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Abstract

MODIST is the first model checker designed for transparently
checking unmodified distributed systems running on unmod-
ified operating systems. It achieves this transparency via a
novel architecture: a thin interposition layer exposes all ac-
tions in a distributed system and a centralized, OS-independent
model checking engine explores these actions systematically.
We made MODIST practical through three techniques: an ex-
ecution engine to simulate consistent, deterministic executions
and failures; a virtual clock mechanism to avoid false positives
and false negatives; and a state exploration framework to incor-
porate heuristics for efficient error detection.
We implemented MODIST on Windows and applied it to

three well-tested distributed systems: Berkeley DB, a widely
used open source database; MPS, a deployed Paxos implemen-
tation; and PACIFICA, a primary-backup replication protocol
implementation. MODIST found 35 bugs in total. Most im-
portantly, it found protocol-level bugs (i.e., flaws in the core
distributed protocols) in every system checked: 10 in total, in-
cluding 2 in Berkeley DB, 2 in MPS, and 6 in PACIFICA.

1 Introduction
Despite their growing popularity and importance, dis-
tributed systems remain difficult to get right. These sys-
tems have to cope with a practically infinite number of
network conditions and failures, resulting in complex
protocols and even more complex implementations. This
complexity often leads to corner-case errors that are dif-
ficult to test, and, once detected in the field, impossible
to reproduce.
Model checking has been shown effective at detect-

ing subtle bugs in real distributed system implementa-
tions [19, 27]. These tools systematically enumerate the
possible execution paths of a distributed system by start-
ing from an initial state and repeatedly performing all
possible actions to this state and its successors. This
state-space exploration makes rare actions such as net-
work failures appear as often as common ones, thereby
quickly driving the target system (i.e., the system we
check) into corner cases where subtle bugs surface.
To make model checking effective, it is crucial to ex-

pose the actions a distributed system can perform and do
so at an appropriate level. Previous model checkers for
distributed systems tended to place this burden on users,
who have to either write (or rewrite) their systems in a

restricted language that explicitly annotates event han-
dlers [19], or heavily modify their system to shoehorn it
into a model checker [27].
This paper presents MODIST, a system that checks un-

modified distributed systems running on unmodified op-
erating systems. It simulates a variety of network con-
ditions and failures such as message reordering, network
partitions, and machine crashes. The effort required to
start checking a distributed system is simply to provide
a simple configuration file specifying how to start the
distributed system. MODIST spawns this system in the
native environment the system runs within, infers what
actions the system can do by transparently interposing
between the application and the operating system (OS),
and systematically explores these actions with a cen-
tralized, OS-independent model checking engine. We
have carefully engineered MODIST to ensure the exe-
cutions MODIST explores and the failures it injects are
consistent and deterministic: inconsistency creates false
positives that are painful to diagnose; non-determinism
makes it hard to reproduce detected errors.
Real distributed systems tend to rely on timeouts for

failure detection (e.g., leases [14]); many of these time-
outs hide in branch statements (e.g., “if(now > t +
timeout)”). To find bugs in the rarely tested timeout
handling code, MODIST provides a virtual clock mech-
anism to explore timeouts systematically using a novel
static symbolic analysis technique. Compared to the
state-of-the-art symbolic analysis techniques [3, 4, 13,
31], our method reduces analysis complexity using the
following two insights: (1) programmers use time val-
ues in simple ways (e.g., arithmetic operations) and (2)
programmers check timeouts soon after they query the
current time (e.g., by calling gettimeofday()).
We implemented MODIST on Windows. We applied

it to three well-tested distributed systems: Berkeley DB,
a widely used open-source database; MPS, a Paxos im-
plementation that has managed production data centers
with more than 100K machines for over two years; and
PACIFICA, a primary-backup replication protocol imple-
mentation. MODIST found 35 bugs in total. In particular,
it found protocol-level bugs (i.e., flaws in the core proto-
cols) in every system checked: 10 in total, including 2 in
Berkeley DB, 2 in MPS, and 6 in PACIFICA. We mea-
sured the speed of MODIST and found that (1) MODIST
incurs reasonable overhead (up to 56.5%) as a checking
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tool and (2) it can speed up a checked execution (up to
216 times faster) using its virtual clock.
MODIST provides a customizable framework for in-

corporating various state-space exploration strategies.
Using this framework, we implemented dynamic partial
order reduction (DPOR) [9], random exploration, depth-
first exploration, and their variations. Among these,
DPOR is a strategy well-known in the model checking
community for avoiding redundancy in exploration. To
evaluate these strategies, we measured their protocol-
level coverage (i.e., unique protocol states explored).
The results show that, while DPOR achieves good cov-
erage for a small bounded state space, it scales poorly
as the state space grows; a more balanced variation of
DPOR, with a set of randomly selected paths as starting
points, achieves the best coverage.
This paper is organized as follows. We present an

overview of MODIST (§2), then describe its implemen-
tation (§3) and evaluation (§4). Next we discuss related
work (§5) and conclude (§6).

2 Overview
A typical distributed system that MODIST checks has
multiple processes,∗ each running multiple threads.
These processes communicate with each other by send-
ing and receiving messages through socket connections.
MODIST can re-order messages and inject failures to
simulate an asynchronous and unreliable network. The
processes may write data to disk, and MODIST will
generate different possible crash scenarios by permuting
these disk writes.
The remainder of this section gives an overview of

MODIST, covering its architecture (§2.1), its checking
process(§ 2.2), the checks it enables (§ 2.3), and its user
interface (§2.4).

2.1 Architecture

Figure 1 illustrates the architecture of MODIST applied
to a 4-node distributed system. The master node runs
multiple threads (the curved lines in the figure) and might
send or receive messages (the solid boxes). For each
process in the target system, MODIST inserts an inter-
position frontend between the process and its native op-
erating system to intercept and control non-deterministic
decisions involving thread and network operations.
MODIST further employs a backend that runs in a dif-

ferent address space and communicates with the fron-
tends via RPC. This design minimizes MODIST’s pertur-
bation of the target system, allowing us to build a generic
backend that runs on a POSIX-compliant operating sys-
tem, and makes it possible to build the frontends for
MODIST on different operating systems. The backend

∗In this paper we use node and process interchangeably.
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Figure 1: MODIST architecture. All MODIST compo-
nents are shaded. The target system consists of one mas-
ter, two replication nodes, and one client. MODIST’s
frontend interposes between each process in the target
system and the operating system to intercept and control
non-deterministic actions, such as message interleaving
and thread interleaving. MODIST’s backend runs in a
separate address space to schedule these actions.

consists of five components: a dependency tracker, a fail-
ure simulator, a virtual clock manager, a model checking
engine, and a global assertion checker.

Interposition. MODIST’s interposition frontend is a
thin layer that exposes what actions a distributed sys-
tem can do and lets MODIST’s backend deterministically
schedule them. Specifically, it does so in two steps: (1)
when the target system is about to execute an action,
the frontend pauses it and reports it to the backend; and
(2) upon the backend’s command, the frontend either re-
sumes or fails the paused action, turning the target sys-
tem into a “puppet” of the backend.
We place the interposition layer at the OS-application

boundary to avoid modifying either the target system or
the underlying operating system. In addition, despite
variations in OS-application interfaces, they provide sim-
ilar functions, allowing us to build a generic backend.
Since the interposition layer runs inside the target sys-

tem, we explicitly design it to be simple and mostly state-
less, and leave the logic and the state in the backend,
thereby reducing the perturbation of the target system.

Dependency Tracking. MODIST’s dependency
tracker oversees how actions interfere with each other. It
uses these dependencies to compute the set of enabled
actions, i.e., the actions, if executed, that will not block
in the OS. For example, a recv() is enabled if there is
a message to receive, and disabled otherwise. The model
checking engine (described below) only schedules en-
abled actions, because scheduling a disabled action will
deadlock the target system (analogous to a cooperative
thread scheduler scheduling a blocked thread).

Failure Simulation. MODIST’s failure simulator or-
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# command working dir inject failure?
master.exe ./master/ 1
node.exe ./node1/ 1
node.exe ./node2/ 1
client.exe test1 ./client/ 0

Figure 2: A configuration file that spawns the distributed
system in Figure 1. We used this file to check PACIFICA.

chestrates many rare events that may occur in a dis-
tributed system, including message reordering, mes-
sage loss, network partition, and machine crashes; these
events can expose bugs in the often-untested failure han-
dling code. The failure simulator lets MODIST inject
these failures as needed, consistently to avoid false posi-
tives, and deterministically to let users reliably reproduce
errors (cf. §2.2).

Virtual Clock. MODIST’s virtual clock manager has
two main functions: (1) to discover timers in the target
system and fire them as requested by MODIST’s model
checking engine to trigger more bugs, and (2) to ensure
that all processes in the target system observe a consis-
tent clock to avoid false positives. Since the clock is vir-
tual, MODIST can “fast forward” the clock as needed,
often making a checked execution faster than a real one.

Model Checking. MODIST’s model checking engine
acts as an “omnipresent” scheduler of the target system.
It systematically explores a distributed system’s execu-
tions by enumerating the actions, failures, and timers ex-
posed by the other MODIST components. It uses a set
of search heuristics and state-space reduction techniques
to improve the efficiency of its exploration. We elabo-
rate the model checking process in next section and the
search strategies in §3.6.

Global Assertion. MODIST’s global assertion mecha-
nism lets users check distributed properties on consistent
global snapshots; these properties cannot be checked by
observing only the local states at each individual node.
Its implementation leverages our previous work [25].

2.2 Checking Process

With all MODIST’s components in place, we now de-
scribe MODIST’s checking process. To begin checking a
distributed system, the user only needs to prepare a sim-
ple configuration file that specifies how to start the target
system. Figure 2 shows a configuration file for the 4-
node replication system shown in Figure 1; it is a real
configuration that we used to check PACIFICA. Each line
in the configuration tells MODIST how to start a process
in the target system. A typical configuration consists
of 2 to 10 processes. The “inject failure” flag is useful
when users do not want to check failures for a process.
For example, client.exe is an internal test program

init state = checkpoint(create init state());
q.enqueue(init state, init state.actions);

while(!q.empty()) {
<state, action> = q.dequeue();
try {
next state = checkpoint(action(restore(state)));
global assert(next state); //check user-provided global assertions
if (next state has never been seen before)
q.enqueue(next state, next state.actions);

} catch (Error e) {
// save trace and report error
. . .

}
}

Figure 3: Model checking pseudo-code.

that does not handle any failures, so we turned off failure
checking for this process.

With a configuration file, users can readily start check-
ing their systems by running modist <config>.
MODIST then instruments the executables referred to in
the configuration file to interpose between the applica-
tion and the operating system, and starts its model check-
ing loop to explore the possible states and actions in the
target system: a state is an instantaneous snapshot of the
target system, while an action can be to resume a paused
WinAPI function via the interposition layer, to inject a
failure via the failure simulator, or to fire a timer via the
virtual clock manager.

Figure 3 shows the pseudo-code of MODIST’s model
checking loop. MODIST first spawns the processes
specified in the configuration to create an initial state,
and adds all �initial state,action� pairs to a state queue,
where action is an action that the target system can do in
the initial state. Next, MODIST takes a �state,action�
pair off the state queue, restores the system to state,
and performs action. If the action generates an error,
MODIST will save a trace and report the error. Other-
wise, MODIST invokes the user-provided global asser-
tions on the resultant global state. MODIST further adds
new state/action pairs to the state queue based on one of
MODIST’s search strategies (cf. §3.6 for details.) Then,
it takes off another �state,action� pair and repeats.

To implement the above process, MODIST needs to
checkpoint and restore states. It uses a stateless ap-
proach [12]: it checkpoints a state by remembering the
actions that created the state and restores it by redoing all
the actions. Compared to a stateful approach that check-
points a state by saving all the relevant memory bits, a
stateless approach requires little modifications to the tar-
get system, as previous work has shown [12, 19, 28, 39].
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2.3 Checks

The checks that MODIST performs include generic
checks that require no user intervention as well as user-
written system-specific checks.
Currently, MODIST detects two classes of generic er-

rors. The first is “fail-stop” errors, which manifest them-
selves when the target system unexpectedly crashes in
the absence of an injected crash from MODIST. These
crashes can be segmentation faults due to memory er-
rors or program aborts because MODIST has brought the
target system into an erroneous state. MODIST detects
these unexpected crashes by catching the corresponding
signals. The second is “divergence” errors [12], which
manifest themselves when the target system deadlocks
or goes into an infinite loop. MODIST catches these er-
rors using timeouts. When MODIST schedules one of the
actions of the target system, it waits for a user-specified
timeout interval (10 seconds by default) until the target
system gets back to it; otherwise, MODIST will flag a
divergence error.
Because MODIST checks the target system by execut-

ing it, MODIST can easily check the effects of real ex-
ecutions and find errors. Thus, we can always combine
MODIST with other dynamic error detection tools (e.g.,
Purify [16] and Valgrind [29]) to check more generic
properties; we leave these checks for future work.
In addition to generic checks, MODIST can perform

system-specific checks via user-provided assertions, in-
cluding local assertions (via the assert() statements)
inserted into the target system and global assertions that
run in the centralized model checking engine. Given
these assertions, MODIST will amplify them by driving
the target code into many possible states where these as-
sertions may fail. In general, the more assertions users
add, the more effective MODIST will be.

2.4 Advanced User Interface

As with most other automatic error detection tools, the
more system-specific knowledge MODIST has, the more
effective it will be. For users who want to check their
system more thoroughly, MODIST provides the follow-
ing methods for incorporating domain knowledge.
Users can add more program assertions in the code for

a more thorough check. In addition to these local asser-
tions, users can enrich the set of checks by specifying
global assertions in MODIST. These assertions check
distributed properties on any consistent global snapshot.
Users can make MODIST more effective by reducing

their system’s state space. A simple trick is to bound the
number of failures MODIST injects per execution. Our
previous work [38, 39] showed that tricky bugs are often
caused by a small number of failures at critical moments.
Obviously, without bounds on the number of failures, a
distributed system may keep failing without making any

progress. In addition, developers tend to find bugs trig-
gered by convoluted failures uninteresting [38].
Users can provide hints to let MODIST focus on the

states (among an infinite number of states) that users con-
sider most interesting. Users can do so in two ways: (1)
extend one of MODIST’s search algorithms through the
well-defined state queue interface, and (2) construct a
test case to test some unusual parts of the state space.

3 Implementation
We implemented MODIST on Windows by intercepting
calls to WinAPI [36], the Windows Application Pro-
gramming Interface. We chose WinAPI because it is
the predominant programming interface used by almost
all Windows applications and libraries, including the de-
fault POSIX implementation on Windows. While we
built MODIST on Windows, we expect that porting to
other operating systems, such as Linux, BSD, and So-
laris, should be easy because WinAPI is more compli-
cated than the POSIX API provided by most other oper-
ating systems. For example, WinAPI has several times
as many functions as POSIX. Moreover, many WinAPI
functions operate in both synchronous and asynchronous
mode, and the completion notifications of asynchronous
IO (AIO) may be delivered through several mechanisms,
such as events, select, or IO completion ports [36].
When we implemented MODIST we tried to adhere to

the following two goals:
1. Consistent and deterministic execution. The ex-

ecutions MODIST explores and the failures it in-
jects should be consistent and deterministic to
avoid difficult-to-diagnose false positives and non-
deterministic errors.

2. Tailor for distributed systems. We explicitly designed
MODIST to check distributed systems. Having this
goal in mind, we customized our implementation for
distributed systems and avoided being overly general.

These goals were reflected at many places in our im-
plementation. In the rest of this section, we describe
MODIST’s implementation in details, highlighting the
decisions entailed by these goals.

3.1 Interposition

MODIST’s interposition layer transparently intercepts
the WinAPI functions in the target system and allows
MODIST’s backend to control it deterministically. There
are two main issues regarding interposition. First, inter-
position complexity: since the interposition layer runs in-
side the address space of the target system, it should be as
simple as possible to avoid perturbing the target system,
or introducing inconsistent or non-deterministic execu-
tions. Second, IO abstraction: as previously mentioned,
WinAPI is a wide interface with rich semantics; Win-
dows networking IO is particularly complex. To avoid
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Category # of functions # of LOC

Network 28 1816
Time 7 161
File System 9 640
Mem 5 126
Thread 33 1433

Shared 1290

Total 82 5466

Table 1: Interposition complexity. This table shows the
lines of code for WinAPI wrappers, broken down by cat-
egories. The “Shared” row refers to the code shared
among all API categories. Most wrappers are fairly small
(67 lines on average).

excessive complexity in MODIST’s backend, the interpo-
sition layer should abstract out the semantics irrelevant to
checking and abstract the WinAPI networking interface
to a simpler form.

Interposition complexity. To reduce the interposition
complexity, we implemented the interposition layer us-
ing the binary instrumentation toolkit from our previous
work [25]. This toolkit takes a list of annotated WinAPI
functions we want to hook and automatically generates
much of the wrapper code for interposition. Under the
hood, it intercepts calls to dynamically linked libraries
by overwriting the function addresses in relocation tables
(import tables in Windows terminology).
Since we check distributed systems, we only need

to intercept WinAPIs relevant to these systems. Ta-
ble 1 shows the categories of WinAPIs we currently
hook: (1) networking APIs, such as WSARecv()
(receiving a message), for exploring network condi-
tions; (2) time APIs, such as GetSystemTime(),
for discovering timers; (3) file system APIs, such as
WriteFile() and FlushFileBuffers(), for in-
jecting disk failures and simulating crashes, (4) memory
APIs, such as malloc(), for injecting memory fail-
ures; and (5) thread APIs, such as CreateThread()
and SetEvent(), for scheduling threads.
Most WinAPI wrappers are simple: they notify

MODIST’s backend about the WinAPI calls using an
RPC call, wait for the reply from the backend, and,
upon receiving the reply, they either call the underlying
WinAPIs or inject failures. Table 1 shows the total lines
of code in all manually-written wrappers. Each wrapper
on average consists of only 67 lines of code.

IO abstraction. Controlling the Windows networking
IO interface is complex for three reasons: (1) there are
many networking functions; (2) these functions heavily
use AIO, whose executions are hidden inside the kernel

and not exposed to MODIST; and (3) these functions
may produce non-deterministic results due to failures
in the network. We addressed these issues using three
methods: (1) abstracting similar network operations into
one generic operation to narrow the networking IO in-
terface, (2) exposing AIO to MODIST by running it syn-
chronously in a proxy thread, and (3) carefully placing
error injection points to avoid non-determinism.
To demonstrate our methods, we show in Figure 4 the

wrapper for WSARecv(), a WinAPI function to syn-
chronously or asynchronously receive data from a socket.
For simplicity, we omit error-handling code and assume
AIO completion is delivered using events only (events
are similar to binary semaphores.)
Our wrapper first checks whether the network con-

nection represented by the socket argument s is already
broken by MODIST (line 5–8). If so, it simply returns
an error to avoid inconsistently returning success on a
broken socket. It then handles AIO (line 9–24) by cre-
ating a generic network IO structure net io (line 10–
14), hijacking the application’s IO completion event (line
16–18), spawning a proxy thread (line 21), and issuing
the AIO to the OS (line 23). The proxy thread will
invoke function mc::net io::run() (line 29–55).
This function first notifies MODIST about the IO (line
34). Upon MODIST’s reply, it either injects a failure
(line 36–40), or waits for the OS to complete the IO
(line 40–51). Function run() then reports the IO re-
sult to MODIST, which in this example is the length of
the data received (47–50). Finally, it calls the wrapper to
SetEvent() to wake up any real threads in the target
system that are waiting for the IO to complete.
This wrapper example demonstrates the abstraction

we use between MODIST’s interposition frontend and
the backend. A network IO is split into an io issue
and an io result RPC. The first RPC, io issue,
expresses the IO intent of the target system to MODIST
before it proceeds to a potentially blocking IO, letting
MODIST avoid scheduling a disabled (i.e., blocked) IO.
Its second purpose is to serve as a failure injection point.
The second RPC, io result, lets MODIST update the
control information it tracks.
These RPC methods take the message sizes and the

network connections as arguments, but not the spe-
cific message buffers or sockets, which may change
across different executions. This approach ensures that
MODIST’s backend sees the same RPC calls when it re-
plays the actions to recreate the same state as when it
initially created the state. If MODIST detects a non-
deterministic replay (e.g., a WSARecv() receives fewer
bytes than expected), it will retry the IO by default.
There are two additional nice features about our IO

abstraction: (1) it allows wrapper code sharing and
therefore reduces the interposition complexity (Table 1,
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1 : // the OS uses lpOverlap to deliver IO completion
2 : int mc WSARecv(SOCKET s, LPWSABUF buf, DWORD nbuf,
3 : . . ., LPWSAOVERLAPPED lpOverlap, . . .) {
4 : // check if MODIST has broken this connection
5 : if(mc socket is broken(s)) {
6 : ::WSASetLastError(WSAENETRESET);
7 : return SOCKET ERROR;
8 : }
9 : if(overlap) { // Asynchronous mode
10: mc::net io *io = . . .;
11: io−>orig lpOverlap = lpOverlap;
12: io−>op = mc::RECV MESSAGE; // set IO type
13: io−>connection = . . .; // Identify connection using
14: // source <ip, port> and destination <ip, port>
15:
16: // Hijack application’s IO completion notification event
17: io−>orig event = lpOverlap−>hEvent;
18: lpOverlap−>hEvent = io−>proxy event;
19:
20: // Create a proxy thread and run mc::net io::run
21: io−>start proxy thread();
22: // Issue asynchronous receive to the OS
23: return ::WSARecv(s,buf,nbuf,. . .,io−>proxy lpOverlap,. . .);
24: }
25: // Synchronous mode
26: . . .
27: }
28: // mc::net io code is shared among all networking IO
29: void mc::net io::run() {// called by proxy thread
30: mc::rpc client *rpc = mc::current thread rpc client();
31:
32: // This RPC blocks this thead. It returns only when MODIST
33: // wants to (1) inject a failure, or (2) complete the IO
34: int ret = rpc−>io issue(this−>op, this−>connection);
35:
36: if(ret == mc::FAILURE) {
37: // MODIST wants to inject a failure
38: this−>orig lpOverlap−>Internal // Fake an IO failure
39: = STATUS CONNECTION RESET;
40: . . . // Ask the OS to cancel the IO
41: } else { // MODIST wants to complete this IO
42: // Wait for the OS to actually complete the IO, because the
43: // data to receive may still be in the real network.
44: // This wait will not block forever, since MODIST’s
45: // dependency tracker knows there are bytes to receive
46: ::WaitForSingleObject(this−>proxy event, INFINITE);
47:
48: // Report the bytes actually sent or received, so MODIST’s
49: // dep. tracker knows how many bytes are in the network.
50: int msg size = this−>orig lpOverlap−>InternalHigh;
51: rpc−>io result(this−>op, this−>connection, msg size);
52: }
53: // deliver IO notification to application. mc SetEvent is
54: // a wrapper to WinAPI SetEvent;
55: mc SetEvent(this−>orig event);
56: }

Figure 4: Simplified WSARecv() wrapper.

“Shared” row), (2) it abstracts away the OS-specific fea-
tures and enables the backend to be OS-agnostic.

3.2 Dependency Tracking

MODIST’s dependency tracker monitors how actions
might affect each other. The notion of dependency is

from [12]: two actions are dependent if one can enable
or disable the other or if executing them in a different
order leads to a different state. MODIST uses these de-
pendencies to avoid false deadlocks (described below), to
simulate failures (§3.3), and to reduce state space (§3.6).
To avoid false deadlocks, MODIST needs to compute

the set of enabled actions that will not block in the OS.
For determinism, MODIST schedules one action at a time
and pauses all other actions (cf. §2.2). If MODIST in-
correctly schedules a disabled action (such as a blocking
WSARecv()), it will deadlock the target system because
the scheduled action is blocked in the OS while all other
actions are paused by MODIST.
Since the dependency tracker tries to infer whether

the OS scheduler would block a thread in a WinAPI
call (recall that the interposition layer exposes AIOs as
threads), it unsurprisingly resembles an OS scheduler
and replicates a small amount of the control data in the
OS and the network. To illustrate how it works, con-
sider the WSARecv() wrapper in Figure 4. The de-
pendency tracker will track precisely how many bytes
are sent and received for each network connection us-
ing the io result RPC (line 50). If a thread tries to
receive a message (line 34) when none is available, the
dependency tracker will mark this thread as disabled and
place it on the wait queue of the connection. Later, when
a WSASend() occurs at the other end of the connec-
tion, the dependency tracker will remove this thread from
the wait queue and mark it as enabled. When MODIST
schedules this thread by replying to its RPC io issue,
the thread will not block at line 45 because there is data
to receive. In addition to network control data, the depen-
dency tracker also tracks threads, locks, and semaphores.

3.3 Failure Simulation

When requested by the model checking engine,
MODIST’s failure simulator injects five categories of
failures: API failures (e.g., WriteFile() returns
“disk error”), message reordering,∗ message loss, net-
work partitions, and machine crashes. Simulating API
failures is the easiest: MODIST simply tells the interpo-
sition layer to return an error code. Reordering messages
is also easy since the model checking engine already ex-
plores different orders of actions. To simulate different
crash scenarios, we used techniques from our previous
work [38, 39] to permute the disk writes that a system
issues.
Simulating network failures is more complicated due

to the consistency and determinism requirement. We first
tried a naı̈ve approach: simply closing sockets to simu-
late connection failures. This approach did not work well
because we frequently experienced inconsistent failures:

∗Message reordering is not a failure, but since it is often caused by
abnormal network delay, for convenience we consider it as a failure.
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the “macro” failures we want to inject (e.g., network par-
tition) map to not one but a set of “micro” failures we
can inject through the interposition layer (e.g., a failed
WSARecv()). For example, to break a TCP connection,
we must carefully fail all pending asynchronous IOs as-
sociated with the connection at both endpoints. Other-
wise, the target system may see an inconsistent connec-
tion status and crash, thus generating a false positive.
We also frequently experienced non-deterministic

failures because the OS detects failures using non-
deterministic timeouts. Consider the following ac-
tions:
1. Process P1 calls WSASend(P2, message).
2. Process P2 calls asynchronous WSARecv(P1).
3. MODIST breaks the connection between P1 and P2.
P2 may or may not receive the message, depending on
when P2’s OS times out the broken connection.
Our current approach ensures that failure simulation is

consistent and deterministic as follows. We know the
exact set of real or proxy threads that are paused by
MODIST in rpc->io issue() (Figure 4, line 34).
To simulate a network failure, we inject failures to all
these threads, and we do so immediately to avoid any
non-deterministic kernel timeouts. Note that doing so in
the example above will not cause us to miss the scenario
where P2 receives the message before the connection
breaks; MODIST will simply explore this scenario in a
different execution where it completes P2’s asynchronous
WSARecv() first (by replying to P2’s io issue()
RPC), and then breaks the connection between P1 and
P2.

3.4 Virtual Clock

MODIST’s virtual clock manager injects timeouts when
requested by the model checking engine and provides
a consistent view of the clock to the target system. A
side benefit of virtual clock is that, the target system may
run faster because the virtual clock manager can fast for-
ward time. For example, when the target system calls
sleep(1000), the virtual clock manager can add 1000
to its current virtual clock and let the target system wake
up immediately.

Discovering Timeouts. To detect bugs in rarely tested
timeout handling code, we want to discover as many
timers as possible. This task is made difficult be-
cause system code extensively uses implicit timerswhere
the code first gets the current time (e.g., by calling
gettimeofday()), then checks if a timeout occurs
(e.g., using an if-statement). Figure 5 shows a real ex-
ample in Berkeley DB.
Since implicit timers do not use OS APIs to check

timeouts, they are difficult to discover by a model
checker. Previous work [19, 27, 38] requires users to
manually annotate implicit timers.

// db-4.7.25.NC/repmgr/repmgr sel.c
int repmgr compute timeout(ENV *env, timespec * timeout)
{
db timespec now, t;
. . . // Set t to the first due time.
if (have timeout) {

os gettime(env, &now, 1); // Query current time.
if (now >= t) // Timeout check, immediately follows the query.

*timeout = 0; // Timeout occurs.
else

*timeout = t − now; // No timeout.
}
. . .

}

Figure 5: An implicit timer in Berkeley DB (after macro
expansion and minor editing).

To discover implicit timers automatically, we devel-
oped a static symbolic analysis technique. It is based on
the following two observations:
1. Programmers use time in simple ways. For ex-

ample, they explicitly label time values (e.g.,
db timespec in Figure 5), they do simple arith-
metic on time values, and they generally do not cast
time values to pointers and other unusual types. This
observation implies that simple static analysis is suf-
ficient to track how a time value flows.

2. Programmers check timeouts soon after they query
the current time. The intuition is that programmers
want the current time to be “fresh” when they check
timeouts. This observation implies that our analysis
only needs to track a short flow of a time value (e.g.,
within three function calls) and may stop when the
flow becomes long.

We analyzed how time values are used in Berkeley DB
version 4.7.25. We found that Berkeley DB mostly uses
“+,” “-,” and occasionally “*” and “/” (for conversions,
e.g., from seconds to milliseconds). In 12 out of 13 im-
plicit timers, the time query and time check are within a
few lines.
Our analysis resembles symbolic execution [3, 4, 13,

31]. It has three steps: (1) statically analyze the code
of the target system and find all system calls that re-
turn time values; (2) track how the time values flow to
variables; and (3) upon a branch statement involving a
tracked time value, use a simple constraint solver to gen-
erate symbolic values to make both branches true. To
show the idea, we use a source code instrumentation ex-
ample. In Figure 5, our analysis can track how time flows
from “ os gettime” to “if (now >= t),” and re-
place the “ os gettime” line in Figure 5 with

mc::rpc client *rpc = mc::current thread rpc client()
now = rpc−>gettime(/*timer=*/t);
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This RPC call tells the virtual clock manager that a timer
fires at t; the virtual clock manager can then return a
time value smaller than t for one execution, and greater
than t for another execution, to explore both possible
execution paths. We implemented our analysis using the
Phoenix compiler framework [30].
Since our analysis is static, it avoids the runtime over-

head of instrumenting each load and store for tracking
symbolic values and thus is much simpler than dynamic
symbolic execution tools [3, 4, 13, 31], which often take
iterations to become stable [3, 4]. Note our analysis is
unsound, as with other symbolic analysis tools, in that
it may miss some timers and thus miss bugs. However,
it will not introduce false positives because the virtual
clock manager ensures the consistency of time.

Ensuring Consistent Clock. A consistent clock is cru-
cial to avoid false positives. For example, the safety of
the lease mechanism [14] requires that the lessee time-
outs before the lessor; reversing the order may trigger
“bugs” that never occur in practice. We actually encoun-
tered a painful false positive due to a violation of this
safety requirement when checking PACIFICA.
To maintain consistent time, the virtual clock manager

sorts all timers in the target system from earliest to last
based on when these timers will fire. When the model
checking engine decides to fire a timer, it will systemat-
ically choose one of several timers that fall in the range
of [T,T + E], where T is the earliest timer and E is a
configurable clock error allowed by the target system.
This mechanism lets MODIST explore interesting timer
behaviors while not deviating too much from real timer-
triggered executions.

3.5 Global Assertion

We have implemented global assertions leveraging our
previous work D3S [25]. D3S enables transparent predi-
cate checking of a running distributed system. It provides
a simple programming interface for developers to spec-
ify global assertions, interposes both user-level functions
and OS system calls in the target system to expose its
runtime state as state tuples, and collects such tuples as
globally consistent snapshots for evaluating assertions.
To use D3S, developers need to specify the functions be-
ing interposed, the state tuples being retrieved from func-
tion parameters, and a sequential program that takes a
complete state snapshot as input to evaluate the predi-
cate. D3S compiles such assertions into a state exposing
module, which is injected into all processes of the target
system, and a checking module, which contains the eval-
uation programs and outputs checking results for every
constructed snapshot.
MODIST incorporates D3S to enable global asser-

tions, with two noticeable modifications. First, we sim-
plify D3S by letting each node transmit state tuples syn-

chronously to MODIST’s checking process, which ver-
ifies assertions immediately. Previously, because nodes
may transmit state tuples concurrently, D3S must, before
checking assertions, buffer each received tuple until all
tuples causally dependent before that tuple have been re-
ceived. Since MODIST runs one action at a time, it no
longer needs to buffer tuples. Second, while D3S uses a
Lamport clock [23] to totally order state tuples into snap-
shots, MODIST uses a vector clock [26] to check more
global snapshots.

3.6 State Space Exploration

MODIST maintains a queue of the state/action pairs to
be explored. Due to the complexity of a distributed sys-
tem, it is often infeasible for MODIST to exhaust the state
space. Thus, it is key to decide which state/action pairs
to add to the queue and the order in which they are ex-
plored.
MODIST tags each action with a vector clock and im-

plements a customizable modular framework for explor-
ing the state space so different reduction techniques and
heuristics can be incorporated. This is largely inspired by
our observation that the effectiveness of various strate-
gies and heuristics is often application-dependent.
The basic state exploration process is simple:

MODIST takes the first state/action pair �s,a� from the
queue, steers the system execution to state s if that is not
the current state, applies the action a, reaches a new state
s�, and examines the new resulting state for errors. It then
calls a customizable function explore, which takes the
entire path from the initial state to s and then s�, where
each state is tagged with its vector clock and each state
transition is tagged with the action corresponding to the
transition. For s�, all enabled actions are provided to the
function. The function then produces a list of state/action
pairs and indicates whether the list should be added to the
front of the queue or the back. MODIST then inserts the
list into the queue and repeats the steps.
MODIST has a natural bias towards exploring �s,a�

pairs where s is the state MODIST is in. This default
strategy will save the cost of replaying the trace to reach
the state in the selected state/action pair.
Now we show how various state exploration strate-

gies and heuristics can be implemented in the MODIST
framework.
Random. Random exploration with a bounded maxi-
mum path length explores a random path up to a bounded
path length and then starts from the initial state for an-
other random path. The explore function works as fol-
lows: if the current path has not exceeded the bound,
the function will randomly pick an enabled action a� at
the new state s� and has �s�,a�� inserted to the end of
the queue (note that the queue is empty). If the current
path has reached the bound, the function will randomly
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choose an enabled action a0 in the initial state s0, and has
�s0,a0� inserted to the end of the queue.
DFS and BFS. For Depth First Search (DFS) and
Breadth First Search (BFS), the explore function sim-
ply inserts �s�,a�� for every enabled action a� in state s�.
For DFS, the new list is inserted at the front of the queue,
while for BFS at the back. Clearly, DFS is more attrac-
tive since MODIST does not have to replay traces often
to recreate states.
DPOR. For dynamic partial order reduction (DPOR), the
explore function works as follows. Let a be the last
action causing the transition from s to s�. The function
looks at every state sp before s on the path and the ac-
tion ap taken at that state. If a is enabled at sp (i.e., if s
and sp are concurrent judged by the vector clocks) and a
does not commute with ap (i.e., the different orders of the
two actions could lead to different executions), we record
�sp,a� in the list of pairs to explore. Once all states are
examined, the function returns the list and has MODIST
insert the list in the queue.
By specifying how the list is inserted, the function

could choose to use DFS or BFS on top of DPOR. Also,
by ordering the pairs in the list differently, MODIST will
be instructed to explore the newly added branches in dif-
ferent orders (e.g., top-down or bottom-up). The default
is DFS again to avoid the cost of recreating states. We
further introduce Bounded DPOR to refer to the varia-
tion of DPOR with bounds on DFS for a more balanced
state-space exploration.
The explore function can be constructed to favor cer-

tain actions (e.g., crash events) over others, to bound the
exploration in various ways (e.g., the path length and the
number of certain actions on the path), and to focus on a
subset of possible actions.

4 Evaluation
We have applied MODIST to three distributed systems:
(1) Berkeley DB, a widely used open-source database
(a version with replication); (2) MPS, a closed source
Paxos [22] implementation built by a Microsoft product
team and has been deployed in commercial data centers
for more than two years; and (3) PACIFICA, a mature
implementation of a primary-backup replication proto-
col we developed. We picked Berkeley DB and MPS
because of their wide deployment and importance and
PACIFICA because it provides an interesting case study
where the developers apply model checking to their own
systems.
Table 2 summarizes the errors we found, all of which

are previously unknown bugs. We found a total of 35
errors, 10 of which are protocol-level bugs that occur
only under rare interleavings of messages and crashes;
these bugs reflect flaws in the underlying communica-
tion protocols of the systems. Implementation bugs are

System KLOC Protocol Impl. Total

Berkeley DB 172.1 2 5 7
MPS 53.5 2 11 13
PACIFICA 12 6 9 15

Total 237.6 10 25 35

Table 2: Summary of errors found. The KLOC (thou-
sand lines of code) column shows the sizes of the systems
we checked. We separate protocol-level bugs (Protocol)
and implementation-level bugs (Impl.), in addition to re-
porting the total (Total). 31 of the 35 bugs have been
confirmed by the developers.

those that can be caused by injecting API failures. All
MPS and PACIFICA bugs were confirmed by the devel-
opers. Three out of seven Berkeley DB bugs, includ-
ing one protocol-level bug, were confirmed by Berkeley
DB developers; we are having the rest confirmed. These
unconfirmed bugs are likely real bugs because we can
reproduce them without MODIST by manually tweak-
ing the executions and killing processes according to the
traces from MODIST.
While other tools (e.g., a static analyzer) can also find

implementation bugs, MODIST has the advantage of not
generating false positives. In addition, it can expose the
effects of these bugs, helping prioritize fixing.
In the rest of this section, we describe our error detec-

tion methodology, the bugs we found, MODIST’s cov-
erage results and runtime overhead, and the lessons we
have learned.

4.1 Experimental Methodology

Test driver. Model checking is most effective at check-
ing complicated interactions between a small number of
objects. Thus, in all tests we run, we use several pro-
cesses servicing a bounded number of requests. Since
the systems we check came with test cases, we simply
use them with minor modifications.
Global assertions. By default, MODIST checks fail-
stop errors. To check the correctness properties of a dis-
tributed system, MODIST supports user supplied global
assertions (§2). For the replication systems we checked,
we added two types of assertions. The first type was
global predicates for the safety properties. For example,
all replicas agree on the same sequence of commands.
The second type of predicates check for liveness. True
liveness conditions cannot be checked by execution mon-
itoring so we instead approximate them by checking for
progress in the system: we expect the target system to
make progress in the absence of failures. In the end, we
did not find any bug that violated the safety properties in
any of the systems, probably reflecting the relative ma-
turity of these systems. However, we did find bugs that
violated liveness global assertions in every system.
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Search strategy. MODIST has a set of built-in search
strategies; no single strategy works the best. We have
combined these strategies in our experiments for discov-
ering bugs effectively. For example, we can first perform
random executions (Random) on the system and inject
the API failures randomly to get the shallow implemen-
tation bugs. We can then use the DPOR strategy with
randomly chosen initial paths to explore message orders
systematically. We can further add crash and recovery
events on top of the message interleaving, starting from
a single crash and gradually increasing the number of
crashes, to exercise the system’s handling of crash and
recovery. We can run these experiments concurrently and
fine-tune the strategies.
Terminology. Distributed systems use different termi-
nologies to describe the roles the nodes play in the sys-
tems. In this paper, we will use primary and secondary
to distinguish the replicas in the systems. They are called
master and client respectively in Berkeley DB docu-
ments. In the Paxos literature, a primary is also called
a leader.

4.2 Berkeley DB: a Replicated Database

Berkeley DB is a widely used open source transactional
storage engine. Its latest version supports replication for
applications that must be highly available. In a Berkeley
DB replication group, the primary supports both reads
and writes while secondaries support reads only. New
replicas can join the replication group at any time.
We checked the latest Berkeley DB production re-

lease: 4.7.25.NC.We use ex_rep_mgr, an example ap-
plication that comes with Berkeley DB as the test driver.
This application manages its data using the Berkeley DB
Replication Manager. Our test setup has 3 to 5 pro-
cesses. They first run an election. Once the election com-
pletes, the elected primary inserts data into the replicated
database, reads it back, and verifies that it matches the
data inserted.

Results and Discussions. We found seven bugs in
Berkeley DB: four were triggered by injecting API fail-
ures, one was a dangling pointer error triggered by the
primary waiting for multiple ACK messages simultane-
ously from the secondaries, and the remaining two were
protocol-level bugs, which we describe below.
The first protocol-level bug causes a replica to crash

due to an “unexpected” message. The timing dia-
gram of this bug is depicted in Figure 6. Replica C
is the original primary. Suppose a new election is
launched, resulting in replica A becoming the new pri-
mary. Replica A will broadcast a REP_NEWMASTER
message, which means “I am the new primary.” After
replica B receives this message, it tries to synchronize
with the new primary and sends A a REP_UPDATA_REQ
message to get the up-to-date data. Meanwhile, C




  















 

Figure 6: Timing Diagram of Message Exchanges in a
Berkeley DB Replication Bug.

processes REP_NEWMASTER by first broadcasting a
REP_DUPMASTER message, which means “duplicate
primary detected,” and then degrading itself to a sec-
ondary. Broadcasting a REP_DUPMASTER message
is necessary to ensure that all other replicas know
that C is not primary anymore. When A processes
REP_DUPMASTER, it has to give up its primary role
because it cannot make sure that it is the latest pri-
mary. Soon A receives the delayed but not-outdated
REP_UPDATA_REQ message from B. Replica A pan-
ics at once, because such message should only be re-
ceived by primary. Such panics occur whenever a de-
layed REP_UPDATA_REQ message arrives at a recently
degraded primary.
The second protocol level bug is more severe: it causes

permanent failures in leader election due to a primary
crash when all secondaries believe they cannot be pri-
maries. Suppose replica A is the original primary and is
synchronizing data with secondaries B and C. Normally
synchronization works as follows. A sends a REP_PAGE
message with the modified database page to B and C.
Upon receipt of this message, B and C transit to log re-
covery state by setting the REP_F_RECOVER_LOG flag.
A then sends a REP_LOG message with the updated log
records. However, if A crashes before it sends REP_LOG,
B and C will never be able to elect a new primary be-
cause, in Berkeley DB’s replication protocol, a replica in
log recovery is not allowed to be a primary.

4.3 MPS: Replicated State Machine Library

MPS is a practical implementation of a replicated state
machine library. The library has been used for over two
years in production clusters of more than 100K machines
for maintaining important system metadata consistently
and reliably. It consists of 8.5K lines of C++ code for
the communication protocol, and 45K for utilities such
as networking and storage.
At the core of MPS is a distributed Paxos protocol for

consensus [22]. The protocol is executed on a set of ma-
chines called replicas. The goal of the protocol is to have
replicas agree on a sequence of deterministic commands
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Figure 7: The Timing Diagram of Message Exchange in
MPS Bug 1.

and execute the commands in the same sequence order.
Because all replicas start with the same initial state and
execute the same sequence of commands, consistency
among replicas is guaranteed.
The MPS consensus protocol is leader (primary)

based. While the protocol ensures safety despite the ex-
istence of multiple primaries, a single primary is needed
for the protocol to make progress. A replica can act as
a primary using a certain ballot number. A primary ac-
cepts requests from clients and proposes those requests
as decrees, where decree numbers indicate the positions
of the requests in the sequence of commands that is going
to be executed by the replicated state machine. A decree
is considered committed when the primary gets acknowl-
edgment from a quorum (often a majority) of replicas in-
dicating that they have accepted and persistently stored
the decree.
If a replica receives a message that indicates that a

decree unknown to the replica is committed, then the
replica enters a learning phase, in which it learns the
missing decrees from other replicas.
When an existing primary is considered to have failed,

a new primary can be elected. The new primary will use
a higher ballot number and carry out a prepare phase to
learn the decrees that could have been committed and
ensure no conflicting decrees are proposed. For each
replica, a proposal with a higher ballot number over-
writes any previous proposal with lower ballot numbers.
Our test setup consists of 3 replicas, proposing a small

number of decrees.

Results and Discussions. We found 13 bugs in MPS,
11 are implementation bugs that crash replicas, and the
other two bugs are protocol-level bugs.
The first protocol-level bug reveals a scenario that

leads to state transitions that are not expected by the de-
velopers (as demonstrated by the assertion that rules out
the transition). MPS has a simple set of states and state
transitions. A replica is normally in a stable state. When
it gets indication that its state is falling behind (i.e., miss-
ing decrees), it enters a learning state. In the learning
state, it fetches the decrees from a quorum of replicas.
Once it brings its state up to date with what it receives

  























Figure 8: The Timing Diagram of Message Exchange in
MPS Bug 2.

from a quorum of replicas, it checks whether it should
become a primary: if the primary lease expires, then
the replica will compete to be a primary by entering a
preparing state; otherwise, it will return to a stable state.
There is an assertion in the code (and also in the design
document for MPS) that the state transition from stable
to preparing is impossible.
Figure 7 shows the MODIST-generated scenario that

triggers the assertion failure. The following is a list of
steps that lead to the violation. Consider the case where
the system consists of three replicas A, B, and C, where
any two of them form a quorum. Replica A enters the
learning state because it realizes that it does not have
the information related to some decree numbers. This
could be due to the receipt of a message that indicates
that the last committed decree number is at least k, while
A knows only up to some decree number less than k. A
then sends a status query to B and C. A receives the re-
sponse from B and learns all the missing decrees. Since
A and B form a quorum, A enters the stable state. C
was the primary. C’s response to A status query was de-
layed, and the primary lease becomes expired on A. At
some later point, C’s response arrives. The implementa-
tion will handle that message as if A were in the learning
state. After A is done, it notices that the primary lease
has expired and transitions into the preparing state, caus-
ing the unexpected state transition. As a result, A crashes
and reboots.
The second protocol-level bug is a violation of a global

liveness assertion. It is triggered during primary election
under the following scenario: replica A has accepted a
decree with ballot number 2 and decree number 1, while
replica B only has ballot number 1, but accepted a decree
of decree number 2.
The following series of events lead to this problematic

scenario: B is a primary with ballot number 1, it pro-
poses a decree with decree number 1 and the decree is
accepted by all replicas including A and B. It then pro-
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poses another decree with decree number 2, which is ac-
cepted only on B. B fails before A gets the proposal. A
then becomes a primary with ballot number 2, learns the
decree with decree number 1, re-proposes it with a ballot
number 2.
Figure 8 shows the timing diagram continuing from

this scenario. B comes back, receives the prepare request
from A, and sends a rejection to A because B thinks A
is not up-to-date given that B has a higher decree num-
ber. After getting the rejection, A enters a learning state.
In the learning state, even if B returns the decree with
decree number 2, A will reject it because it has a lower
ballot number. A will consider itself up-to-date and enter
the preparing state again with a yet higher ballot number.
This continues as A keeps increasing its ballot number,
but unable to have new decrees committed, triggering a
liveness violation.
The problem in this scenario is due to the inconsis-

tency of the views on what constitutes a newer state be-
tween the preparing phase and the learning phase: one
view uses a higher ballot number, while the other uses
a higher decree number. The inconsistency is exposed
when one has a higher decree number, but a lower ballot
number than the other.

4.4 PACIFICA: a Primary-Backup Replication Pro-
tocol

PACIFICA [24] is a large-scale storage system for semi-
structured data. It implements a Primary-Backup pro-
tocol for data replication. We used MODIST to check
an implementation of PACIFICA’s replication protocol.
This implementation consists of 5K lines of C++ code
for the communication protocol and 7K for utilities.
PACIFICA uses a variety of familiar components in-

cluding two-phase commit for consistent replica updates,
perfect failure detection, replica group reconfiguration to
handle node failures, and replica reconciliation for nodes
rejoining a replica group.
Our test setup for PACIFICA has 4 processes: 1 mas-

ter that maintains global metadata, 2 replica nodes that
implement the replication protocol, and 1 client that up-
dates the system and drives the checking process. Fig-
ure 2 shows the configuration file.

Results and Discussions. We found 15 bugs in PACI-
FICA: 9 are implementation bugs that cause crashes and
6 are protocol-level bugs. We managed to find more
protocol-level bugs in PACIFICA than in other systems
for two reasons: (1) since we built the system, we could
quickly fix the bugs MODIST found then re-run MODIST
to go after other bugs; and (2) we could check more
global assertions for PACIFICA.
The most interesting bug we found in PACIFICA pre-

vents PACIFICA from making progress. It is triggered by
a node crash followed by a replication group reconfigu-
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Figure 9: Partial order state coverage of different explo-
ration strategies.

ration. A primary replica keeps a list of prepared updates
(i.e., updates that have been prepared on all replicas, but
not yet committed); a secondary replica does not have
this data structure. When a primary crashes, a secondary
will try to take over and become the new primary. If the
crash happens in the middle of a commit operation that
leaves some commands prepared but not yet committed,
the new primary will try to re-commit all prepared up-
dates by sending the “prepare” messages to the remain-
ing secondary replicas. Unfortunately, PACIFICA did not
put these newly prepared updates into the prepared up-
date list. This prevents all the following updates from
getting committed because of a hole in the prepared up-
date list.

4.5 State Coverage

To evaluate the state-space exploration strategies de-
scribed in §3.6, we measured state coverage: the number
of unique states a strategy could explore after running a
fixed number of execution paths. We examined the cov-
erage of two types of states:
1. Partial order traces [12]. Since two paths with the

same partial order are equivalent, the number of dif-
ferent partial order traces provides an upper bound
on the number of unique behaviors a strategy can ex-
plore.

2. Protocol states. These states capture the more impor-
tant protocol behaviors of a distributed system.
We did two experiments, both on MPS: one with a

small partial order state space and the other with a nearly
unbounded state space. These two state spaces give an
idea of how sensitive the strategies are to state-space
sizes. No crash was injected during the evaluation.
In the first experiment, we made the state space small

using a configuration of two nodes, each receiving up
to two messages. Figure 9 shows the number of unique
partial order traces with respect to the number of paths
explored. (Note that both axes are in log scale.) DPOR
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Figure 10: Protocol state coverage of different explo-
ration strategies.

shows a clear advantage: it exhausted all 115,425 traces
after 134,627 paths (the small redundancy was due to an
approximation in our DPOR implementation.) The Ran-
dom strategy explored 6,614 unique traces or 5.7% of the
entire state space after 200,000 paths. DFS is the worst:
all the 200,000 paths were partial order equivalent and
corresponded to only one partial order trace.
In the second experiment, we used a nearly unbounded

partial order state space with three MPS nodes send-
ing and receiving an unbounded number of messages.
We bounded the maximum decree (two decrees) and the
maximum path length (40,000 actions) to make the exe-
cution paths finite. Since the state space was large, it was
unlikely that Random ever explored a partial order trace
twice. As a result, DPOR behaved the same as Random.
(This result is not shown.)
While partial order state coverage provides an up-

per bound on the unique behaviors a strategy explores,
different partial order traces may still be redundant
and map to the same protocol state. Thus, we fur-
ther measured the protocol state coverage of different
exploration strategies. We defined the protocol state
of MPS as a tuple �state,ballot,decree�, where the
state could be initializing, learning, stable
primary, or stable secondary.∗

Figure 10 shows the protocol states covered by the
first 50,000 paths explored in each strategy, using the
MPS configuration from the second experiment. DFS
had the worst coverage: it found no new states after ex-
ploring the first path. The reason is, when the state space
is large, DFS tends to explore a large number of paths
that differ only at the final few steps; these paths are
often partial-order equivalent. DPOR performed almost
equally badly: it found less than 30 protocol states. This
result is not surprising for two reasons: (1) different par-

∗We also measured the coverage of global protocol states, which
consist of protocol states of each node in a consistent global snapshot.
The results were similar and not shown.

tial order traces might correspond to the same protocol
state and (2) DPOR is DFS-based, thus suffers the same
problem as DFS when the state space is large.
In Bounded DPOR, protocol-level redundancy is par-

tially conquered by the bounds on backtracks. As
shown in Figure 10, the protocol-level state coverage of
Bounded DPOR was larger than that of DPOR by an or-
der of magnitude, in the first 50,000 paths.
Surprisingly, the Random strategy yielded better cov-

erage than DFS, DPOR, and even Bounded DPOR. The
reason is that Random is more balanced: it explores ac-
tions anywhere along a path uniformly, therefore it has a
better chance to jump to a new path early on and explores
a different area of the state space.
These results prompted us to develop a hybrid Random

+ Bounded DPOR search strategy that works as follows.
It starts with a random path and explores the state space
with Bounded DPOR. We further bound the total num-
ber of backtracks so that the Bounded DPOR exploration
ends. Then, a new round of Bounded DPOR exploration
starts with a new random path. Random + Bounded
DPOR inherits both the balance of Random and the thor-
oughness of DPOR to cover the corner cases. Both the
round number of DPOR explorations and the bound of
the total number of backtracks are customizable, reflect-
ing a bias towards Random or towards DPOR. As shown
in Figure 10, the Random + Bounded DPOR strategy
with a round number 100 performed the best.

4.6 Performance

In our performance measurements, we focused on three
metrics: (1) MODIST’s path exploration speed; (2) the
speedup due to the virtual clock fast-forward; and (3)
the runtime overhead MODIST adds to the target system,
including interposition, RPC, and backend scheduling.
We set up our experiments as follows. We ran

MODIST with two different search strategies: RAN-
DOM and DPOR. For each search strategy, we let
MODIST explore 1K execution paths and recorded the
running times. We repeated this experiment 50 times and
took the average. We used Berkeley DB and MPS as
our benchmarks, using identical configurations as those
used for error detection. We ran our experiments on a 64-
bit Windows Server 2003 machine with dual Intel Xeon
5130 CPU and 4GB memory. We measured all time val-
ues using QueryPerformanceCounter(), a high-
resolution performance counter.
It appears that we should measure MODIST’s over-

head by comparing a system’s executions with MODIST
to those without. However, due to nondeterminism, we
cannot compare these two directly: the executions with-
out MODIST may run different program paths than those
with MODIST. Moreover, repeated executions of the
same testcase without MODIST may differ; we did ob-
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System Strategy Real (s) Sleep (s) Speedup Overhead (absolute and relative)

Berkeley DB RANDOM 1,717±14 38,204±193 25.7±0.2 302±1s (17.7±0.1%)
Berkeley DB DPOR 1,658±24 36,402±5,137 22.1±3.2 301±17s (18.2±0.9%)
MPS RANDOM 1,661±20 240,568±1,405 216±2 825±11s (49.9±0.2%)
MPS DPOR 1,853±116 295,435±45,659 159±19 1,048±108s (56.5±2.6%)

Table 3: MODIST’s performance. All numbers are of the form average± standard deviation.

serve a large variance in MPS’s execution times and final
protocol states. Thus, we evaluated MODIST’s overhead
by running a system with MODIST and measuring the
time spent in MODIST’s components.
Table 3 shows the performance results. The Real col-

umn shows the time it took for MODIST to explore 1K
paths of Berkeley DB and MPS with RANDOM and
DPOR strategies; the exploration speed is roughly two
seconds per path and does not change much for the two
different search strategies. The Sleep column shows the
time MODIST saved using its virtual clock when the
target systems were asleep; we would have spent this
amount of extra time had we run the same executions
without MODIST. As shown in the table, the real execu-
tion time is much smaller that the sleep time, translated
into significant speedups (Column Speedup, computed
as Sleep/Real). The Overhead column in this table
shows the time spent in MODIST’s interposition, RPC,
and backend scheduling. For Berkeley DB, MODIST ac-
counts for about 18% of the real execution time. For
MPS, MODIST accounts for a higher percentage of exe-
cution time (up to 56.5%) because the MPS testcase we
used is almost the worst case for MODIST: it only exer-
cises the underlying communication protocol and does
no real message processing. Nonetheless, we believe
such overhead is reasonable for an error detection tool.

4.7 Lessons

This section discusses the lessons we learned.
Real distributed protocols are buggy. We found

many protocol-level bugs and we found them in every
system we target, suggesting that real distributed proto-
cols are buggy. Amusingly, these protocols are based
on theoretically sound protocols; the bugs are introduced
when developers filled in the unspecified parts in the pro-
tocols in practice.
Controlling all non-determinism is hard. System-

atic checking requires control of non-determinism in the
target system. This task is very hard given the non-
determinism in the OS and network, the wide API inter-
face, the many possible failures and their combinations,
and MODIST’s goal of reducing intrusiveness to the tar-
get system. We have had bitter experiences debugging

non-deterministic errors in Berkeley DB, which uses pro-
cess id, memory address, and time to generate random
numbers, and in MPS, which randomly interferes with
the default Windows firewall. Among all, making the
Windows socket APIs deterministic was the most diffi-
cult; the interface shown in §3 went through several it-
erations. Our own experiences show that controlling all
non-determinism is much harder than merely capturing
it as in replay-debugging tools.
Avoid false positives at all cost. False positives may

take several days to diagnose. Thus, we want to avoid
them, even at the risk of missing errors.
Leverage domain knowledge. In a sense, this entire

paper boils down to leveraging the domain knowledge
of distributed systems to better model-check them. The
core idea of model checking is simple: explore all pos-
sible executions; a much more difficult task is to imple-
ment this idea effectively in an application domain.
When in doubt, reboot. When we checked MPS, we

were surprised by how robust it was. MPS uses a de-
fensive programming technique that works particularly
well in the context of distributed replication protocols.
MPS extensively uses local assertions, reboots when any
assertion fails, and relies on the replication protocol to
recover from these eager reboots. This recovery mecha-
nism makes MPS robust against a wide range of failures.
Of course, rebooting is not without penalty: if a primary
reboots, there could be noticeable performance degrada-
tion, and the system also becomes less fault tolerant.

5 Related Work

5.1 Model Checking

Model checkers have previously been used to find er-
rors in both the design and the implementation of soft-
ware [1, 6, 12, 17–19, 27, 28, 34, 38, 39]. Traditional
model checkers require users to write an abstract model
of the target system, which often incurs large up-front
cost when checking large systems. In contrast, MODIST
is an implementation-level model checker that checks
code directly, thus avoids this cost. Below we compare
MODIST to implementation-level model checkers.
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Model checkers for distributed system. MODIST is
most related to model checkers that check real distributed
system implementations. CMC [27] is a stateful model
checker that checks C code directly. It has been used
to check network protocol implementations [27] and file
systems [38]. However, to check a system, CMC re-
quires invasive modifications to run the system inside
CMC’s address space [39]. MaceMC [19] uses bounded
depth first search combined with random walk to find
safety and liveness bugs in a number of network pro-
tocol implementations written in a domain-specific lan-
guage. Compared to these two checkers, MODIST di-
rectly checks live, unmodified distributed systems run-
ning in their native execution environments, thus avoids
the invasive modifications required by CMC, and the lan-
guage restrictions [20] enforced by MaceMC.

CrystalBall [37] detects and avoids errors in deployed
distributed systems using an efficient global state col-
lection and exploration technique. While CrystalBall is
based on MaceMC and thus checks only systems writ-
ten in the Mace language [20], its core technique may
be portable to MODIST’s model checking framework to
improve the reliability of general distributed systems.

Other software model checkers. We compare
MODIST to other closely related implementation-level
model checkers. Our transparent checking approach
is motivated by our previous work EXPLODE [39].
However, EXPLODE focuses on storage systems and
does not check distributed systems.

To our best knowledge, VeriSoft [12] is the first
implementation-level model checker. It systematically
explores the interleavings of concurrent C programs, and
uses partial order reduction to soundly reduce the number
of states it explores. It has been used to check industrial-
strength programs [5].

Chess [28] is a stateless model checker for explor-
ing the interleavings of multi-threaded programs. To
avoid perturbing the target system, it also interposes on
WinAPIs. In addition, Chess uses a context-bounding
heuristic and a starvation-free scheduler to make its
checking more efficient. It has been applied to several
industry-scale systems and found many bugs.

ISP [35] is an implementation-level model checker for
MPI programs. It controls a MPI program by intercept-
ing calls to MPI methods and reduces the state-space it
explores using new partial order reduction algorithms.

All three systems focus on checking interleavings
of concurrent programs, thus do not address issues on
checking real distributed systems, such as providing a
transparent, distributed checking architecture and en-
abling consistent and deterministic failure simulation

5.2 Replay-based debugging

A number of systems [11, 21, 32], including our pre-
vious work [15, 25], use deterministic replay to debug
distributed system. These approaches attack a different
problem: when a bug occurs, how to capture its manifes-
tation so that developers can reproduce the bug. Com-
bined with fault injection, these tools can be used to de-
tect bugs. Like these systems, MODIST also provides re-
producibility of errors. Unlike these systems, MODIST
aims to proactively drive the target system into corner-
cases for errors in the testing phase before the system is
deployed. MODIST uses the instrumentation library in
our previous work [25] to interpose on WinAPIs.

5.3 Other error detection techniques

We view testing as complementary to our approach. Test-
ing is usually less comprehensive than our approach, but
works “out of the box.” Thus, there is no reason not to
use both testing and MODIST together.
There has been much recent work on static bug finding

(e.g., [1, 2, 7, 8, 10, 33]). Roughly speaking, because dy-
namic checking runs code, it is limited to just executed
paths, but can more effectively check deeper properties
implied by the code (e.g., two replicas are consistent).
The protocol-level errors we found would be difficult to
find statically. We view static analysis as complemen-
tary: easy enough to apply such that there is no reason
not to use them together with MODIST.
Recently, symbolic execution [3, 4, 13, 31] has been

used to detect errors in real systems. This technique is
good at detecting bugs caused by tricky input values,
whereas our approach is good at detecting bugs caused
by the non-deterministic events in the environment.

6 Conclusions
MODIST represents an important step in achieving the
ideal of model checking unmodified distributed system
in a transparent and effective way. Its effectiveness has
been demonstrated by the subtle bugs it uncovered in
well-tested production and deployed systems.
Our experience shows that it requires a combination of

art, science, and engineering. It is an art because various
heuristics must be developed for finding delicate bugs
effectively, taking into account the peculiarity of com-
plex distributed systems; it is a science because a sys-
tematic, modular approach with a carefully designed ar-
chitecture is a key enabler; it involves heavy engineering
effort to interpose between the application and the OS,
to model and control low-level system behavior, and to
handle system-level non-determinism.
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