Wishbone:
Profile-based
Partitioning for
Sensornet

Applications

4+ Example Application: Lcating Marmots

*Gothic, CO deployment August 2007
*VVoxnet Platform

« 2x PXA255, 64MB RAM, 8GB Flash,
802.11B, Mica2 supervisor, Li+ battery,
Charge controller

» Sensors: 4x48KHz audio, 3-axis
accel, GPS, Internal temp

with Lewis Girod & UCLA Blumstein Lab

We target sensing applications

Animal localization Pothole detection

Key application features

m Independent stream processing tasks

(e.g. dataflow graphs) -

o = Predictable data rates
Pipeline

Challenges leak detection

m Heterogeneous platforms

m CPU & radio bottlenecks

Speaker identification EEG Seizure detection

Heterogeneous Platforms

Router Smartphones Low power sensors
weak cpu, medium cpu, weak cpu/radio

strong radio strong radio | Contiki
= Symbian

meraki

+ Contributions

Network
Boundary

Results

Sensor
source(s)

+ Contributions

Results

Sensor
source(s)

Contributions

<€
Compile & Load

Sensor—,

source(s)

¥ %

Contributions

*First broadly portable
sensenet programming

*Partitioning algorithm

*Optimize CPU/radio
tradeoff even if
app doesn’t “fit”

Compile & Load

Architecture l

Sample data WS

" (for profiling) Compiler
>
l l Dataflow graph:
_’Eﬁﬂﬁﬂ operators containing
Partitioner ——= code in portable
1 intermediate language

Backend
CodeGen

Wishbone éﬂ ‘A\‘%E

S

- Dk g
- Ry
o N
meraki

NesC/TinyOS JavaME
ANSI C

==

* 16 bit microcontroller

Targeting TinyOS ’ - 10K RAM

Task granularity, messaging model * NO mem. protection

* No threads
WaveScope;

TinyOS:

msgl msg2 msg3

— = [(o)
fO for O {.} a0
[— 1T 11T 1Tasks
tstart I time -_— tend A A A

1terate x 1in S {

o fO; yieldQ);
Profile-directed for(iz.) {

Cooperative - if (i==387) yieldQ); ..

Multitasking: }
9(91dQ); 90); Same goal as
¥ Protothreads

Profiling Streams and Operators

C *HM***qumm»
audioStream =

IFPROF(readFile(“foo8kHz”,
, readSensor()))

M 20 Kbps 27 Kbps
o0 loooo

10

11

State, Replication, and Pinning

embedded node partition

) OJ U

51} s1¢ 51{

Y () () \ Unpinned nodes
! _{_ _ J\) _{_ [J_ 7[__] _, Moveable by partitioner
s2\ s2| s2
— radio msgs — = = = — —

Y-— implicit merge

point
s3
main

server partition

Pinning Constraints

*All stateless ops:
unpinned

*Stateful replicated ops:
unpinned

*Stateful global ops:
pinned to server —
don’t distribute!

Problem Scenario

Embedded Node

CPU: 3 12
o\

Network: 11
23 4

Server / Base Station

19 —

Problem Inputs
« profile data: net, cpu
» network channel capacity

Network Boundary

12

Partitioning Algorithm:
Integer linear program formulation

Tricky bit (see paper):

3 Parameters

Relating f and g while
staying linear
where cpu= f (compute,))
u
where pet = g (data,)
uv Edges
m Minimize objective function Proxy for

Energy

+ Evaluation: Two Applications

Human speech EEG-based seizure
detection/identification onset detection

e — _

? bytesfsec

- source
= preemph
BE hamming

BE prefilt

B FrT
B filtbank

Bl /ogs
I cepstrals

1400 operators

14

+ Observation: '°
Relative cost varies by platform

1 Mote —_— e I L P YT EEEEEER
0.9 | N8O - o

5 o8l O Y
8 ;;;;;;
5 ol Lo i
o I e
O 067 _ ’ e | | -
§ e Wishbone's profiling visualizations
5 o4t (via graphviz)for four platforms
5 08 ;
LL —

Operator

Visualizing Profile Data:

Bandwidth vs. Compute
Cumulative CPU Cost ===l
Bandwidth (Right-hand scale) === -
8 | Processing reduces ¥ _'
= | data quantity o '
3
S]
=~
@)
(O]
= - i
5
2 |
3 Reasonable
- cutpoints
) £ Sy L
Operators: . /%% @,))/))/ 0,

50

40

30

20

10

Bandwidth of cut (KBytes/Sec)

16

Optimal partitions across platforms

Number of operators in optimal node partition

80

70

60

50

40

30

20

10

TmoteSky/TinyfOS ——
INOkiall\ISO/_]al_\/a

4 6 8 10 12 14 16 18

17

Input data rate as a multiple of 8 kHz
EEG Application (1 of 22 channels)
Each line represents 2100 partioner-runs

Speaker Detection: CPU performance 18

across partitions/platforms
10000 ¢

invO)

EZZI 1000 L Putting the pieces together:
~ :
o 100 * Cpu & net bounds =»
% _ optimal partition (if exists)
= 10 |
f : * Partition =» est. throughput
T 1F -
5 | e Binary search over rates
s 00y (aka cpu bounds) 2
S o1l max possible throughput
= 01 |
I

0.001 | example: picks cutpoint after

SRl filtBank for speaker detection
Cutpoint / number of operators in node partition

Detections per second

Groundtruth:
Testbed deploymen

19

t, 20 motes

1 TM'ote + Basesta'tion —_—
20 TMote Network ===¢==-

How many detections can we
actually get out of the network?

®
®o,
o
Mo
L3

Speaker Detection

= On weakest platform, several
partition points result in NO
data

* But among “working”
partition points, best is 20X

better than worst

Pick the right one!

ioercent input'events recei\'/ed —
percent network msgs successful ==--#---
goodput (product) 3

s
Ml

...............
L] L)
........

Best empirical
cutpoint

hamming FFT filtBank logs cepstral
Cutpoint

20

Related Work

m Graph partitioning for scientific codes
m balanced, heuristic — e.g. Zoltan

m'Task scheduling, commonly list scheduling

mDynamic: Map-reduce, Condor, etc.

mSensor network context: Tenet and Vango
m Linear pipeline of operators
m Manual partition
® Run TinyOS code on both server and sensor

CONCLUSION

= WS/Wishbone System: (available, open source)

= Convenient, efficient way to run one program on
many devices

= Dataflow graph profiling and visualization
extremely useful even outside of auto partitiioning

=Contributions
=Algorithm for partitioning streaming programs

*Backend(s) enable high level programming even
on motes

*"Techniques for node/server partitioning could be
extended to handle heterogeneous cores intra-device.

Contact: Ryan Newton - newton@mit.edu

+ 22
Partitioning: Algorithm Runtime

~—-.. Time to discover optimal _
"\Time to prove optimal -

m Graph Preprocessing ste|

m Merge vertices until all edc|
monotonically decreasing. |

m Eliminates the majority of ¢ |

m Even without preprocess|

= 8000 runs, 0.1 1 3 10d 100 1000
econds

m partitioning the 1400-node EEG dataflow graph,
m with different CPU budget,

m took under 10 seconds 95% of the time.

m But there 1s a long tail... luckily ILP solvers
produce approximate solutions as well!

Motivating Example

budget = 2 budget = 3 budget = 4
))
1 1

4 4 4 4
2 2 2 2
1 1 1

bandwidth = 8 bandwidth = 6 bandwidth = 5

Unstable optimal partition.

Flips between horizontal and vertical partition.

23

