidth utilized by it
during the period. Then it makes a reservation request
Rf (i) based on the following logic; this preserves TCP
behavior for the portion of the path external to the LAN,
while allowing for explicit allocation of the access link.
• If the flow used up its allocation, it asks the controller

to provide it the maximum allowed by the TCP con-
gestion window (Rf (i) = cwnd/RTT).

• If the flow did not use up its bandwidth allocation in
the previous RTT, then it issues a new request for the
lesser of the bandwidth it did use and the TCP con-

gestion window, relinquishing its unused reservation
(Rf (i) = min(cwnd/RTT, Uf (i− 1))).

Controller: The controller allocates bandwidth among
the reservation requests according to max-min fairness.
It publishes the results by committing its allocation deci-
sion across the various controller instances using Paxos.
Note that the actual reservation amount can be less than
what was requested.

Periodically the controller processes the bandwidth
requests and makes an allocation using the following
scheme to achieve max-min fairness. It sorts the flows
based on their requested bandwidth. Let R0 ≤ R2 ≤
R3...Rk−2 ≤ Rk−1 be the set of sorted bandwidth re-
quests, L be the link access bandwidth, and A = 0 be
the allocated bandwidth at the beginning of each allo-
cation round. The controller considers these requests in
increasing order and the requested bandwidth or its fair
share, whichever is lower. Concretely, for each flow j,
it does the following: Aj = min(Rj ,

L−A
k−j) and sets

A = A + Aj . Note that L−A
k−j is the fair share of flow

j after having allocated A bandwidth resources to the j
flows considered before it.

In practice, because it takes some time to acquire a
reservation, we leave some fraction of the link (10% in
our implementation) unallocated and allow each flow to
send a few packets (4 in our implementation) before re-
ceiving a reservation. Because the time to acquire a
reservation (a millisecond or less) is smaller than most
Internet round trip times, this avoids adversely affecting
flows with increased latency.

TCP-R has many benefits over traditional TCP. It does
not drive the bottleneck link to saturation, thereby avoid-
ing losses and sub-optimal use of network resources. In
particular, latency sensitive web traffic can obtain their
share of the bandwidth resource even if there are simul-
taneous large background transfers.

This implementation of bandwidth allocation assumes
that we are only managing the upload bandwidth of our
access link. In the future, we will to extend our imple-
mentation to handle arbitrary bottlenecks as well as the
allocation of incoming bandwidth.

Evaluation: Our evaluation illustrates the ability of the
ETTM bandwidth allocator to provide a fair allocation to
interactive web traffic. On Emulab, we set up an access
link with a bottleneck bandwidth of 10 Mb/s and com-
pared the latency of accessing google.com with and
without background BitTorrent traffic that is generated
by a different end-host in the network. Figure 9 depicts
the webpage access latency at different points in time.
When there is no competing traffic, the average access
latency is 0.68 seconds. When there is competing traf-
fic (during attempts 11 through 30), the average access

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

Latency to load google.com
Pa

ge
 lo

ad
 ti

m
e

(s
ec

s)

Attempt

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

Latency to load google.com using bandwidth allocator

Pa
ge

 lo
ad

 ti
m

e
(s

ec
s)

Attempt

Figure 9: Webpage access latency in the presence of compet-
ing BitTorrent traffic with and without the bandwidth allocator.
The solid lines depict the access latency when there is compet-
ing BitTorrent traffic.

latency is 5.67 seconds if we don’t use the ETTM band-
width allocator. With the ETTM bandwidth allocator, the
interactive web traffic receives a fair share and incurs a
latency of 1.04 seconds.

4 Related Work
Providing network administrators more control at lower
cost is a longstanding goal of network research. Sev-
eral recent projects have focused on providing adminis-
trators a logically centralized interface for configuring a
distributed set of network routers and switches. Exam-
ples of this approach include 4D [34, 17, 42], NOX [19],
Ethane [8, 7], Maestro [6] and CONMan [2]. Of course,
the power of these systems is limited to the configurabil-
ity of the hardware they control. While we agree with the
need for logical centralization of network management
functions, our hypothesis is that network administrators
would prefer fine-grained, packet level control over their
networks, something that is not possible at line-rate with
today’s current low cost network switches.

Other efforts have focused on building drop-in re-
placements for the the virtual ethernet switch inside
existing hypervisors. Cisco’s Nexus 1000V virtual
switch [9, 40] provides a standard Cisco switch interface
enabling switching policies to to the edge of VMs as well
as hosts. Open vSwitch [33] accomplishes a similar feat,
but provides an OpenFlow interface to the virtual switch
and is compatible with Xen and a few other hypervisors.
Still others are working to do hardware network I/O vir-
tualization [32]. While all of these tools give network
administrators additional points of control, they do not
offer the flexibility required to implement the breadth of
coordinated network polices administrators seek today.
Instead, we are working to incorporate these standard-

ized, simple points of control into ETTM to provide po-
tentially higher performance some tasks and added con-
trol over the low-level network.

Other systems have tried to bring end-hosts into net-
work management, though in limited ways. Microsoft’s
Active Directory includes Group Policy which allows for
control over the actions which connected Windows hosts
are allowed to carry out, but enforces them only assum-
ing the host remains uncompromised. Network Excep-
tion Handlers [24] allow end-hosts to react to certain
network events, but still leaves network hardware domi-
nantly in control. Still other work [11] uses end-hosts to
provide visibility into network traffic, but does not pro-
vide a point of control and assumes that the host remains
uncompromised.

Other recent work has attempted to increase the flex-
ibility of network switches to carry out administrative
tasks. OpenFlow [30] adds the ability to configure rout-
ing and filtering decisions in LAN switches based on pat-
tern matching on packet headers performed in hardware.
A limitation of OpenFlow is throughput when packets
need to be processed out of band, because there is typi-
cally only one underpowered control processor per LAN
switch. In ETTM, we invoke out of band processing on
the switch only for the initial TPM verification when the
node connects, while still allowing the network adminis-
trator to add arbitrary processing on every packet.

Middleboxes have always been a contentious topic,
but recent work has looked at how to embrace mid-
dleboxes and treat them as first-class citizens. In
TRIAD [18] middleboxes are first-order constructs in
providing a content-addressable network architecture.
The Delegation-Oriented Architecture [41] allows hosts
to explicitly invoke middleboxes, while NUTSS [20]
proposes a novel connection establishment mechanism
which includes negotiation of which middleboxes should
be involved. Our work can be seen as enabling network
administrators to place arbitrary packet-granularity mid-
dlebox functionality throughout the network, via vali-
dated software running on end-hosts.

Existing work has leveraged trusted computing hard-
ware to avoid vulnerabilities in commodity software [35]
as well as to ensure correct execution of specific
tasks [29]. Our use of trusted computing hardware is
complementary to these efforts.

5 Conclusion
Enterprise-level network management today is complex,
expensive and unsatisfying: seemingly straightforward
quality of service and security goals can be difficult to
achieve even with an unlimited budget. In this paper, we
have designed, implemented and evaluated a novel ap-
proach to provide network administrators more control
at lower cost, and their users higher performance, more

reliability, and more flexibility. Network management
tasks are implemented as software applications running
in a distributed but secure fashion on every end-host, in-
stead of on closed proprietary hardware at fixed points
in the network. Our approach leverages the increasing
availability of trusted computing hardware on end-hosts
and reconfigurable routing tables in network switches,
as well as the expansive computing capacity of modern
multicore architectures. We show that our approach can
support complex tasks such as fault tolerant network ad-
dress translation, network-wide deep packet inspection
for virus control, privacy preserving peer-to-peer web
caching, and congested link bandwidth prioritization, all
with reasonable performance despite the added overhead
of fault tolerant distributed coordination.

Acknowledgements
We would like to thank our anonymous reviewers and
our shepherd David Maltz for their valuable feedback.
This work was supported in part by the National Sci-
ence Foundation under grants NSF-0831540 and NSF-
0963754.

References
[1] Akamai technologies. http://www.akamai.com/.
[2] Hitesh Ballani and Paul Francis. CONMan: A step towards net-

work manageability. In SIGCOMM, 2007.
[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In SOSP, 2003.

[4] Blue Coat Systems. Blue Coat PacketShaper. http://www.
bluecoat.com/products/packetshaper.

[5] William J. Bolosky, John R. Douceur, David Ely, and Marvin
Theimer. Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop pcs. In SIGMETRICS, 2000.

[6] Zheng Cai, Alan L. Cox, and T. S. Eugene Ng. Maestro: A new
architecture for realizing and managing network controls. In LISA
Workshop on Network Configuration, 2007.

[7] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Nick McKeown, and Scott Shenker. Ethane: Taking control of
the enterprise. In SIGCOMM, 2007.

[8] Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freed-
man, Dan Boneh, Nick McKeown, and Scott Shenker. SANE: A
protection architecture for enterprise networks. In USENIX Secu-
rity, 2006.

[9] Cisco Systems. Cisco Nexus 1000V Series Switches - Cisco
Systems. http://www.cisco.com/en/US/products/
ps9902/index.html.

[10] OpenFlow Consortium. OpenFlow >> OpenWrt. http://
www.openflowswitch.org/wp/openwrt/.

[11] Evan Cooke, Richard Mortier, Austin Donnelly, Paul Barham,
and Rebecca Isaacs. Reclaiming network-wide visibility using
ubiquitous end system monitors. In USENIX, 2006.

[12] D. Narayanan and A. Donnelly and R. Mortier and A. Rowstron.
Delay Aware Querying with Seaweed. In VLDB, 2006.

[13] Defcon 17 ctf packet traces. http://www.ddtek.biz/
dc17.html.

[14] K. Egevang and P. Francis. RFC 1631: The IP network address
translator (NAT), 1994.

[15] Eric Eide, Leigh Stoller, and Jay Lepreau. An experimentation
workbench for replayable networking research. In NSDI, 2007.

[16] FreeRADIUS: The world’s most popular RADIUS Server.
http://freeradius.org/.

[17] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy My-
ers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and
Hui Zhang. A clean slate 4D approach to network control and
management. In CCR, 2005.

[18] Mark Gritter and David R Cheriton. An architecture for content
routing support in the internet. In USITS, 2001.

[19] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an
operating system for networks. In CCR, 2008.

[20] Saikat Guha and Paul Francis. An end-middle-end approach to
connection establishment. In SIGCOMM, 2007.

[21] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin, and
Jonathan M. Smith. Implementing a distributed firewall. In CCS,
2000.

[22] RFC 3220: IP Mobility Support for IPv4, 2002.
[23] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: A

decentralized peer-to-peer web cache. In PODC, 2002.
[24] Thomas Karagiannis, Richard Mortier, and Antony Rowstron.

Network exception handlers: Host-network control in enterprise
networks. In SIGCOMM, 2008.

[25] Leslie Lamport. The part-time parliament. TOCS, 16(2):133–
169, 1998.

[26] Leslie Lamport. Paxos Made Simple. In SIGACT, 2001.
[27] Ratul Mahajan, Neil Spring, David Wetherall, and Thomas An-

derson. User-level Internet Path Diagnosis. In SOSP, 2003.
[28] Jouni Malinen. Linux WPA Supplicant (IEEE 802.1X, WPA,

WPA2, RSN, IEEE 802.11i). http://hostap.epitest.
fi/wpa supplicant/, January 2010.

[29] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K.
Reiter, and Hiroshi Isozaki. Flicker: An execution infrastructure
for TCB minimization. In EuroSys, April 2008.

[30] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
and Jonathan Turner. OpenFlow: Enabling innovation in
campus networks. http://www.openflowswitch.org/
documents/openflow-wp-latest.pdf, March 2008.

[31] OpenWrt. http://openwrt.org/.
[32] PCI-SIG. PCI-SIG - I/O Virtualization. http://www.

pcisig.com/specifications/iov/.
[33] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin

Casado, and Scott Shenker. Extending networking into the virtu-
alization layer. In HotNets, 2009.

[34] Jennifer Rexford, Albert Greenberg, Gisli Hjalmtysson, David A.
Maltz, Andy Myers, Geoffrey Xie, Jibin Zhan, and Hui Zhang.
Network-wide decision making: Toward a wafer-thin control
plane. In HotNets, 2004.

[35] Seshadri, Arvind, Mark Luk, Ning Qu, and Adrian Perrig. SecVi-
sor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity
for Commodity OSes. In SOSP, 2007.

[36] S. Shenker, C. Partridge, and R. Guerin. RFC 2212: Specification
of Guaranteed Quality of Service, 1997.

[37] Snort. http://www.snort.org.
[38] squid : Optimizing Web Delivery. http://www.

squid-cache.org/.
[39] Trusted Computing Group. TPM Main Specification.

http://www.trustedcomputinggroup.org/
resources/tpm main specification, August 2007.

[40] VMware, Inc. Cisco Nexus 1000V Virtual Network Switch:
Policy-Based Virtual Machine Networking. http://www.
vmware.com/products/cisco-nexus-1000V/.

[41] Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakr-
ishnan, Robert Morris, and Scott Shenker. Middleboxes no longer
considered harmful. In OSDI, 2004.

[42] Hong Yan, David A. Maltz, T. S. Eugen Ng, Hemant Gogineni,
Hui Zhang, and Zheng Cai. Tesseract: A 4D network control
plane. In NSDI, 2007.

http://www.akamai.com/
http://www.bluecoat.com/products/packetshaper
http://www.bluecoat.com/products/packetshaper
http://www.cisco.com/en/US/products/ps9902/index.html
http://www.cisco.com/en/US/products/ps9902/index.html
http://www.openflowswitch.org/wp/openwrt/
http://www.openflowswitch.org/wp/openwrt/
http://www.ddtek.biz/dc17.html
http://www.ddtek.biz/dc17.html
http://freeradius.org/
http://hostap.epitest.fi/wpa_supplicant/
http://hostap.epitest.fi/wpa_supplicant/
http://www.openflowswitch.org/documents/openflow-wp-latest.pdf
http://www.openflowswitch.org/documents/openflow-wp-latest.pdf
http://openwrt.org/
http://www.pcisig.com/specifications/iov/
http://www.pcisig.com/specifications/iov/
http://www.snort.org
http://www.squid-cache.org/
http://www.squid-cache.org/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.vmware.com/products/cisco-nexus-1000V/
http://www.vmware.com/products/cisco-nexus-1000V/

	Introduction
	Design & Prototype
	Trusted Authorization
	Trusted Platform Module
	Trusted Boot
	Attestation
	ETTM Boot
	Performance of ETTM Boot

	Attested Execution Environment
	Physical Switches
	Micro Virtual Router
	Consensus
	Catastrophic Failures
	Implementation

	Network Management Services
	NATs
	Transparent Distributed Web Cache
	Deep Packet Inspection
	Bandwidth Allocation

	Related Work
	Conclusion

