
USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 153

Making Byzantine Fault Tolerant Systems
Tolerate Byzantine Faults

Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin
The University of Texas at Austin

Mirco Marchetti
The University of Modena and Reggio Emilia

Abstract
This paper argues for a new approach to building Byzan-
tine fault tolerant replication systems. We observe that
although recently developed BFT state machine replica-
tion protocols are quite fast, they don’t tolerate Byzantine
faults very well: a single faulty client or server is capa-
ble of rendering PBFT, Q/U, HQ, and Zyzzyva virtually
unusable. In this paper, we (1) demonstrate that exist-
ing protocols are dangerously fragile, (2) define a set of
principles for constructing BFT services that remain use-
ful even when Byzantine faults occur, and (3) apply these
principles to construct a new protocol, Aardvark. Aard-
vark can achieve peak performance within 40% of that of
the best existing protocol in our tests and provide a sig-
nificant fraction of that performance when up to f servers
and any number of clients are faulty. We observe useful
throughputs between 11706 and 38667 requests per sec-
ond for a broad range of injected faults.

1 Introduction
This paper is motivated by a simple observation: al-
though recently developed BFT state machine replica-
tion protocols have driven the costs of BFT replication
to remarkably low levels [1, 8, 12, 18], the reality is that
they don’t tolerate Byzantine faults very well. In fact, a
single faulty client or server can render these systems ef-
fectively unusable by inflicting multiple orders of mag-
nitude reductions in throughput and even long periods
of complete unavailability. Performance degradations of
such degree are at odds with what one would expect from
a system that calls itself Byzantine fault tolerant—after
all, if a single fault can render a system unavailable, can
that system truly be said to tolerate failures?

To illustrate the the problem, Table 1 shows the mea-
sured performance of a variety of systems both in the
absence of failures and when a single faulty client sub-
mits a carefully crafted series of requests. As we show
later, a wide range of other behaviors—faulty primaries,
recovering replicas, etc.—can have a similar impact. We

believe that these collapses are byproducts of a single-
minded focus on designing BFT protocols with ever
more impressive best-case performance. While this fo-
cus is understandable—after years in which BFT repli-
cation was dismissed as too expensive to be practical,
it was important to demonstrate that high-performance
BFT is not an oxymoron—it has led to protocols whose
complexity undermines robustness in two ways: (1) the
protocols’ design includes fragile optimizations that al-
low a faulty client or server to knock the system off of
the optimized execution path to an expensive alternative
path and (2) the protocols’ implementation often fails to
handle properly all of the intricate corner cases, so that
the implementations are even more vulnerable than the
protocols appear on paper.

The primary contribution of this paper is to advocate a
new approach, robust BFT (RBFT), to building BFT sys-
tems. Our goal is to change the way BFT systems are de-
signed and implemented by shifting the focus from con-
structing high-strung systems that maximize best case
performance to constructing systems that offer accept-
able and predictable performance under the broadest pos-
sible set of circumstances—including when faults occur.

System Peak Throughput Faulty Client
PBFT [8] 61710 0

Q/U [1] 23850 0†

HQ [12] 7629 N/A‡

Zyzzyva [18] 65999 0

Aardvark 38667 38667

Table 1: Observed peak throughput of BFT systems in a
fault-free case and when a single faulty client submits a
carefully crafted series of requests. We detail our mea-
surements in Section 7.2. † The result reported for Q/U is
for correct clients issuing conflicting requests. ‡ The HQ
prototype demonstrates fault-free performance and does
not implement many of the error-handling steps required
to handle inconsistent MACs.

154 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RBFT explicitly considers performance during both
gracious intervals—when the network is synchronous,
replicas are timely and fault-free, and clients correct—
and uncivil execution intervals in which network links
and correct servers are timely, but up to f = n−1

3
servers and any number of clients are faulty. The last
row of Table 1 shows the performance of Aardvark, an
RBFT state machine replication protocol whose design
and implementation are guided by this new philosophy.

In some ways, Aardvark is very similar to traditional
BFT protocols: clients send requests to a primary who
relays requests to the replicas who agree (explicitly or
implicitly) on the sequence of requests and the corre-
sponding results—not unlike PBFT [8], High through-
put BFT [19], Q/U [1], HQ [12], Zyzzyva [18], ZZ [32],
Scrooge [28], etc.

In other ways, Aardvark is very different and chal-
lenges conventional wisdom. Aardvark utilizes signa-
tures for authentication, even though, as Castro correctly
observes, “eliminating signatures and using MACs in-
stead eliminates the main performance bottleneck in pre-
vious systems” [7]. Aardvark performs regular view
changes, even though view changes temporarily prevent
the system from doing useful work. Aardvark utilizes
point to point communication, even though renouncing
IP-multicast gives up throughput deliberately.

We reach these counter-intuitive choices by following
a simple and systematic approach: without ever compro-
mising safety, we deliberately refocus both the design
of the system and the engineering choices involved in
its implementation on the stress that failures can impose
on performance. In applying this strategy for RBFT to
construct Aardvark, we choose an extreme position in-
spired by maxi-min strategies in game theory [26]: we
reject any optimization for gracious executions that can
decrease performance during uncivil executions.

Surprisingly, these counter-intuitive choices impose
only a modest cost on its peak performance. As Table 1
illustrates, Aardvark sustains peak throughput of 38667
requests/second, which is within 40% of the best perfor-
mance we measure on the same hardware for four stat-
of-the-art protocols. At the same time, Aardvark’s fault
tolerance is dramatically improved. For a broad range
of client, primary, and server misbehaviors we prove that
Aardvark’s performance remains within a constant fac-
tor of its best case performance. Testing of the prototype
shows that these changes significantly improve robust-
ness under a range of injected faults.

Once again, however, the main contribution of this pa-
per is neither the Aardvark protocol nor implementation.
It is instead a new approach that can—and we believe
should—be applied to the design of other BFT protocols.
In particular, we (1) demonstrate that existing protocols
and their implementations are fragile, (2) argue that BFT

protocols should be designed and implemented with a fo-
cus on robustness, and (3) use Aardvark to demonstrate
that the RBFT approach is viable: we gain qualitatively
better performance during uncivil intervals at only mod-
est cost to performance during gracious intervals.

In Section 2 we describe our system model and the
guarantees appropriate for high assurance systems. In
Section 3 we elaborate on the need to rethink Byzan-
tine fault tolerance and identify a set of design principles
for RBFT systems. In Section 4 we present a system-
atic methodology for designing RBFT systems and an
overview of Aardvark. In Section 5 we describe in detail
the important components of the Aardvark protocol. In
Section 6 we present an analysis of Aardvark’s expected
performance. In Section 7 we present our experimental
evaluation. In Section 8 we discuss related work.

2 System model
We assume the Byzantine failure model where faulty
nodes (servers or clients) can behave arbitrarily [21] and
a strong adversary can coordinate faulty nodes to com-
promise the replicated service. We do, however, assume
the adversary cannot break cryptographic techniques like
collision-resistant hashing, message authentication codes
(MACs), encryption, and signatures. We denote a mes-
sage X signed by principal p’s public key as Xσp

. We
denote a message X with a MAC appropriate for princi-
pals p and r as Xµr,p

. We denote a message containing
a MAC authenticator—an array of MACs appropriate for
verification by every replica—as Xµr

Our model puts no restriction on clients, except that
their number be finite: in particular, any number of
clients can be arbitrarily faulty. However, the system’s
safety and liveness properties are guaranteed only if at
most f = n−1

3 servers are faulty.
Finally, we assume an asynchronous network where

synchronous intervals, during which messages are deliv-
ered with a bounded delay, occur infinitely often.

Definition 1 (Synchronous interval). During a syn-
chronous interval any message sent between correct pro-
cesses is delivered within a bounded delay T if the sender
retransmits according to some schedule until it is deliv-
ered.

3 Recasting the problem
The foundation of modern BFT state machine replication
rests on an impossibility result and on two principles that
assist us in dealing with it. The impossibility result, of
course, is FLP [13], which states that no solution to con-
sensus can be both safe and live in an asynchronous sys-
tems if nodes can fail. The two principles, first applied
by Lamport to his Paxos protocol [20], are at the core
of Castro and Liskov’s seminal work on PBFT [7]. The
first states that synchrony must not be needed for safety:

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 155

as long as a threshold of faulty servers is not exceeded,
the replicated service must always produce linearizable
executions, independent of whether the network loses,
reorders, or arbitrarily delays messages. The second rec-
ognizes, given FLP, that synchrony must play a role in
liveness: clients are guaranteed to receive replies to their
requests only during intervals in which messages sent to
correct nodes are received within some fixed (but poten-
tially unknown) time interval from when they are sent.

Within these boundaries, the engineering of BFT pro-
tocols has embraced Lampson’s well-known recommen-
dation: “Handle normal and worst case separately as a
rule because the requirements for the two are quite dif-
ferent. The normal case must be fast. The worst case
must make some progress” [22]. Ever since PBFT, the
design of BFT systems has then followed a predictable
pattern: first, characterize what defines the normal (com-
mon) case; then, pull out all the stops to make the system
perform well for that case. While different systems don’t
completely agree on what defines the common case [16],
on one point they are unanimous: the common case in-
cludes only gracious executions, defined as follows:

Definition 2 (Gracious execution). An execution is gra-
cious iff (a) the execution is synchronous with some
implementation-dependent short bound on message de-
lay and (b) all clients and servers behave correctly.

The results of this approach continue to be spectac-
ular. Since Zyzzyva last year reported a throughput of
over 85,000 null requests per second [18], several new
protocols have further improved on that mark [16, 28].

Despite these impressive results, we argue that a sin-
gle minded focus on aggressively tuning BFT systems
for the best case of gracious execution, a practice that
we have engaged in with relish [18], is increasingly mis-
guided, dangerous, and even futile.

It is misguided, because it encourages the design and
implementation of systems that fail to deliver on their ba-
sic promise: to tolerate Byzantine faults. While provid-
ing impressive throughput during gracious executions,
today’s high-performance BFT systems are content to
guaranteeing weak liveness guarantees (e.g. “eventual
progress”) in the presence of Byzantine failures. Unfor-
tunately, as we previewed in Figure 1 and show in detail
in Section 7.2, these guarantees are weak indeed. Al-
though current BFT systems can survive Byzantine faults
without compromising safety, we contend that a system
that can be made completely unavailable by a simple
Byzantine failure can hardly be said to tolerate Byzan-
tine faults.

It is dangerous, because it encourages fragile opti-
mizations. Fragile optimizations are harmful in two
ways. First, as we will see in Section 7.2, they make it
easier for a faulty client or server to knock the system off

its hard-won optimized execution path and enter an alter-
native, much more expensive one. Second, they weigh
down the system with subtle corner cases, increasing the
likelihood of buggy or incomplete implementations.

It is (increasingly) futile, because the race to optimize
common case performance has reached a point of dimin-
ishing return where many services’ peak demands are al-
ready far under the best-case throughput offered by ex-
isting BFT replication protocols. For such systems, good
enough is good enough, and further improvements in best
case agreement throughput will have little effect on end-
to-end system performance.

In our view, a BFT system fulfills its obligations
when it provides acceptable and dependable performance
across the broadest possible set of executions, including
executions with Byzantine clients and servers. In par-
ticular, the temptation of fragile optimizations should be
resisted: a BFT system should be designed around an
execution path that has three properties: (1) it provides
acceptable performance, (2) it is easy to implement, and
(3) it is robust against Byzantine attempts to push the sys-
tem away from it. Optimizations for the common case
should be accepted only as long as they don’t endanger
these properties.

FLP tells us that we cannot guarantee liveness in an
asynchronous environment. This is no excuse to cling to
gracious executions only. In particular, there is no theo-
retical reason why BFT systems should not be expected
to perform well in what we call uncivil executions:

Definition 3 (Uncivil execution). An execution is
uncivil iff (a) the execution is synchronous with some
implementation-dependent short bound on message de-
lay, (b) up to f servers and an arbitrary number of clients
are Byzantine, and (c) all remaining clients and servers
are correct.

Hence, we propose to build RBFT systems that pro-
vide adequate performance during uncivil executions.
Although we recognize that this approach is likely to re-
duce the best case performance, we believe that for a
BFT system a limited reduction in peak throughput is
preferable to the devastating loss of availability that we
report in Figure 1 and Section 7.2.

Increased robustness may come at effectively no ad-
ditional cost as long as a service’s peak demand is be-
low the throughput achievable through RBFT design:
as a data point, our Aardvark prototype reaches a peak
throughput of 38667 req/s.

Similarly, when systems have other bottlenecks, Am-
dahl’s law limits the impact of changing the performance
of agreement. For example, we report in Section 7 that
PBFT can execute almost 62,000 null requests per sec-
ond, suggesting that agreement consumes 16.1µs per re-
quest. If, rather than a null service, we replicate a service

156 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

for which executing an average request consumes 100µs
of processing time, then peak throughput with PBFT set-
tles to about 8613 requests per second. For the same ser-
vice, a protocol with twice the agreement overhead of
PBFT (i.e., 32.2µs per request), would still achieve peak
throughput of about 7564 requests/second: in this hy-
pothetical example, doubling agreement overhead would
reduce peak end-to-end throughput by about 12%.

4 Aardvark: RBFT in action
Aardvark is a new BFT system designed and imple-
mented to be robust to failures. The Aardvark pro-
tocol consists of 3 stages: client request transmission,
replica agreement, and primary view change. This is the
same basic structure of PBFT [8] and its direct descen-
dants [4, 18, 19, 33, 32], but revisited with the goal of
achieving an execution path that satisfies the properties
outlined in the previous section: acceptable performance,
ease of implementation, and robustness against Byzan-
tine disruptions. To avoid the pitfalls of fragile opti-
mizations, we focus at each stage of the protocol on how
faulty nodes, by varying both the nature and the rate of
their actions and omissions, can limit the ability of cor-
rect nodes to perform in a timely fashion what the proto-
col requires of them. This systematic methodology leads
us to the three main design differences between Aardvark
and previous BFT systems: (1) signed client requests, (2)
resource isolation, and (3) regular view changes.

Signed client requests. Aardvark clients use digital
signatures to authenticate their requests. Digital signa-
tures provide non-repudiation and ensure that all correct
replicas make identical decisions about the validity of
each client request, eliminating a number of expensive
and tricky corner cases found in existing protocols that
make use of weaker (though faster) message authentica-
tion code (MAC) authenticators [7] to authenticate client
requests. The difficulty with utilizing MAC authentica-
tors is that they do not provide the non-repudiation prop-
erty of digital signatures—one node validating a MAC
authenticator does not guarantee that any other nodes
will validate that same authenticator [2].

As we mentioned in the Introduction, digital signa-
tures are generally seen as too expensive to use. Aard-
vark uses them only for client requests where it is pos-
sible to push the expensive act of generating the signa-
ture onto the client while leaving the servers with the
less expensive verification operation. Primary-to-replica,
replica-to-replica, and replica-to-client communication
rely on MAC authenticators. The quorum-driven nature
of server-initiated communication ensures that a single
faulty replica is unable to force the system into undesir-
able execution paths.

Because of the additional costs associated with verify-
ing signatures in place of MACs, Aardvark must guard

Replica

Replica

Replica

Replica

Clients

Figure 1: Physical network in Aardvark.

against new denial-of-service attacks where the system
receives a large numbers of requests with signatures that
need to be verified. Our implementation limits the num-
ber of signature verifications a client can inflict on the
system by (1) utilizing a hybrid MAC-signature construct
to put a hard limit on the number of faulty signature veri-
fications a client can inflict on the system and (2) forcing
a client to complete one request before issuing the next.

Resource isolation. The Aardvark prototype imple-
mentation explicitly isolates network and computational
resources.

As illustrated by Fig. 1, Aardvark uses separate net-
work interface controllers (NICs) and wires to connect
each pair of replicas. This step prevents a faulty server
from interfering with the timely delivery of messages
from good servers, as happened when a single broken
NIC shut down the immigration system at the Los An-
geles International Airport [9]. It also allows a node to
defend itself against brute force denial of service attacks
by disabling the offending NIC. However, using phys-
ically separate NICs for communication between each
pair of servers incurs a performance hit, as Aardvark can
no longer use hardware multicast to optimize all-to-all
communication.

As Figure 2 shows, Aardvark uses separate work
queues for processing messages from clients and indi-
vidual replicas. Employing a separate queue for client
requests prevents client traffic from drowning out the
replica-to-replica communications required for the sys-
tem to make progress. Similarly, employing a sepa-
rate queue for each replica allows Aardvark to sched-
ule message processing fairly, ensuring that a replica is
able to efficiently gather the quorums it needs to make
progress. Aardvark can also easily leverage separate
hardware threads to process incoming client and replica
requests. Taking advantage of hardware parallelism al-
lows Aardvark to reclaim part of the costs paid to verify
signatures on client requests.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 157

Clients

Replica

Replica

Replica

NIC

NIC

NIC

NIC

Verification

Replica
Processing

Figure 2: Architecture of a single replica. The replica
utilizes a separate NIC for communicating with each
other replica and a final NIC to communicate with the
collection of clients. Messages from each NIC are placed
on separate worker queues.

We use simple brute force techniques for resource
scheduling. One could consider network-level schedul-
ing techniques rather than distinct NICs in order to iso-
late network traffic and/or allow rate-limited multicast.
Our goal is to make Aardvark as simple as possible, so
we leave exploration of these techniques and optimiza-
tions for future work.

Regular view changes. To prevent a primary from
achieving tenure and exerting absolute control on sys-
tem throughput, Aardvark invokes the view change op-
eration on a regular basis. Replicas monitor the perfor-
mance of the current primary, slowly raising the level of
minimal acceptable throughput. If the current primary
fails to provide the required throughput, replicas initiate
a view change.

The key properties of this technique are:
1. During uncivil intervals, system throughput remains

high even when replicas are faulty. Since a primary
maintains its position only if it achieves some increas-
ing level of throughput, Aardvark bounds throughput
degradation caused by a faulty primary by either forc-
ing the primary to be fast or selecting a new primary.

2. As in prior systems, eventual progress is guaranteed
when the system is eventually synchronous.
Previous systems have treated view change as an op-

tion of last resort that should only be used in desperate
situations to avoid letting throughput drop to zero. How-
ever, although the phrase “view change” carries conno-
tations of a complex and expensive protocol, in reality
the cost of a view change is similar to the regular cost
of agreement. Performing view changes regularly intro-
duces short periods of time during which new requests
are not being processed, but the benefits of evicting a

C

0

1

2

3

REQUEST PRE−PREPARE PREPARE COMMIT REPLY

1 2 3 4 5

6

Figure 3: Basic communication pattern in Aardvark.

misbehaving primary outweigh the periodic costs associ-
ated with performing view changes.

5 Protocol description
Figure 3 shows the agreement phase communication pat-
tern that Aardvark shares with PBFT. Variants of this
pattern are employed in other recent BFT RSM proto-
cols [1, 12, 16, 18, 28, 32, 33], and we believe that, just
as Aardvark illustrates how to adapt PBFT via RBFT
system design, new Robust BFT systems based on these
other protocols can and should be constructed. We orga-
nize the following discussion around the numbered steps
of the communication pattern of Figure 3.
5.1 Client request transmission
The fundamental challenge in transmitting client re-
quests is ensuring that, upon receiving a client request,
every replica comes to the same conclusion about the
authenticity of the request. We ensure this property by
having clients sign requests.

To guard against denial of service, we break the pro-
cessing of a client request into a sequence of increasingly
expensive steps. Each step serves as a filter, so that more
expensive steps are performed less often. For instance,
we ask clients to include also a MAC on their signed
requests and have replicas verify only the signature of
those requests whose MAC checks out. Additionally,
Aardvark explicitly dedicates a single NIC to handling
incoming client requests so that incoming client traffic
does not interfere with replica-to-replica communication.

5.1.1 Protocol Description
The steps taken by an Aardvark replica to authenticate a
client request follow.

1. Client sends a request to a replica.

A client c requests an operation o be performed by the
replicated state machine by sending a request message
REQUEST, o, s, cσc , cµc,p to the replica p it believes
to be the primary. If the client does not receive a timely
response to that request, then the client retransmits the re-
quest REQUEST, o, s, cσc

, cµc,r
to all replicas r. Note

that the request contains the client sequence number s
and is signed with signature σc. The signed message is
then authenticated with a MAC µc,r for the intended re-
cipient.

158 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Blacklist

Check

(b) MAC

Check
Discard

(c) Sequence

Check

(e)

Signature

Check
Blacklist Sender

(c1)

Retransmission

Check

Retransmit

Cached Reply

(f) Once per

View Check

(d) Redundancy

Check

Discard

Discard

Discard

Discard

Act on Request

pass

fail

pass

fail

pass

fail

pass

fail

pass

fail

pass

fail

pass

fail

Figure 4: Decision tree followed by replicas while veri-
fying a client request. The narrowing width of the edges
portrays the devastating losses suffered by the army of
client requests as it marches through the steppes of the
verification process. Apologies to Minard.

Upon receiving a client request, a replica proceeds to
verify it by following a sequence of steps designed to
limit the maximum load a client can place on a server, as
illustrated by Figure 4:

(a) Blacklist check. If the sender c is not blacklisted, then
proceed to step (b). Otherwise discard the message.

(b) MAC check. If µc,p is valid, then proceed to step (c).
Otherwise discard the message.

(c) Sequence check. Examine the most recent cached re-
ply to c with sequence number scache. If the request
sequence number sreq is exactly scache + 1, then pro-
ceed to step (d). Otherwise

(c1) Retransmission check. Each replica uses an ex-
ponential back off to limit the rate of client reply
retransmissions. If a reply has not been sent to c re-
cently, then retransmit the last reply sent to c. Oth-
erwise discard the message.

(d) Redundancy check. Examine the most recent cached
request from c. If no request from c with sequence
number sreq has previously been verified or the re-
quest does not match the cached request, then proceed

to step (e). Otherwise (the request matches the cached
request from c) proceed to step (f).

(e) Signature check. If σc is valid, then proceed to step
(f). Additionally, if the request does not match the
previously cached request for sreq , then blacklist c.
Otherwise if σc is not valid, then blacklist the node x
that authenticated µx,p and discard the message.

(f) Once per view check. If an identical request has been
verified in a previous view, but not processed during
the current view, then act on the request. Otherwise
discard the message.
Primary and non-primary replicas act on requests in

different ways. A primary adds requests to a PRE-
PREPARE message that is part of the three-phase com-
mit protocol described in Section 5.2. A non-primary
replica r processes a request by authenticating the signed
request with a MAC µr,p for the primary p and sending
the message to the primary. Note that non-primary repli-
cas will forward each request at most once per view, but
they may forward a request multiple times provided that
a view change occurs between each occurrence.

Note that a REQUEST message that is verified as au-
thentic might contain an operation that the replicated ser-
vice that runs above Aardvark rejects because of an ac-
cess control list (ACL) or other service-specific security
violation. From the point of view of Aardvark, such mes-
sages are valid and will be executed by the service, per-
haps resulting in an application level error code.

A node p only blacklists a sender c of a
REQUEST, o, s, cσc

, cµc,p
message if the MAC µc,p

is valid but the signature σc is not. A valid MAC is suf-
ficient to ensure that routine message corruption is not
the cause of the invalid signature sent by c, but rather
that c has suffered a significant fault or is engaging in
malicious behavior. A replica discards all messages it re-
ceives from a blacklisted sender and removes the sender
from the blacklist after 10 minutes to allow reintegration
of repaired machines.

5.1.2 Resource scheduling
Client requests are necessary to provide input to the RSM
while replica-to-replica communication is necessary to
process those requests. Aardvark leverages separate
work queues for providing client requests and replica-
to-replica communication to limit the fraction of replica
resources that clients are able to consume, ensuring that a
flood of client requests is unable to prevent replicas from
making progress on requests already received. Of course,
as in a non-BFT service, malicious clients can still deny
service to other clients by flooding the network between
clients and replicas. Defending against these attacks is
an area of active independent research [23, 30].

We deploy our prototype implementation on dual core
machines. As Figure 2 shows, one core verifies client re-

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 159

quests and the second runs the replica protocol. This ex-
plicit assignment allows us to isolate resources and take
advantage of parallelism to partially mask the additional
costs of signature verification.

5.1.3 Discussion
RBFT aims at minimizing the costs that faulty clients can
impose on replicas. As Figure 4 shows, there are four ac-
tions triggered by the transmission of a client request that
can consume significant replica resources: MAC verifi-
cation (MAC check), retransmission of a cached reply,
signature verification (signature check), and request pro-
cessing (act on request). The cost a faulty client can
cause increases as the request passes each successive
check in the verification process, but the rate at which
a faulty client can trigger this cost decreases at each step.

Starting from the final step of the decision tree, the de-
sign ensures that the most expensive message a client can
send is a correct request as specified by the protocol, and
it limits the rate at which a faulty client can trigger expen-
sive signature checks and request processing to the max-
imum rate a correct client would. The sequence check
step (c) ensures that a client can trigger signature veri-
fication or request processing for a new sequence num-
ber only after its previous request has been successfully
executed. The redundancy check (d) prevents repeated
signature verifications for the same sequence number by
caching each client’s most recent request. Finally, the
once per view check (f) permits repeated processing of
a request only across different views to ensure progress.
The signature check (e) ensures that only requests that
will be accepted by all correct replicas are processed.
The net result of this filtering is that, for every k cor-
rect requests submitted by a client, each replica performs
at most k + 1 signature verifications, and any client that
imposes a k+1st signature verification is blacklisted and
unable to instigate additional signature verifications until
it is removed from the blacklist.

Moving up the diagram, a replica responds to retrans-
mission of completed requests paired with valid MACs
by retransmitting the most recent reply sent to that client.
The retransmission check (c1) imposes an exponential
back off on retransmissions, limiting the rate at which
clients can force the replica to retransmit a response. To
help a client learn the sequence number it should use, a
replica resends the cached reply at this limited rate for
both requests that are from the past but also for requests
that are too far into the future.

Any request that fails the MAC check (b) is immedi-
ately discarded. MAC verifications occur on every in-
coming message that claims to have the right format un-
less the sender is blacklisted, in which case the blacklist
check (a) results in the message being discarded. The
rate of MAC verification operations is thus limited by the

rate at which messages purportedly from non-blacklisted
clients are pulled off the network, and the fraction of pro-
cessing wasted is at most the fraction of incoming re-
quests from faulty clients.

5.2 Replica agreement
Once a request has been transmitted from the client to
the current primary, the replicas must agree on the re-
quest’s position in the global order of operations. Aard-
vark replicas coordinate with each other using a standard
three phase commit protocol [8].

The fundamental challenge in the agreement phase is
ensuring that each replica can quickly collect the quo-
rums of PREPARE and COMMIT messages necessary to
make progress. Conditioning expensive operations on
the gathering of a quorum of messages makes it eas-
ier to ensure robustness in two ways. First, it is pos-
sible to design the protocol so that incorrect messages
sent by a faulty replica will never gain the support of a
quorum of replicas. Second, as long as there exists a
quorum of timely correct replicas, a faulty replica that
sends correct messages too slowly, or not at all, cannot
impede progress. Faulty replicas can introduce overhead
also by sending messages too quickly: to protect them-
selves, correct replicas in Aardvark schedule messages
from other replicas in a round-robin fashion.

Not all expensive operations in Aardvark are triggered
by a quorum. In particular, a correct replica that has
fallen behind its peers may ask them for the state it is
missing by sending them a catchup message (see Sec-
tion 5.2.1). Aardvark replicas defer processing such mes-
sages to idle periods. Note that this state-transfer pro-
cedure is self-tuning: if the system is unable to make
progress because it cannot assemble quorums of PRE-
PARE and COMMIT messages, then it will devote more
time to processing catchup messages.

5.2.1 Agreement protocol
The agreement protocol requires replica-to-replica com-
munication. A replica r filters, classifies, and finally acts
on the messages it receives from another replica accord-
ing to the decision tree shown in Figure 5:

(a) Volume Check. If replica q is sending too many mes-
sages, blacklist q and discard the message. Other-
wise continue to step (b). Aardvark replicas use a dis-
tinct NIC for communicating with each replica. Using
per-replica NICs allows an Aardvark replica to silence
replicas that flood the network and impose excessive
interrupt processing load. In our prototype, we disable
a network connection when q’s rate of message trans-
mission in the current view is a factor of 20 higher than
for any other replica. After disconnecting q for flood-
ing, r reconnects q after 10 minutes, or when f other
replicas are disconnected for flooding.

160 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(c) MAC

Check
Discard

fail

(d) Classify

Message

pass

Act on Message

Act on Quorum

(f) Idle CheckAdd to Quorum

Quorum Message

Status

Message

Nonsense Message

full

not idle

idle

Discard

Defer

(b) Round

Robin

Scheduler

(a) Volume

Check
Blacklist Sender

fail

pass

Discard
overflow

Act on

Preprepare

Preprepare

Message

Discard

(e) Quorum

Check

Figure 5: Decision tree followed by a replica when han-
dling messages received from another replica. The width
of the edges indicates the rate at which messages reach
various stages in the processing.

(b) Round-Robin Scheduler. Among the pending mes-
sages, select the the next message to process from the
available messages in round-robin order based on the
sending replica . Discard received messages when the
buffers are full.

(c) MAC Check. If the selected message has a valid
MAC, then proceed to step (d) otherwise, discard the
message.

(d) Classify Message. Classify the authenticated message
according to its type:

• If the message is PRE-PREPARE, then process it im-
mediately in protocol step 3 below.

• If the message is PREPARE or COMMIT, then add it
to the appropriate quorum and proceed to step (e).

• If the message is a catchup message, then proceed
to step (f).

• If the message is anything else, then discard the
message.

(e) Quorum Check. If the quorum to which the message
was added is complete, then act as appropriate in pro-
tocol steps 4-6 below.

(f) Idle Check. If the system has free cycles, then process
the catchup message. Otherwise, defer processing un-
til the system is idle.
Replica r applies the above steps to each message it

receives from the network. Once messages are appropri-

ately filtered and classified, the agreement protocol con-
tinues from step 2 of the communication pattern in Fig-
ure 3.

2. Primary forms a PRE-PREPARE mes-
sage containing a set of valid requests and
sends the PRE-PREPARE to all replicas.

The primary creates and transmits a PRE-PREPARE,
v, n, REQUEST, o, s, cσc

µp
message where v is the

current view number, n is the sequence number for
the PRE-PREPARE, and the authenticator is valid for all
replicas. Although we show a single request as part
of the PRE-PREPARE message, multiple requests can be
batched in a single PRE-PREPARE [8, 14, 18, 19].

3. Replica receives PRE-PREPARE from the
primary, authenticates the PRE-PREPARE,
and sends a PREPARE to all other replicas.

Upon receipt of PRE-PREPARE, v, n,
REQUEST, o, s, cσc

µp
from primary p, replica r

verifies the message’s authenticity following a process
similar to the one described in Section 5.1 for verifying
requests. If r has already accepted the PRE-PREPARE
message, r discards the message preemptively. If r has
already processed a different PRE-PREPARE message
with n = n during view v, then r discards the message.
If r has not yet processed a PRE-PREPARE message for n
during view v, r first checks that the appropriate portion
of the MAC authenticator µp is valid. If the replica has
not already done so, it then checks the validity of σc.
If the authenticator is not valid r discards the message.
If the authenticator is valid and the client signature
is invalid, then the replica blacklists the primary and
requests a view change. If, on the other hand, the
authenticator and signature are both valid, then the
replica logs the PRE-PREPARE message and forms a
PREPARE, v, n, h,rµr

to be sent to all other replicas
where h is the digest of the set of requests contained in
the PRE-PREPARE message.

4. Replica receives 2f PREPARE mes-
sages that are consistent with the PRE-
PREPARE message for sequence number n
and sends a COMMIT message to all other
replicas.

Following receipt of 2f matching PREPARE mes-
sages from non-primary replicas r that are consistent
with a PRE-PREPARE from primary p, replica r sends
a COMMIT,v, n, rµr

message to all replicas. Note
that the PRE-PREPARE message from the primary is the
2f + 1st message in the PREPARE quorum.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 161

5. Replica receives 2f + 1 COMMIT mes-
sages, commits and executes the request,
and sends a REPLY message to the client.

After receipt of 2f +1 matching COMMIT,v, n, rµr

from distinct replicas r, replica r commits and executes
the request before sending REPLY, v, u,rµr,c

to client c
where u is the result of executing the request and v is the
current view.

6. The client receives f + 1 matching RE-
PLY messages and accepts the request as
complete.

We also support Castro’s tentative execution optimiza-
tion [8], but we omit these details here for simplicity.
They do not introduce any new issues for our RBFT de-
sign and analysis.

Catchup messages. State catchup messages are not an
intrinsic part of the agreement protocol, but fulfill an im-
portant logistical priority of bringing replicas that have
fallen behind back up to speed. If replica r receives a
catchup message from a replica q that has fallen behind,
then r sends q the state that q to catch up and resume
normal operations. Sending catchup messages is vital to
allow temporarily slow replicas to avoid becoming per-
manently non-responsive, but it also offers faulty replicas
the chance to impose significant load on their non-faulty
counterparts. Aardvark explicitly delays the processing
of catchup messages until there are idle cycles available
at a replica—as long as the system is making progress,
processing a high volume of requests, there is no need to
spend time bringing a slow replica up to speed!

5.2.2 Discussion
We now discuss the Aardvark agreement protocol
through the lens of RBFT, starting from the bottom
of Figure 5. Because every quorum contains at least
a majority of correct replicas, faulty replicas can only
marginally alter the rate at which correct replicas take
actions (e) that require a quorum of messages. Fur-
ther, because a correct replica processes catchup mes-
sages (f) only when otherwise idle, faulty replicas can-
not use catchup messages to interfere with the process-
ing of other messages. When client requests are pend-
ing, catchup messages are processed only if too many
correct replicas have fallen behind and the processing
of quorum messages needed for agreement has stalled—
and only until enough correct replicas to enable progress
have caught up. Also note that the queue of pending
catchup messages is finite, and a replica discards excess
catchup messages.

A replica processes PRE-PREPARE messages at the
rate they are sent by the primary. If a faulty primary
sends them too slowly or too quickly, throughput may

be reduced, hastening the transition to a new primary as
described in Section 5.3.

Finally, a faulty replica could simply bombard its cor-
rect peers with a high volume of messages that are even-
tually discarded. The round-robin scheduler (b) lim-
its the damage that can result from this attack: if c of
its peers have pending messages, then a correct replica
wastes at most 1

c of the cycles spent checking MACs
and classifying messages on what it receives from any
faulty replica. The round-robin scheduler also discards
messages that overflow a bounded buffer, and the vol-
ume check (a) similarly limits the rate at which a faulty
replica can inject messages that the round-robin sched-
uler will eventually discard.

5.3 Primary view changes
Employing a primary to order requests enables batch-
ing [8, 14] and avoids the need to trust clients to obey
a back off protocol [1, 10]. However, because the pri-
mary is responsible for selecting which requests to exe-
cute, the system throughput is at most the throughput of
the primary. The primary is thus in a unique position to
control both overall system progress [3, 4] and fairness
to individual clients.

The fundamental challenge to safeguarding perfor-
mance against a faulty primary is that a wide range of pri-
mary behaviors can hurt performance. For example, the
primary can delay processing requests, discard requests,
corrupt clients’ MAC authenticators, introduce gaps in
the sequence number space, unfairly delay or drop some
clients’ requests but not others, etc.

Hence, rather than designing specific mechanism to
defend against each of these threats, past BFT sys-
tems [8, 18] have relied on view changes to replace an
unsatisfactory primary with a new, hopefully better, one.
Past systems trigger view changes conservatively, only
changing views when it becomes apparent that the cur-
rent primary is unlikely to allow the system to make even
minimal progress.

Aardvark uses the same view change mechanism de-
scribed in PBFT [8]; in conjunction with the agreement
protocol, view changes in PBFT are sufficient to ensure
eventual progress. They are not, however, sufficient to
ensure acceptable progress.

5.3.1 Adaptive throughput
Replicas monitor the throughput of the current primary.
If a replica judges the primary’s performance to be in-
sufficient, then the replica initiates a view change. More
specifically, replicas in Aardvark expect two things from
the primary: a regular supply of PRE-PREPARE mes-
sages and high sustained throughput. Following the com-
pletion of a view change, each replica starts a heart-
beat timer that is reset whenever the next valid PRE-
PREPARE message is received. If a replica does not

162 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

receive the next valid PRE-PREPARE message before
the heartbeat timer expires, the replica initiates a view
change. To ensure eventual progress, a correct replica
doubles the heartbeat interval each time the timer ex-
pires. Once the timer is reset because a PRE-PREPARE
message is received, the replica resets the heartbeat timer
back to its initial value. The value of the heartbeat timer
is application and environment specific: our implemen-
tation uses a heartbeat of 40ms, so that a system that tol-
erates f failures demands a minimum of 1 PRE-PREPARE
every every 2f×40ms.

The periodic checkpoints that, at pre-determined inter-
vals, correct replicas must take to bound their state offer
convenient synchronization points to assess the through-
put that the primary is able to deliver. If the observed
throughput in the interval between two successive check-
points falls below a specified threshold, initially 90% of
the maximum throughput observed during the previous
n views, the replica initiates a view change to replace the
current primary. At each checkpoint interval following
an initial grace period at the beginning of each view, 5s in
our prototype, the required throughput is increased by a
factor of 0.01. Continually raising the bar that the current
primary must reach in order to stay in power guarantees
that a view change will eventually be replaced, restarting
the process with the next primary. Conversely, if the sys-
tem workload changes, the required throughput adjusts
over n views to reflect the performance that a correct pri-
mary can provide.

The combined effect of Aardvark’s new expectations
on the primary is that during the first 5s of a view the
primary is required to provide throughput of at least 1 re-
quest per 40ms or face eviction. The throughput of any
view that lasts longer than 5s is at least 90% of the max-
imum throughput observed during the previous n views.

5.3.2 Fairness

In addition to hurting overall system throughput, primary
replicas can influence which requests are processed. A
faulty primary could be unfair to a specific client (or
set of clients) by neglecting to order requests from that
client. To limit the magnitude of this threat, replicas
track fairness of request ordering. When a replica re-
ceives from a client a request that it has not seen in a
PRE-PREPARE message, it adds the message to its re-
quest queue and, before forwarding the request to the
primary, it records the sequence number k of the most re-
cent PRE-PREPARE received during the current view. The
replica monitors future PRE-PREPARE messages for that
request, and if it receives two PRE-PREPAREs for another
client before receiving a PREPARE for client c, then it de-
clares the current primary to be unfair and initiates a view
change. This ensures that two clients issuing comparable

workloads observe throughput values within a constant
factor of each other.

5.3.3 Discussion
The adaptive view change and PRE-PREPARE heart-
beats leave a faulty primary with two options: it can pro-
vide substandard service and be replaced promptly, or it
can remain the primary for an extended period of time
and provide service comparable to what a non-faulty pri-
mary would provide. A faulty primary that does not
make any progress will be caught very quickly by the
heartbeat timer and summarily replaced. To avoid being
replaced, a faulty primary must issue a steady stream of
PRE-PREPARE messages until it reaches a checkpoint
interval, when it is going to be replaced until it has pro-
vided the required throughput. To do just what is needed
to keep ahead of its reckoning for as long as possible,
a faulty primary will be forced to to deliver 95% of the
throughput expected from a correct primary.

Periodic view changes may appear to institutionalize
overhead, but their cost is actually relatively small. Al-
though the term view change evokes images of substan-
tial restructuring, in reality a view change costs roughly
as much as a single instance of agreement with respect
to message/protocol complexity: when performed every
100+ requests, periodic view changes have marginal per-
formance impact during gracious or uncivil intervals.

6 Analysis
In this section, we analyze the throughput characteristics
of Aardvark when the number of client requests is large
enough to saturate the system and a fraction g of those
requests is correct. We show that Aardvark’s throughput
during long enough uncivil executions is within a con-
stant factor of its throughput during gracious executions
of the same length provided there are sufficient correct
clients to saturate the servers.

For simplicity, we restrict our attention to an Aardvark
implementation on a single-core machine with a proces-
sor speed of κ GHz. We consider only the computational
costs of the cryptographic operations—verifying signa-
tures, generating MACs, and verifying MACs, requiring
θ, α, and α cycles, respectively. Since these operations
occur only when a message is sent or received, and the
cost of sending or receiving messages is small, we expect
similar results when modeling network costs explicitly.

We begin by computing Aardvark’s peak throughput
during a gracious view, i.e. a view that occur during a
gracious execution, in Theorem 1. We then show in
Theorem 2 that during uncivil views, i.e. views that oc-
cur during uncivil executions, with a correct primary
Aardvark’s throughput is at least g times the through-
put achieved during a gracious view; as long as the pri-
mary is correct faulty replicas are unable to adversely

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 163

impact Aardvark’s throughput. Finally, we show that the
throughput of an uncivil execution is at least the fraction
of correct replicas times g times the throughput achieved
during a gracious view.

We begin in Theorem 1 by computing tpeak , Aard-
vark’s peak throughput during a gracious view, i.e. a view
that occurs during a gracious execution. We then show
in Theorem 2 that during uncivil views in which the pri-
mary replica is correct, Aardvark’s peak throughput is
only reduced to g × tpeak : in other words, ignoring low
level network overheads faulty replicas are unable to cur-
tail Aardvark’s throughput when the primary is correct.
Finally, we show in Theorem 3 that the throughput across
all views of an uncivil execution is within a constant fac-
tor of n−fn × g × tpeak .

Theorem 1. Consider a gracious view during which
the system is saturated, all requests come from cor-
rect clients, and the primary generates batches of re-
quests of size b. Aardvark’s throughput is then at least

κ

θ+
(4n−2b−4)

b α
operations per second.

Proof. We examine the actions required by each server
to process one batch of size b. For each request in the
batch, every server verifies one signature. The primary
also verifies one MAC per request. For each batch, the
primary generates n−1 MACs to send the PRE-PREPARE
and verifies n − 1 MACs upon receipt of the PREPARE
messages; replicas instead verify one MAC in the pri-
mary’s PRE-PREPARE , generate (n − 1) MACs when
they send the PREPARE messages, and verify (n − 2)
MACs when they receive them. Finally, each server first
sends and then receives n − 1 COMMIT messages, for
which it generates and verifies a total of n − 2 MACs,
and generates a final MAC for each request in the batch
to authenticate the response to the client. The total com-
putational load per request is thus θ+ (4n+2b−4)

b α at the
primary, and θ + (4n+b−4)

b α at a replica. The system’s
throughput at saturation during a sufficiently long view
in a gracious interval is thus at least κ

θ+
(4n+2b−4)

b α
re-

quests/sec.

Theorem 2. Consider an uncivil view in which the pri-
mary is correct and at most f replicas are Byzantine.
Suppose the system is saturated, but only a fraction of
the requests received by the primary are correct. The
throughput of Aardvark in this uncivil view is within a
constant factor of its throughput in a gracious view in
which the primary uses the same batch size.

Proof. Let θ and α denote the cost of verifying, respec-
tively, a signature and a MAC. We show that if g is the
fraction of correct requests, the throughput during un-
civil views with a correct primary approaches g of the
gracious view’s throughput as the ratio α

θ tends to 0.

In an uncivil view, faulty clients may send unfaith-
ful requests to every server. Before being able to form
a batch of b correct requests, the primary may have
to verify b

g signatures and MACs, and correct replicas
may verify b

g signatures and an additional (bg)(1 − g)
MACs. Because a correct server processes messages
from other servers in round-robin order, it will pro-
cess at most two messages from a faulty server per
message that it would have processed had the server
been correct. The total computational load per request
is thus 1

g (θ + b(1+g)+4g(n−1+f)
b α) at the primary, and

1
g (θ+

b+4g(n−1+f)
b α) at a replica. The system’s through-

put at saturation during a sufficiently long view in an
uncivil interval with a correct primary thus is at least

gκ

θ+
(b(1+g)+4g(n−1+f)

b α
requests per second: as the ratio

α
θ tends to 0, the ratio between the uncivil and gracious
throughput approaches g.

Theorem 3. For sufficiently long uncivil executions and
for small f the throughput of Aardvark, when properly
configured, is within a constant factor of its throughput
in a gracious execution in which primary replicas use the
same batch size.

Proof. First consider the case in which all the uncivil
views have correct primary replicas. Assume that in a
properly configured Aardvark tbaseViewTimeout is set so
that during an uncivil interval, a view change to a cor-
rect primary completes within tbaseViewTimeout . Since
a primary’s view lasts at least tgracePeriod , as the ra-
tio α

θ tends to 0, the ratio between the throughput dur-
ing a gracious view and an uncivil interval approaches
g

tgracePeriod
tbaseViewTimeout+tgracePeriod

Now consider the general case. If the uncivil interval
is long enough, at most fn of its views will have a Byzan-
tine primary. Aardvark’s heartbeat timer provides two
guarantees. First, a Byzantine server that does not pro-
duce the throughput that is expected of a correct server
will not last as primary for longer than a grace period.
Second, a correct server is always retained as a primary
for at least the length of a grace period. Furthermore,
since the throughput expected of a primary at the begin-
ning of a view is a constant fraction of the maximum
throughput achieved by the primary replicas of the last
n views, faulty primary replicas cannot arbitrarily lower
the throughput expected of a new primary. Finally, since
the view change timeout is reset after a view change
that results in at least one request being executed in the
new view, no view change attempt takes longer then
tmaxViewTimeout = 2f tbaseViewTimeout . It follows that,
during a sufficiently long uncivil interval, the throughput
will be within a factor of tgracePeriod

tmaxViewTimeout+tgracePeriod

n−f
n of

that of Theorem 2, and, as α
θ tends to 0, the ratio between

164 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80

La
te

nc
y

(m
s)

Throughput (Kops/sec)

Aardvark
HQ

PBFT
Q/U

Zyzzyva

Figure 6: Latency vs. throughput for various BFT sys-
tems.

the throughput during uncivil and gracious intervals ap-
proaches g

tgracePeriod
tmaxViewTimeout+tgracePeriod

(n−f)
n .

7 Evaluation
We evaluate the performance of Aardvark, PBFT, HQ,
Q/U and Zyzzyva on an Emulab cluster [31]. This clus-
ter consists of machines with dual 3GHz Intel Pentium 4
Xeon processors, 1GB of memory, and 1 Gb/s Ethernet
connections.

The code bases used to report our results are provided
by the respective systems’ authors. James Cowling pro-
vided us the December 2007 public release of the PBFT
code base [5] as well as a copy of the HQ co-debase.
We used version 1.3 of the Q/U co-debase, provided to
us by Michael Abd-El-Malek in October 2008 [27]. The
Zyzzyva co-debase is the version used in the SOSP 2007
paper [18]. Whenever feasible, we rely on the exist-
ing pre-configurations for each system to handle f = 1
Byzantine failure.

Our evaluation makes three points: (a) despite our
choice to utilize signatures, change views regularly, and
forsake IP multicast, Aardvark’s peak throughput is com-
petitive with that of existing systems; (b) existing sys-
tems are vulnerable to significant disruption as a result
of a broad range of Byzantine behaviors; and (c) Aard-
vark is robust to a wide range of Byzantine behaviors.
When evaluating existing systems, we attempt to iden-
tify places where the prototype implementation departs
from the published protocol.
7.1 Aardvark
Aardvark’s peak throughput is competitive with that of
state of the art systems as shown in Figure 6. Aard-
vark’s throughput peaks 38667 operations per second,
while Zyzzyva and PBFT observe maximum throughputs
of 65999 and 61710 operations per second, respectively.

Figures 7 and 8 explore the impact of regular view
changes on the latency observed by Aardvark clients in

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

Request # (x 10000)
Figure 7: The latency of an individual client’s requests
running Aardvark with 210 total clients. The sporadic
jumps represent view changes in the protocol.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

C
D

F

Latency (ms)
Figure 8: CDF of request latencies for 210 clients issuing
100,000 requests with Aardvark servers.

an experiment with 210 clients each issuing 100,000 re-
quests. Figure 7 shows the per request latency observed
by a single client during the run. The periodic latency
spikes correspond to view changes. When a client is-
sues a request as the view change is initiated, the request
is not processed until the request arrives at the new pri-
mary following a client timeout and retransmission. In
most cases a single client retransmission is sufficient, but
additional retransmissions may be required when mul-
tiple view changes occur in rapid succession. Figure 8
shows the CDF for latencies of all client requests in the
same experiment. We see that 99.99% of the requests
have latency under 15ms, and only a small fraction of
all requests incur the higher latencies induced by view
changes. We configure an Aardvark client with a re-
transmission timeout of 150ms and we have not explored
other settings.

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 165

System Peak Throughput
Aardvark 38667

PBFT 61710

PBFT w/ client signatures 31777

Aardvark w/o signatures 57405

Aardvark w/o regular view changes 39771

Table 2: Peak throughput of Aardvark and incremental
versions of the Aardvark protocol

7.1.1 Putting Aardvark together
Aardvark incorporates several key design decisions that
enable it to perform well in the presence of Byzantine
failure. We study the performance impact of these de-
cisions by measuring the throughput of several PBFT
and Aardvark variations, corresponding to the evolution
between these two systems. Table 2 reports these peak
throughputs.

While requiring clients in PBFT to sign requests re-
duces throughput by 50%, we find that the cost of requir-
ing Aardvark clients to use the hybrid MAC-signature
scheme imposes a smaller 33% hit to system through-
put. Explicitly separating the work queues for client
and replica communication makes it easy for Aardvark
to utilize the second processor in our test bed machines,
which reduces the additional costs Aardvark pays to ver-
ify signed client requests. This parallelism is the pri-
mary source of the 30% improvement we observe be-
tween PBFT with signatures and Aardvark.

Peak throughput for Aardvark with and without reg-
ular view changes is comparable. The reason for this
is rather straightforward: when both the new and old
primary replicas are non-faulty, a view change requires
approximately the same amount of work as a single in-
stance of consensus. Aardvark views led by a non-faulty
primary are sufficiently long that the throughput costs as-
sociated with performing a view change are negligible.

7.2 Evaluating faulty systems
In this section we evaluate Aardvark and existing sys-
tems in the context of failures. It is impossible to test
every possible Byzantine behavior; consequently we use
our knowledge of the systems to construct a set of work-
loads that we believe to be close to the worst case for
Aardvark and other systems. While other faulty behav-
iors are possible and may stress the evaluated systems in
different ways, we believe that our results are indicative
of both the frailty of existing systems and the robustness
of Aardvark.

7.2.1 Faulty clients
We focus our attention on two aspects of client behavior
that have significant impact on system throughput: re-
quest dissemination and network flooding.

Request dissemination. Table 1 in the Introduction
explores the impact of faulty client behavior related to re-
quest distribution on the PBFT, HQ, Zyzzyva, and Aard-
vark prototypes. We implement different client behaviors
for the different systems in order to stress test the design
decisions the systems have made.

In PBFT and Zyzzvya, the clients send requests that
are authenticated with MAC authenticators. The faulty
client includes an inconsistent authenticator on requests
so that request verification will succeed at the primary
but fail for all other replicas. When the primary includes
the client request in a PRE-PREPARE message, the repli-
cas are unable to verify the request.

We developed this workload because, on paper, the
protocols specify what appears to be an expensive pro-
cessing path to handle this contingency. In this situa-
tion PBFT specifies a view change while Zyzzyva in-
vokes a conflict resolution procedure that blocks progress
and requires replicas to generate signatures. In theory
these procedures should have a noticeable, though finite,
impact on performance. In particular, PBFT progress
should stall until a timeout forces a new view ([6] pp. 42–
43), at which point other clients can make some progress
until the faulty client stalls progress again. In Zyzzyva,
the servers should pay extra overheads for signatures and
view changes.

In practice the throughput of both prototype imple-
mentations drops to 0. In Zyzzyva the reconciliation pro-
tocol is not fully implemented; in PBFT the client be-
havior results in repeated view changes, and we have not
observed our experiment to finish. While the full PBFT
and Zyzzyva protocol specifications guarantee liveness
under eventual synchrony, the protocol steps required to
handle these cases are sufficiently complex to be difficult
to implement, easy to overlook, or both.

In HQ, our intended attack is to have clients send cer-
tificates during the WRITE-2 phase of the protocol with
an inconsistent MAC authenticator. The response speci-
fied by the protocol is a signed WRITE-2-REFUSED mes-
sage which is subsequently used by the client to initiate
a call to initiate a request processed by an internal PBFT
protocol. This set of circumstances presents a point in
the HQ design where a single client, either faulty or sim-
ply unlucky, can force the replicas to generate expensive
signatures resulting in a degradation in system through-
put. We are unable to evaluate the precise impact of this
client behavior because the replica processing necessary
to handle inconsistent MAC authenticators from clients
is not implemented.

Q/U clients, in the lack of contention, are unable to
influence each other’s operations. During contention,
replicas are required to perform barrier and commit op-
erations that are rate limited by a client-initiated expo-
nential back off. During the barrier and commit opera-

166 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tions, a faulty client that sends inconsistent certificates
to the replicas can theoretically complicate the process
further. We implement a simpler scenario in which all
clients are correct, yet they issue contending requests to
the replicas. In this setting with only 20 clients, Q/U pro-
vides 0 throughput. Q/U’s focus on performance in the
absence of both failures and contention makes it espe-
cially vulnerable in practice—clients that issue contend-
ing requests can decimate system throughput, whether
the clients are faulty or not.

To avoid corner cases where different replicas make
different judgments about the legitimacy of a request,
Aardvark clients sign requests. In Aardvark, the closest
analogous client behaviors to those discussed above for
other systems are sending requests with a valid MAC and
invalid signature or sending requests with invalid MACs.
We implement both attacks and find the results to be
comparable. In Table 1 we report the results for requests
with invalid MACs.

Network flooding. In Table 3 we demonstrate the im-
pact of a single faulty client that floods the replicas with
messages. During these experiments correct clients issue
requests sufficient to saturate each system while a single
faulty client implements a brute force denial of service
attack by repeatedly sending 9KB UDP messages to the
replicas. For PBFT and Zyzzyva, 210 clients are suffi-
cient to saturate the servers while Q/U and HQ are satu-
rated with 30 client processes.

The PBFT and Zyzzyva prototypes suffer dramatic
performance degradation as their incoming network re-
sources are consumed by the flooding client; process-
ing the incoming client requests disrupt the replica-
to-replica communication necessary for the systems to
make progress. In both cases, the pending client re-
quests eventually overflows internal queues and crashes
the servers. Q/U and HQ suffer smaller degradations in
throughput from the spamming replicas. The UDP traffic
is dropped by the network stack with minimal processing
because they are not valid TCP packets. The slowdowns
observed in Q/U and HQ correspond to the displaced net-
work bandwidth.

The reliance on TCP communication in Q/U and HQ
changes rather than solves the challenge presented by a
flooding client. For example, a single faulty client that
repeatedly requests TCP connections crashes both the
Q/U and HQ servers.

In each of these systems, the vulnerability to network
flooding is a byproduct of the prototype implementation
and is not fundamental to the protocol design. Network
isolation techniques such as those described in Section 5
could similarly be applied to these systems.

In the case of Aardvark, the decision to use separate
NICs and work queues for client and replica requests

System Peak Throughput
Network Flooding
UDP TCP

PBFT 61710 crash -
Q/U 23850 23110 crash

HQ 7629 4470 0

Zyzzyva 65999 crash -
Aardvark 38667 7873 -

Table 3: Observed peak throughput of BFT systems in
the fault free case and under heavy client retransmis-
sion load. UDP network flooding corresponds to a single
faulty client sending 9KB messages. TCP network flood-
ing corresponds to a single faulty client sending requests
to open TCP connections and is shown for TCP based
systems.

System Peak Throughput 1 ms 10 ms 100 ms
PBFT 61710 5041 4853 1097

Zyzzyva 65999 27776 5029 crash

Aardvark 38667 38542 37340 37903

Table 4: Throughput during intervals in which the pri-
mary delays sending PRE-PREPARE message (or equiva-
lent) by 1, 10, and 100 ms.

ensures that a faulty client is unable to prevent replicas
from processing requests that have already entered the
system. The throughput degradation observed by Aard-
vark tracks the fraction of requests that replicas receive
that were sent by non-faulty clients.

7.2.2 Faulty Primary
In systems that rely on a primary, the primary controls
the sequence of requests that are processed during the
current view.

In Table 4 we show the impact on PBFT, Zyzzyva,
and Aardvark prototypes of a primary that delays send-
ing PRE-PREPARE messages by 1, 10, or 100 ms. The
throughput of both PBFT and Zyzzyva degrades dramat-
ically as the slow primary is not slow enough to trigger
their view change conditions. This throughput degrada-
tion is a consequence of the protocol design and spec-
ification of when view changes should occur. With an
extremely slow primary, Zyzzyva eventually succumbs
to a memory leak exacerbated by holding on to requests
for an extended period of time. The throughput achieved
by Aardvark indicates that adaptively performing view
changes in response to observed throughput is a good
technique for ensuring performance.

In addition to controlling the rate at which requests
are inserted into the system, the primary is also respon-
sible for controlling which requests are inserted into the
system. Table 5 explores the impact that an unfair pri-
mary can have on the throughput of a targeted node. In

USENIX Association NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation 167

System Starved Throughput Normal Throughput
PBFT 1.25 1446

Zyzzyva 0 1718

Aardvark 358 465

Table 5: Average throughput for a starved client that is
shunned by a faulty primary versus the average per-client
throughput for any other client.

the case of PBFT and Aardvark, the primary sends a
PRE-PREPARE for the targeted client’s request only af-
ter receiving the the request 9 times. This heuristic pre-
vents the PBFT primary from triggering a view change
and demonstrates dramatic degradation in throughput for
the targeted client in comparison to the other clients in
the system. For Zyzzyva, the unfair primary ignores
messages from the targeted client entirely. The result-
ing throughput is 0 because the implementation is in-
complete, and replicas in the Zyzzyva prototype do not
forward received requests to the primary as specified by
the protocol. Aardvark’s fairness detection and periodic
view changes limit the impact of the unfair primary.

7.2.3 Non-Primary Replicas
We implement a faulty replica that fails to process pro-
tocol messages and insted blasts network traffic at the
other replicas and show the results in Table 6. In the
first experiments, a faulty replica blasts 9KB UDP mes-
sages at the other replicas. The PBFT and Zyzzyva pro-
totypes again show very low performance as the incom-
ing traffic from the spamming replica displaces much of
the legitimate traffic in the system, denying the system
both requests from the clients and also replica messages
required to make progress. Aardvark’s use of separate
worker queues ensures that the replicas process the mes-
sages necessary to make progress. In the second exper-
iment, the faulty The Q/U and HQ replicas again open
TCP connections, consuming all of the incoming con-
nections on the other replicas and denying the clients ac-
cess to the service.

Once again, the shortcomings of the systems are a
byproduct of implementation and not protocol design.
We speculate that improved network isolation techniques
would make the systems more robust.

8 Related work
We are not the first to notice significantly reduced per-
formance for BFT protocols during periods of failures or
bad network performance or to explore how timing and
failure assumptions impact performance and liveness of
fault tolerant systems.

Singh et al. [29] show that PBFT [8], Q/U [1],
HQ [12], and Zyzzyva [18] are all sensitive to network
performance. They provide a thorough examination of

System Peak Throughput
Replica Flooding
UDP TCP

PBFT 61710 251 -
Q/U 23850 19275 crash

HQ 7629 crash crash

Zyzzyva 65999 0 -
Aardvark 38667 11706 -

Table 6: Observed peak throughput and observed
throughput when one replica floods the network with
messages. UDP flooding consists of a replica sending
9KB messages to other replicas rather than following the
protocol. TCP flooding consists of a replica repeatedly
attempting to open TCP connections on other replicas.

the gracious executions of the four canonical systems
through a ns2 [25] network simulator. Singh et al. ex-
plore performance properties when the participants are
well behaved and the network is faulty; we focus our at-
tention on the dual scenario where the participants are
faulty and the network is well behaved.

Aiyer et al. [3] and Amir et al. [4] note that a slow
primary can result in dramatically reduced throughput.
Aiyer et al. combat this problem by frequently rotating
the primary. Amir et al. address the challenge instead by
introducing a pre-agreement protocol requiring several
all-to-all message exchanges and utilizing signatures for
all authentication. Their solution is designed for envi-
ronments where throughout of 800 requests per second
is considered good. Condie et al. [11] address the ability
of a well placed adversary to disrupt the performance of
an overlay network by frequently restructuring the over-
lay, effectively changing its view.

The signature processing and scheduling of replica
messages in Aardvark is similar in flavor to the early
rejection techniques employed by the LOCKSS sys-
tem [15, 24] in order to improve performance and limit
the damage an adversary can inflict on system.

PBFT [8], Q/U [1], HQ [12], and Zyzzyva [18] are re-
cent BFT replication protocols that focus on optimizing
performance during gracious executions and collectively
demonstrate that BFT replication systems can provide
excellent performance during gracious executions. We
instead focus on increasing the robustness of BFT sys-
tems by providing good performance during uncivil exe-
cutions. Hendricks et al. [17] explore the use of erasure
coding increase the efficiency of BFT replicated storage;
they emphasizes increasing the bandwidth and storage
efficiency of a replication protocol similar to Q/U and
not the fault tolerance of the replication protocol.

9 Conclusion
We claim that high assurance systems require BFT pro-
tocols that are more robust to failures than existing sys-

168 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tems. Specifically, BFT protocols suitable for high as-
surance systems must provide adequate throughput dur-
ing uncivil intervals in which the network is well behaved
but an unknown number of clients and up to f servers are
faulty. We present Aardvark, the first BFT state machine
protocol designed and implemented to provide good per-
formance in the presence of Byzantine faults. Aardvark
gives up some throughput during gracious executions, for
significant improvement in performance during uncivil
executions.

Aardvark is far from being the last word in robust
BFT replication: we believe that improvements to the
design and implementation of Aardvark, as well as to
the methodology that led us to it, are both possible and
likely. Specific challenges that remain for future work
include formally verifying the design and implementa-
tions of BFT systems, developing a notion of optimal-
ity for robust BFT systems that captures the fundamen-
tal tradeoffs betwee fault-free and fault-full performance,
and extending BFT replication to deployable large scale
applications.

10 Acknowledgements
The authors would like to thank our shepherd, Petros Ma-
niatis, for his detailed comments and the anonymous re-
viewers for their insightful reviews. This work was sup-
ported in part by NSF grants CSR-PDOS-0509338 and
CSR-PDOS-0720649.

References
[1] ABD-EL-MALEK, M., GANGER, G., GOODSON, G., REITER,

M., AND WYLIE, J. Fault-scalable Byzantine fault-tolerant ser-
vices. In SOSP (2005).

[2] AIYER, A. S., ALVISI, L., BAZZI, R. A., AND CLEMENT, A.
Matrix signatures: From macs to digital signatures in distributed
systems. In DISC (2008).

[3] AIYER, A. S., ALVISI, L., CLEMENT, A., DAHLIN, M., MAR-
TIN, J.-P., AND PORTH, C. BAR fault tolerance for cooperative
services. In SOSP (Oct. 2005).

[4] AMIR, Y., COAN, B., KIRSCH, J., AND LANE, J. Byzantine
replication under attack. In DSN (2008).

[5] BFT project homepage. http://www.pmg.csail.mit.
edu/bft/#sw.

[6] CASTRO, M. Practical Byzantine Fault Tolerance. PhD thesis,
2001.

[7] CASTRO, M., AND LISKOV, B. Practical Byzantine fault toler-
ance. In OSDI (1999).

[8] CASTRO, M., AND LISKOV, B. Practical Byzantine fault toler-
ance and proactive recovery. ACM Trans. Comput. Syst. (2002).

[9] At LAX, computer glitch delays 20,000 passengers.
http://travel.latimes.com/articles/la-trw-lax12aug12.

[10] CHOCKLER, G., MALKHI, D., AND REITER, M. Backoff pro-
tocols for distributed mutual exclusion and ordering. In ICDCS
(2001).

[11] CONDIE, T., KACHOLIA, V., SANKARARAMAN, S., HELLER-
STEIN, J. M., AND MANIATIS, P. Induced churn as shelter from
routing-table poisoning. In NDSS (2006).

[12] COWLING, J., MYERS, D., LISKOV, B., RODRIGUES, R., AND
SHRIRA, L. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. In OSDI (2006).

[13] FISCHER, M., LYNCH, N., AND PATERSON, M. Impossibility
of distributed consensus with one faulty process. JACM (1985).

[14] FRIEDMAN, R., AND RENESSE, R. V. Packing messages as a
tool for boosting the performance of total ordering protocls. In
HPDC (1997).

[15] GIULI, T. J., MANIATIS, P., BAKER, M., ROSENTHAL, D.
S. H., AND ROUSSOPOULOS, M. Attrition defenses for a peer-
to-peer digital preservation system. In USENIX (2005).

[16] GUERRAOUI, R., QUÉMA, V., AND VUKOLIC, M. The next
700 bft protocols. Tech. rep., Infoscience — Ecole Polytechnique
Federale de Lausanne (Switzerland), 2008.

[17] HENDRICKS, J., GANGER, G. R., AND REITER, M. K. Low-
overhead Byzantine fault-tolerant storage. In SOSP (2007).

[18] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND
WONG, E. Zyzzyva: speculative Byzantine fault tolerance. In
SOSP (2007).

[19] KOTLA, R., AND DAHLIN, M. High throughput Byzantine fault
tolerance. In DSN (June 2004).

[20] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst., 2 (1998).

[21] LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst. (1982).

[22] LAMPSON, B. W. Hints for computer system design. SIGOPS
Oper. Syst. Rev. 17 (1983).

[23] MAHIMKAR, A., DANGE, J., SHMATIKOV, V., VIN, H., AND
ZHANG, Y. dFence: Transparent network-based denial of service
mitigation. In NSDI (2007).

[24] MANIATIS, P., ROUSSOPOULOS, M., GIULI, T. J., ROSEN-
THAL, D. S. H., AND BAKER, M. The LOCKSS peer-to-peer
digital preservation system. ACM Trans. Comput. Syst. (2005).

[25] NS-2. http://www.isi.edu/nsnam/ns/.

[26] OSBORNE, M., AND RUBINSTEIN, A. A Course in Game The-
ory. MIT Press, 1994.

[27] Query/Update protocol. http://www.pdl.cmu.edu/QU/
index.html.

[28] SERAFINI, M., BOKOR, P., AND SURI, N. Scrooge: Stable
speculative byzantine fault tolerance using testifiers. Tech. rep.,
Darmstadt University of Technology, Department of Computer
Science, September 2008.

[29] SING, A., DAS, T., MANIATIS, P., DRUSCHEL, P., AND
ROSCOE, T. Bft protocols under fire. In NSDI (2008).

[30] WALFISH, M., VUTUKURU, M., BALAKRISHNAN, H.,
KARGER, D., AND SHENKER, S. DDoS defense by offense.
In SIGCOMM (2006).

[31] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In OSDI (2002).

[32] WOOD, T., SINGH, R., VENKATARAMANI, A., AND SHENOY,
P. Zz: Cheap practical bft using virtualization. Tech. rep., Uni-
versity of Massachussets, 2008.

[33] YIN, J., MARTIN, J.-P., VENKATARAMANI, A., ALVISI, L.,
AND DAHLIN, M. Separating agreement from execution for
Byzantine fault tolerant services. In SOSP (2003).

