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Abstract
Networks and networked applications depend on sev-

eral pieces of configuration information to operate cor-
rectly. Such information resides in routers, firewalls,
and end hosts, among other places. Incorrect informa-
tion, or misconfiguration, could interfere with the run-
ning of networked applications. This problem is particu-
larly acute in consumer settings such as home networks,
where there is a huge diversity of network elements and
applications coupled with the absence of network ad-
ministrators.

To address this problem, we present NetPrints, a sys-
tem that leverages shared knowledge in a population of
users to diagnose and resolve misconfigurations. Basi-
cally, if a user has a working network configuration for
an application or has determined how to rectify a prob-
lem, we would like this knowledge to be made available
automatically to another user who is experiencing the
same problem. NetPrints accomplishes this task by ap-
plying decision tree based learning on working and non-
working configuration snapshots and by using network
traffic based problem signatures to index into configura-
tion changes made by users to fix problems. We de-
scribe the design and implementation of NetPrints, and
demonstrate its effectiveness in diagnosing a variety of
home networking problems reported by users.

1 Introduction
A typical network comprises several components, in-
cluding routers, firewalls, NATs, DHCP, DNS, servers,
and clients. Configuration information residing in each
component controls its behaviour. For example, a fire-
wall’s configuration tells it which traffic to block and
which to let through. Correctness of the configuration
information is thus critical to the proper functioning of
the network and of networked applications. Misconfigu-
ration interferes with the running of these applications.

This problem is particularly acute in consumer set-
tings such as home networks given the huge diversity in
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network elements and applications which are deployed
without the benefit of vetting and standardization that
is typical of enterprises. An application running in the
home may experience a networking problem because of
a misconfiguration on the local host or the home router,
or even on the remote host/router that the application at-
tempts to communicate with. Worse still, the problem
could be caused by the interaction of various configura-
tion settings on these network components. Table 1 il-
lustrates this point by showing a set of typical problems
faced by home users. Owing to the myriad problems
that home users can face, they are often left helpless, not
knowing which, if any, of a large set of configuration
settings to manipulate.

Nevertheless, it is often the case that another user has
a working network configuration for the same applica-
tion or has found a fix for the same problem. Moti-
vated by this observation, we present NetPrints (short
for Network Problem Fingerprints), a system that helps
users diagnose network misconfigurations by leveraging
the knowledge accumulated by a population of users.
This approach is akin to how users today scour through
online discussion forums looking for a solution to their
problem. However, a key distinction is that the accu-
mulation, indexing, and retrieval of shared knowledge in
NetPrints happens automatically, with little human in-
volvement.

NetPrints comprises client and server components.
The client component, which runs on end hosts such as
home PCs, gathers configuration information pertaining
to the local host and network configuration, and possibly
also the remote host and network that the client applica-
tion is attempting to communicate with. In addition, it
captures a trace of the network traffic associated with an
application run and extracts a feature vector that charac-
terizes the corresponding network communication. The
client uploads this information to the NetPrints server
at various times, including when the user encounters a
problem and initiates diagnosis. We enlist the user’s help
in a minimally intrusive manner to have the uploaded
information labeled as “good” or “bad”, depending on
whether the corresponding application run was success-
ful or not.
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The NetPrints server performs decision tree based
learning on the labeled configuration information sub-
mitted by clients to construct a configuration tree, which
encodes its knowledge of the configuration settings that
work and ones that do not. Furthermore, it uses the la-
beled network feature vectors to learn a set of signatures
that help distinguish among different modes of failure of
an application. These signatures are used to index into a
set of change trees, which are constructed using config-
uration snapshots gathered before and after a configura-
tion change was made to fix a problem. At the time of
diagnosis, given the suspect configuration information
from the client, the NetPrints server uses a configuration
mutation algorithm to automatically suggest fixes back
to the user.

We have prototyped the NetPrints system on Win-
dows Vista and made a small-scale deployment on 4
broadband-connected PCs. We present a list of 21
configuration-related home networking problems and
their resolutions from online discussion boards, user sur-
veys, and our own experience. We believe that all of
these problems and others similar to them can be diag-
nosed and fixed by NetPrints. We were able to obtain the
necessary resources to reproduce 8 of these problems for
4 applications in our small deployment and also our lab-
oratory testbed. Since we do not have configuration data
or network traces from a large population of users, we
perform learning on real data gathered for the applica-
tions run in our testbed, where we artificially vary the
network configuration settings to mimic real-world di-
versity of configurations. Our evaluation demonstrates
the effectiveness and robustness of NetPrints even in the
face of mislabeled data.

Our focus in this paper is on the diagnostics aspects
of NetPrints. We are doing separate work on the pri-
vacy, data integrity, and incentives aspects as well but
do not discuss these here. Also, our focus here is on
network configuration problems that interfere with spe-
cific applications but do not result in full disconnection
and, in particular, do not prevent communication with
the NetPrints server. Indeed, these subtle problems tend
to be much more challenging to diagnose than basic con-
nectivity problems such as full disconnection. In future
work, we plan to investigate the use of out-of-band com-
munication (e.g., via a physical medium) to enable Net-
Prints diagnosis even with full disconnection.

2 Related Work
We discuss prior work on problem diagnosis in computer
systems and in networks, and how NetPrints relates to it.

2.1 Peer Comparison-based Diagnosis
There has been prior work on leveraging shared knowl-
edge across end hosts, which provides inspiration for a

similar approach in NetPrints. However, the prior work
differs from NetPrints in significant ways.

Strider [19] uses a state-based black-box approach for
diagnosing Windows registry problems by performing
temporal and spatial comparisons with respect to known
healthy states. It assumes the ability to explicitly trace
what configuration information is accessed by an appli-
cation run. Such state tracing would be difficult to do
with network configuration, which governs policy (e.g.,
port-based filtering) that implicitly impacts an applica-
tion’s network communication rather than being explic-
itly accessed by applications.

PeerPressure [18] extends Strider by eliminating the
need to identify a single healthy machine for compari-
son. Instead, it relies on registry settings from a large
population of machines, under the assumption that most
of these are correct. It then uses Bayesian estimation
to produce a rank-ordered list of the individual registry
key settings presumed to be the culprits. While this un-
supervised approach has the advantage of not requiring
the samples to be labeled, it also means that PeerPres-
sure will necessarily find a “culprit”, even when there
is none. This outcome might not be appropriate in a
networking setting, where a problem might be unrelated
to client configuration. Also, PeerPressure is unable to
identify combinations of configuration settings that are
problematic.

Finally, Autobash [15] helps diagnose and recover
from system configuration errors by recording the user
actions to fix a problem on one computer and then re-
playing and testing these on another computer that is ex-
periencing the same problem. Autobash assumes sup-
port for causality tracking between configuration set-
tings and the output, which is akin to state tracing in
Strider discussed above.

2.2 Problem Signature Construction
There has been work on developing compact signatures
for systems problems for use in indexing a database of
known problems and their solutions.

Yuan et al. [21] generate problem signatures by
recording system call traces, representing these as
n-grams, and then applying support vector machine
(SVM) based classification. Cohen et al. [8, 9] con-
sider the problem of automated performance diagnosis
in server systems. They use Tree-Augmented Bayesian
Networks (TANs) to identify combinations of low-level
system metrics (e.g., CPU usage) that correlate well with
high-level service metrics (e.g., average response time).

In contrast, NetPrints uses a set of network traf-
fic features, which we have picked based on our net-
working domain knowledge, to construct problem signa-
tures. Since these network traffic features tend to be OS-
independent, NetPrints would be in a position to share
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signatures across OSes. Furthermore, we use a decision
tree based classifier to learn the signatures.

2.3 Network Problem Diagnosis

Active probing is widely used for diagnosing network
problems. For example, Tulip [12] probes routers to
localize anomalies such as packet reordering and loss.
Such diagnosis relies on a model of how network ele-
ments such as routers operate. Likewise, several model-
or rule-based engines have been developed for diag-
nosing configuration-related and other faults in wireless
LANs. These include systems that rely on infrastructure-
based monitoring (e.g., DAIR [5], Jigsaw [7]) and those
that rely on cooperation among wireless clients (e.g.,
WiFiProfiler [6]).

Other diagnosis systems such as SCORE [11] and
Sherlock [4] have modeled, and in some cases automat-
ically discovered, dependencies between higher-layer,
observable network events and the underlying network
components. Formal methods have also been used to
check the correctness of network configurations. For ex-
ample, rcc [10] checks for a range of well-understood
BGP properties.

In the context of NetPrints, it may be possible to con-
struct such models for certain well-understood configu-
ration settings (e.g., port-based filters), thereby allowing
diagnosis based on active probing, rules, or formal meth-
ods. However, in general, configuration settings may
not be documented or well-understood, hence NetPrints’
black-box approach.

2.4 NetPrints Compared to Prior Work

We view NetPrints as being complementary to prior
work on network diagnosis in two ways. First, NetPrints
focuses on configuration problems that impact specific
applications rather than on broad problems that impact
the network infrastructure. Second, NetPrints uses a
blackbox approach appropriate for arbitrary and poorly
understood configuration information, avoiding the need
for the network behaviour or dependencies to be mod-
eled explicitly.

NetPrints draws inspiration from prior work on black-
box techniques to diagnose systems problems and index
them with signatures to enable recall. However, Net-
Prints’ goal of identifying how to mutate a broken con-
figuration to fix a problem leads us to use a different ap-
proach — decision tree based learning — compared to
prior work. This is primarily because of the interpretable
nature of a decision tree. Furthermore, NetPrints lever-
ages domain-specific knowledge to construct signatures
of networking problems. The diagnosis procedure in
NetPrints is both state-based and signature-based.
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Figure 1: NetPrints system design

3 Overview of NetPrints Design
We begin with an overview of NetPrints, before turning
to a more detailed discussion in the sections that follow.

Figure 1 depicts the client and server components
of NetPrints, and their interaction. NetPrints has two
modes of operation: “construction” and “diagnosis”.

In the construction mode, the NetPrints server gath-
ers configuration snapshots (Section 4) and network traf-
fic features from NetPrints clients. This information
is labeled as “good” or “bad” depending on whether
the application run was successful or not. The Net-
Prints server, using this information, constructs a con-
figuration tree (Section 5) that encodes its knowledge
of which configuration settings work. It constructs a
change tree (Section 7) based on the before and after
snapshots of configuration changes that fixed a problem.
Change trees are indexed by network traffic signatures
(Section 6) that characterize how an application run fails.
All these are constructed on a per-application basis.

When users experience a problem with an applica-
tion, they invoke the diagnosis procedure. The Net-
Prints client, which runs on the user’s machine, identi-
fies which application to diagnose, either automatically
(e.g., the application that last had focus) or with the help
of the user. The client then gathers and uploads local
configuration information and network traffic features,
both labeled as “bad”, to the NetPrints server (step 1 in
Figure 1).

The NetPrints server performs diagnosis in two
phases. In phase I, it uses the application-specific con-
figuration tree to determine whether the client’s configu-
ration is problematic and, if so, identifies remedial con-
figuration mutations, which it then conveys to the client
(step 2 in Figure 1).

While configuration tree based diagnosis would work
in many cases, it might fail, for instance, when there are
“hidden” configuration parameters that impact a subset
of the clients, so that the main configuration tree does
not find anything amiss with the configuration of such
clients (e.g., #4, #8, #10, and #12 in Table 1; see Sec-
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# App. Router Problem Cause Fix
1 VPN WGR614 VPN Client does not connect Stateful firewall was off Turn on the stateful firewall
2 VPN WRT54G VPN drops connection after 3

minutes
(n/a) Set MTU to 1350–1400,

uncheck “block anonymous
internet request”, “filter
multicast boxes” in router
configuration

3 VPN WRT54G No VPN connectivity No PPTP passthrough turn on PPTP passhthrough
4 VPN WRT54G No VPN connectivity double NAT, second NAT was

dropping PPTP packets
Switch from PPTP server to
SSTP server

5 File
Sharing

any Only unidirectional sharing End-host firewall is not prop-
erly configured

Allow file sharing through all
firewalls

6 File
Sharing

WGR614v5 No file sharing Client machine is on a do-
main, server machine is on
workgroup

Put both machines either on
the same domain or work-
group

7 FTP any Cannot connect to FTP server
from outside home network

Port forwarding incorrect Turn on port forwarding on
port 21

8 FTP WGR614 Cannot connect to FTP server
at home

Client firewall blocking traf-
fic, active FTP being used

Turn on firewall rule to allow
active FTP connections

9 VPN
server

WRT54G PPTP server behind NAT does
not work despite port forward-
ing and PPTP passthrough al-
lowed

IP of server is 192.168.1.109,
which is inside default DHCP
range of router; router’s port
forward to IPs inside default
range of router does not work

Use static IP outside DHCP
range for server

10 Outlook WRT54G Outlook does not connect via
VPN to office

Default IP range of router was
same as that of the remote
router

Change the IP range of home
router

11 Outlook WGR614 Router not able to email logs SMTP server not configured
properly

Setup SMTP server details in
the router configuration

12 Outlook Linksys Not able to send mail through
Linksys router; Belkin router
works fine

MTU value too high for re-
mote router, so remote router
discards packets

Reduce MTU to 1458 or 1365

13 SSH WGR614 SSH client times out after 10
minutes

NAT table entry times out Change router or increase
NAT table timeout

14 Office
Com-
muni-
cator

WRTP54G IM client does not connect to
office

DNS requests not resolved Turn off DNS proxy on router

15 STEAM
games

WGR614 Listing game servers causes
connection drops

Router misinterprets the sud-
den influx of data as an attack
and drops connection

Upgrade to latest firmware

16 Real-
Player

BEFW11s4 Streaming kills router Firmware upgrade caused
problems

Downgrade to previous
firmware

17 Xbox WRT54G Xbox does not connect and all
games do not run

Some ports are blocked and
NAT traversal is restricted

Set static IP address on Xbox
and configure it as DMZ, en-
able port forwarding on UDP
88,TCP 3074 and UDP 3074,
disable UPnP to open NAT

18 Xbox WRT54G Xbox works with wired net-
work but not with wireless

WPA2 security is not sup-
ported

Change wireless security fea-
ture from WPA2 to WPA per-
sonal security

19 Xbox WGR614 Not able to host Halo3 games NAT settings too strict Set Xbox as DMZ
20 IP

Camera
DG834GT Camera disconnects periodi-

cally at midnight, router needs
reboot

DHCP problem Configure static IP on the
camera

21 ROKU DIR-655 ROKU did not work with
mixed b, g and n wireless
modes

(n/a) Change to mixed b and g
mode

Table 1: Recent configuration-related problems in home networks.
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tion 7 for an elaboration of #8). So in phase II, the Net-
Prints server uses a signature of the application problem
to identify the appropriate change tree, which has been
constructed by focusing specifically on such problem-
atic cases. If the change tree is unable to diagnose the
problem either, NetPrints gives up; it is possible that the
problem is not configuration-related.

4 Configuration Scraper
The configuration scraper gathers configuration infor-
mation from the local Internet Gateway Device (IGD)
— which we loosely refer to as the local router — the
local client host, and possibly also from a remote host
and network.

4.1 Internet Gateway Configuration
The scraper gathers two categories of IGD information:
(i) IGD identification information: This information in-
cludes the make, model and firmware version of the de-
vice, which in most cases is a home router, although in
some cases it could be a DSL or cable modem. The
scraper obtains this information using the UPnP inter-
face which is supported and enabled by default on most
modern IGDs [16]. UPnP is a standard with which our
client can obtain basic information such as the URL
for the Web interface for the device, and the make and
model of the device. However, if the router has UPnP
turned off, we ask the user to manually input the IGD
identification information. Note that the user will need
to input this information only very rarely, i.e., when they
install a new router that has UPnP turned off.
(ii) Network-specific configuration information: The
IGD also includes configuration information such as
port forwarding and triggering tables, MTU value, VPN
pass-through parameters, DMZ settings, and wireless se-
curity settings. The scraper uses both the UPnP interface
and the Web interface that most routers and modems pro-
vide to glean such configuration information. On some
of the routers we tested, the port tables from the Web
page and the port tables from the UPnP interface were
not kept consistent with each other. Consequently, we
scrape and combine the tables via both interfaces. Some
router firmware versions also allow us to scrape the max-
imum NAT table size and the per-connection timeout for
each table entry. These fields can be particularly useful
in diagnosing problems such as #2 and #13 in Table 1.

While the UPnP interface gives us access to only
device-identifying parameters and the UPnP port for-
warding and port triggering tables, the Web interface is
richer but not standardized across routers.

In particular, there is no standardized way for
parsing the HTML to extract the (key,value) pairs
defining the configuration. To address this problem,
we make the observation that each configuration Web

page of the device is typically an HTML form that
includes a “submit” operation. We invoke this op-
eration programmatically on each configuration Web
page. Doing so causes the creation of an HTTP POST
request containing all of the (key,value) pairs in an
easy-to-parse form. For example, the body of the POST
request might contain: submit button=index&
dhcp start=100&dhcp num=50&dhcp lease=
1440. It is then straightforward to extract the various
DHCP-related configuration settings from this string.

While scraping Web forms, the NetPrints client asks
for the user name and password set on the router. The
user will need to input this information once, after which
a cookie within the NetPrints client will remember the
input to use every time it scrapes the Web interface of
the router. Note that no such information is needed for
the UPnP-based scraping.

4.2 Local Host Configuration
There is also much configuration information of rele-
vance to network operation on the local client host it-
self, such as whether the network connection is wired or
wireless, whether TCP window scaling is on or off, and
end-host firewall rules. We currently scrape all interface-
specific network parameters, TCP-specific parameters
and firewall rules from the end-host. Our implementa-
tion uses the netsh utility available on Windows oper-
ating systems to get this information.

4.3 Remote Configuration
In general, the configuration of the remote host and net-
work also impacts the health of network applications.
In some cases, the configuration information at the re-
mote end may be inaccessible to us (e.g., the remote
host might be a server in a different administrative do-
main). In other cases, however, the remote host might
be under the control of the same user as the local host.
One example is communication between a client and a
server on the same home network, say as part of a file or
printer sharing application. Another example is when a
user tries to access a service running in their home net-
work from an external location, such as a user in their
workplace accessing their home FTP server.

If the user installs the NetPrints client on the remote
host as well, then, using simple password-based authen-
tication, the local NetPrints client can obtain remote host
and network configuration information. For every ap-
plication, the NetPrints client keeps track of all remote
hosts that it accesses or tries to access and, if the re-
mote site runs NetPrints under the same administration
as the local NetPrints client, the local client collects re-
mote configuration information.

The impact of remote configuration on the health of
a networked application can vary. In some instances, a
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problem may arise because of misconfiguration at the re-
mote end. For example, if the remote network blocks ac-
cess to port 21, attempts to connect to an FTP server on
that network would fail. In other instances, the remote
configuration may not be problematic per se. Rather,
it is the mismatch between the local configuration and
the remote configuration that is problematic. For in-
stance, while some users might be able to access a file
server, others may not be able to because their creden-
tials are not included in the access control list (ACL) on
the server. In other words, there is a mismatch between
the local configuration (the local user’s credentials) and
the remote configuration (the ACL on the server).

Once the remote configuration information has been
obtained, it is incorporated into NetPrints’ diagnostics
procedure in the same manner as local configuration in-
formation. The one exception, which requires some ad-
ditional pre-processing, is incorporating the mismatch
between local and remote configurations, a problem we
turn to next.

4.4 Composing Configurations
Since it is the combination of local and remote config-
urations that matters in some cases, we introduce new,
composite configuration parameters that are derived by
combining local and remote configurations parameters.
Conceptually, a composite parameter, C, is a Boolean
derived by applying a comparison operator,

�
, to the

local parameter, L and a remote parameter, R. That is,
C = L

�
R.

The specific comparison operators we focus on are
equality “=” and set membership “∈”. For example, if
the local Windows workgroup L1 and the remote Win-
dows workgroup R1 are the same, then C1 = 1. Else,
C1 is set to 0. Another example is of checking whether
the local username L2 is part of the remote ACL R2 for
a file sharing application. If it is (i.e., L2 ∈ R2), the
corresponding composite parameter C2 is set to 1.

4.5 Reducing Composite Parameters
Blindly comparing all pairs of local and remote config-
uration parameters results in an explosion in the num-
ber of composite parameters, most of which would be
meaningless (e.g., a comparison of the local user name
with the DHCP setting on the remote router). To limit
the number of such composite parameters, without re-
quiring an understanding of the semantics of the param-
eters, Netprints (1) only uploads composites that explic-
itly match, and (2) excludes parameters that exclusively
have one value from the learning process.

In our experimental setup, the configuration scraper
captures roughly 500 configuration parameters from the
router and 2100 from the end-host, at each of the local
and remote ends. This yields an additional 1500 com-

posite parameters, after reduction is applied, and hence
a total of (2100+500)x2+1500=6700 parameters.

5 Configuration Trees
Based on the labeled configuration information ob-
tained from clients, we construct per-application deci-
sion trees, called configuration trees, which encode Net-
Prints’ learning of which parameter settings work and
which do not. We start with a brief introduction to de-
cision trees and then turn to how NetPrints constructs
configuration trees and uses these for diagnosis.

5.1 Decision Trees
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Figure 2: Configuration tree for the VPN client applica-
tion discussed in Section 9.2.

NetPrints uses decision trees as a basis for performing
configuration mutation. A decision tree (see Figure 2
for an example) is a predictive model that maps obser-
vations (e.g., a client’s network configuration) to their
target values or labels (e.g., “good” or “bad”). Each non-
leaf node in the decision tree corresponds to an attribute
of the observation, and the edges out of the node indi-
cate the values that this attribute can take. Thus, each
leaf node corresponds to an entire observation and car-
ries a label. Given a new observation, we start at the root
of the decision tree, walk down the tree, taking branches
corresponding to the individual attributes of the obser-
vation, until we reach a leaf node. The label on the leaf
node identifies configurations as “good” or “bad”.

There are several algorithms for decision tree learn-
ing. We chose a widely-used algorithm, C4.5 [14],
which builds trees using the concept of information gain.
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The C4.5 tool starts with the root, and at each level of
the tree chooses the attribute to split the data that re-
duces the entropy by the maximum amount. The result
is that the branch points (i.e., non-leaf nodes with multi-
ple children) at the higher levels of the tree correspond to
attributes with greater predictive power, i.e., those with
distinct values or ranges corresponding to distinct labels.

When the training data is noisy (e.g., it contains mis-
labeled samples) or there are too few samples, there is
the risk that the above algorithm will over-fit the train-
ing data. To address this concern, C4.5 also include a
pruning step, wherein some branches in the tree are dis-
carded so long as this does not result in a significant error
with respect to the training data (a process called gener-
alization). C4.5 uses a confidence threshold to determine
when to stop pruning. In our implementation, we use the
default threshold. A consequence of pruning is that, if
the number of samples is insufficient, these samples will
not be reflected in the decision tree.

A decision tree has two key properties. First, it en-
ables classification of observations that include both
quantitative and categorical attributes. For example, the
decision tree in Figure 7 includes quantitative attributes
such as the WAN MTU and categorical attributes such as
the security mode. Second, a decision tree is amenable
to easy interpretation. It not only enables classification
of observations, it also helps identify in what minimal
way an observation could be mutated so as to change its
label (e.g., from “bad” to “good”). We elaborate on this
property in Section 5.4. The interpretability of decision
trees, in particular, makes it an attractive alternative to
SVMs or Bayesian classification.

5.2 Labeling Configuration Information
As explained in Section 4, the NetPrints client extracts
configuration information from the local host and net-
work as well as from the remote end. Before this in-
formation can be fed to the NetPrints server, it has to be
labeled as either “good” or “bad”, depending on whether
the application in question was working or not. In gen-
eral, it is hard to determine automatically whether an
arbitrary application is working well. We sidestep this
difficulty by enlisting the help of the human user to la-
bel the application runs. If we assume that the majority
of users are honest, then most of the configuration in-
formation submitted to the NetPrints server will be la-
beled correctly. As we discuss in Section 9.6, decision
tree based learning employed by the server is robust to
mislabeling to a large extent. Also, in Section 10.1, we
discuss ways of reducing the burden of labeling on users.

5.3 Configuration Manager
The configuration manager at the NetPrints server
uses the labeled configuration information submitted by

clients to learn and construct per-application configu-
ration trees, using C4.5. The tree comprises decision
nodes, which are branch points, and leaf nodes, which
correspond to “good” or “bad” labels. A path from the
root to a “good” (“bad”) leaf node indicates the parame-
ter settings for a working (non-working) configuration.

Figure 2 shows an example of such a configura-
tion tree that we generated for the Microsoft Con-
nection Manager VPN application [13] using con-
figuration information from clients using several dif-
ferent router devices (see Table 5). We note that
the local.disable spi attribute (corresponding to
whether stateful packet inspection (SPI) is disabled) is
the clearest, even if not a perfect, indicator of whether a
configuration is good or bad. So it is at the root of the
configuration tree.

Note that a decision node in the configuration tree
may have a branch labeled NA (not applicable), in ad-
dition to branches corresponding to the various parame-
ter settings (e.g., 0 and 1 with local.disable spi).
The NA branch is needed since some parameters may be
absent in particular routers.

Currently, the decision tree algorithm we use does not
allow for incremental training of the trees, hence we use
a cache of configurations to perform the training at each
step. However, incremental update based algorithms ex-
ist [17] and we plan to evaluate these in future work.

5.4 Misconfiguration Diagnosis
When users experience application failure, they initiate
the diagnosis procedure on the NetPrints client. The
NetPrints client scrapes and submits its suspect configu-
ration information to the NetPrints server for diagnosis.
At the server end, the configuration manager starts at the
root and walks down the configuration tree correspond-
ing to the application that the user is complaining about.
If it ends at a “bad” node, it means that the client’s con-
figuration is known to be non-working. On the other
hand, if it ends at a “good” node, it means that the con-
figuration tree is unable to help with the diagnosis, a case
we consider in Section 7.

If the client’s configuration corresponds to a known
“bad” state, then the goal of diagnosis is to identify the
configuration mutations that would move the configura-
tion to a known “good” state. In general, there would
be multiple “good” leaf nodes, so which one should we
mutate towards?

Intuitively, we would like to pick the mutation path
that is easiest to traverse. The easiest path is not neces-
sarily the one with the fewest changes. The difficulty of
making the changes also matters. For example, chang-
ing the router hardware (say switching from a Linksys
router to a Netgear router) would likely be more dif-
ficult than modifying a software-settable parameter on
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disable_spi
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Figure 3: Illustration of the costs of different configura-
tion mutations.

the router because of the costs involved. Even among
software-settable parameters, some changes might be
less desirable, and hence more difficult to make, than
others. For example, putting the client host on the DMZ,
and thereby exposing it to external traffic, would likely
be less desirable than say enabling port forwarding for a
specific port.

To determine the degree of difficulty automatically,
NetPrints records the frequency with which various con-
figuration parameters are modified across all clients. It
might find, for instance, that the disable spi param-
eter is modified 100 times as often as the device is.
We quantify the cost of a mutation as the reciprocal of
the change frequency, possibly scaled by a constant fac-
tor, of the corresponding configuration parameter. We
might record some spurious changes, say when a mo-
bile client moves from one network to another and mis-
takenly thinks that its router device and various con-
figuration settings have “changed”. However, we can
counter the effect of mobility by hard-coding the fact
that changing routers is a low-frequency, and therefore
high-cost, change. Thereafter, when a client is mobile
and associates with a new router, we infer that the corre-
sponding changes in configuration detected by NetPrints
are because the router changed, not because the user ex-
plicitly changed configurations. Hence we do not in-
crease the change frequency of the parameters.

Figure 3 illustrates how the configuration tree is an-
notated with costs. The cost of changing the router
device is 100 times greater than the cost of changing
the disable spi setting. Some mutations are impos-
sible to effect, so the corresponding cost is set to ∞.
For instance, it is not possible to set disable spi to
NA when the parameter does not exist on the router in
question. Also, note that the cost is incurred only when
a parameter is changed, hence the zero cost for merely
walking up the tree.

Given the mutation costs indicated above, we com-
pute the cost of moving from a “bad” leaf node to a
“good” leaf node as the sum of the costs of the muta-
tions on the path from the former to the latter. NetPrints
recommends the set of mutations corresponding to the
path with the lowest cost.

5.5 Going Beyond Configuration Trees
The per-application configuration trees help diagnose
misconfigurations based on configuration information
on which there is broad agreement across a large number
of participating NetPrints clients. Basically, the config-
uration manager learns about the goodness or otherwise
of various configuration settings based on static snap-
shots of labeled configuration information uploaded by
clients.

However, as noted in Section 3, diagnosis based on
the configuration tree would not work in the case of mis-
configurations that are exceptions to the norm. Such ex-
ceptions could arise, for instance, from hidden configu-
ration settings (as noted in Section 3) or from decision
tree pruning (as explained in Section 5.1). In such cases,
the configuration tree might suggest that the suspect con-
figuration is “good” and hence not be in a position to
suggest any mutations.

To address this issue, we introduce change trees,
which seek to learn based on dynamic information,
i.e., configuration changes. Furthermore, to reduce the
chances of exceptions being buried by the mass, we use
network traffic signatures to index the change trees.

Note, however, that multiple configuration errors
could yield the same network signature, so a network
signature is, in general, not as informative as the config-
uration information itself. Hence our approach is to use
the configuration tree as the option, with the change trees
indexed using network signatures as the fallback option.

We now discuss how NetPrints constructs network
traffic signatures, and then turn to change trees.

6 Network Traffic Signature
We use a network traffic signature to characterize appli-
cation runs. For instance, an application could fail be-
cause it is unable to establish a TCP connection (SYN
handshake failure) or because the TCP connection is re-
set prematurely. The network traffic signature is used
to distinguish between these failure modes. In essence,
the signature records the symptom of the failure, which
is used to index the change trees of the application, as
explained in Section 7.

The basic approach is for the NetPrints clients to ex-
tract a set of network traffic features from a packet trace
of the application run. The NetPrints server then applies
learning on these features to identify the important ones,
which are then included as part of the network traffic
signature for that application.

6.1 Network Traffic Feature Extractor
The network traffic feature extractor characterizes the
network usage of each application running on the client
machine. In our current implementation, it uses the Win-
pcap library and the IPHelper API on Windows to tie all
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# Feature Description Unit
1 TCP: Three SYN no response 5-tuple
2 TCP:RST after SYN, no data ex-

changed
5-tuple

3 TCP:RST after no activity for 2
mins

5-tuple

4 TCP:RST after some data ex-
changed

5-tuple

5 UDP: Data sent but not received 5-tuple
6 Other: Data sent but not received src-dst IP

addr pair
7 All: No data sent or received all traffic

Table 2: Network traffic features and the unit of commu-
nication over which the feature is extracted. Each feature
is maintained separately for inbound and outbound di-
rections, except for “All”, which is maintained for both
directions together.

observed network traffic to the individual processes, and
hence applications, running on the client machine. For
each running application, it extracts a set of features by
examining its network activity. These features form the
feature vector for the application.

Table 2 lists the set of features we extract in the form
of rules. Most of these features are maintained sepa-
rately for the inbound (I) and outbound (O) directions,
depending on whether the communication was initiated
by the remote host or by the local host. While many of
these features are extracted on a per-5-tuple basis (i.e.,
on per-connection basis for TCP), we combine the fea-
tures across all connections of an application to compute
the bits of the feature vector. Specifically, if at least one
connection of an application satisfies any of these rules,
the corresponding bit in the feature vector is set. Note
that it is possible for multiple bits in an application’s fea-
ture vector to be set. Also, while all of the features we
consider at present are binary, the feature set could be
expanded to include non-binary features.

We identified the set of features in Table 2 based
on empirical observations of the ways in which an ap-
plication’s network communication may typically fail.
The first four features in the table capture various kinds
of TCP-level issues that we commonly see in malfunc-
tioning applications. Several applications and services
such as multimedia streaming, DNS and VPN clients use
transport protocols other than TCP. For all of these, the
lack of connectivity in one direction often indicates a
networking problem. Consequently, we have included
features #5 and #6 to capture the behavior of such appli-
cations. For both features, we use a timeout of 2 min-
utes: if no data is received for a period of 2 minutes,
we interpret this as a possible problem and set the fea-
ture. Feature #7 characterizes a total loss of connectivity

for an application using any transport protocol; problem
#18 in Table 1, for instance, is a scenario in which our
system would use this feature.

Finally, we briefly discuss two issues pertaining to
the recording of network features for an application run.
First, since the instance of an application could run for
an extended period of time (e.g., a Web browser could
run for days or weeks), we only consider network traf-
fic features over a short window of time (typically a few
minutes long) extending into the recent past. Second,
extracting the network traffic feature for an application
run requires capturing its traffic. One possibility is to
run traffic capture continuously, which has the advantage
that a record of the traffic will be available even when an
application run failed.

To reduce the overhead of the NetPrints client with
such traffic continuous capture, we split the network
signature generator into two parts: a lightweight, con-
tinuously running component to capture selected packet
headers and connection-to-process bindings, and a rel-
atively more CPU-intensive component that creates the
feature vector from the trace only when needed. Mea-
surements of our implementation show that the over-
head is low (0.8% CPU load) on a 1.8 GHz laptop
PC running Windows Vista Enterprise, while streaming
video over the Internet and simultaneously synchroniz-
ing email folders with the server.

6.2 Network Signature Generator

The NetPrints client records and uploads the feature vec-
tor for an application run to the NetPrints server, either
when the user invokes NetPrints to complain about a
non-working application or when the user is prompted,
as explained in Section 5.2. In either case, the feature
vector is labeled as “good” or “bad”, just as the ac-
companying configuration information is. The NetPrints
server then applies learning on the mass of labeled fea-
ture vectors for an application to identify the most signif-
icant features, i.e., ones that correspond most strongly to
the fate of an application run. These significant features
define the network signature of the application.

The signature generator, again, uses the C4.5 algo-
rithm to learn the network signatures, which are repre-
sented as per-application signature trees. However, un-
like with learning applied to configuration information,
interpretability is not necessary for signature construc-
tion (since there are no mutations to perform), so we
could have also used a different learning algorithm such
as SVM. Figure 5 shows the signature tree generated for
an FTP application, where 2 features, out of the 13 in all,
are sufficient to capture the network problems seen.
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7 Change Trees
As noted in Section 5.5, change trees are used as the
fallback option when the configuration tree fails to diag-
nose a problem. To understand why configuration tree
based diagnosis might fail, consider problem #8 in Ta-
ble 1. The FTP server in question enables passive mode
by default, so that all connections are initiated at the
client end. However, in a small number of cases, the
server may disable passive mode, i.e., only the server
can initiate FTP data connections. The client will disal-
low these connections unless the client-side firewall has
been configured to let them in. Note that the application-
specific configuration parameter that captures the infor-
mation that the server has disabled passive FTP is “hid-
den” from NetPrints since, in general, NetPrints is not
in a position to scrape such parameters. Nevertheless,
there are non-hidden configuration parameters (the fire-
wall parameters on the client, in this instance) that could
be manipulated to fix the problem.

Since the discriminating parameter is hidden, it is hard
to tell apart the majority of clients that are configured for
passive mode from the minority that are configured for
active mode. So the majority prevails and the configura-
tion tree learns to ignore the firewall settings since these
are not of relevance for the majority of clients (i.e., FTP
works for such clients regardless of the firewall settings).
So when an active FTP connection to a client fails, the
configuration tree would not find anything amiss with
its configuration, i.e., it will find the configuration to be
“good” and leave no scope for remedial action.

Change trees try to address this problem by isolating
the cases where a traversal of the configuration tree ends
up in leaf nodes labeled as “good” and then applying
learning separately on these. For the purposes of this
learning, the suspect configurations (which the config-
uration tree thinks of as “good”) are labeled as “bad”.
Since we also need configurations labeled as “good” to
perform learning, the NetPrints client in such cases looks
for any out-of-band configuration changes that are made
and, when such a change is detected, it prompts the user
to determine whether the application problem has now
been resolved. If and when the user indicates that the
problem has been resolved, it uploads a “good” configu-
ration to the NetPrints server.

The NetPrints server uses the C4.5 algorithm to learn
a decision tree — the change tree — based on the
change information: the “before” configurations la-
beled as “bad” and the “after” configurations labeled as
“good”. To isolate the relevant cases and minimize the
mixing of unrelated problems, we use the network sig-
nature corresponding to application failure to index the
change trees. So, in effect, each “bad” leaf node in the
signature tree can point to a separate change tree.

Each change tree is also traversed the same way as

the main configuration tree. If a traversal of the relevant
change tree also ends in a leaf node labeled as “good”,
NetPrints gives up. It could be that NetPrints does not
have sufficient information to identify the misconfigura-
tion or that the problem is not configuration-related.

8 Summary of NetPrints Operation
In summary, NetPrints performs the following steps in
the construction and diagnosis phases.

Construction Steps:
1) The NetPrints clients upload labeled configuration

information and network feature vectors to the NetPrints
server, either when users invoke NetPrints for diagnosis
or are prompted by NetPrints (the latter happens for a
small fraction of application runs).

2) The NetPrints server feeds the labeled configura-
tion information into the C4.5 decision tree algorithm to
construct an application-specific configuration tree. It
feeds the labeled network feature vector to the same al-
gorithm to learn an application-specific signature tree.

3) During the diagnosis phase (see below), if the
traversal of the configuration tree with a suspect con-
figuration terminates in a “good” leaf node, then this
configuration, now labeled as “bad”, is fed into the
application-specific change tree construction procedure.

4) Furthermore, the NetPrints client prompts the user
to determine if future configuration changes, if any, help
restore the application to a working state. If so, the cor-
responding configuration, labeled as “good”, is fed into
change tree construction at the NetPrints server.

Diagnosis Steps:
1) When the user encounters a problem and invokes

diagnosis, the NetPrints client uploads configuration in-
formation, along with the network feature vector for the
affected application, to the NetPrints server.

2) The NetPrints server traverses the configuration
tree with the suspect configuration submitted by the
client. If this traversal ends in a “bad” leaf node, Net-
Prints identifies the set of configuration mutations, with
the lowest cost, that would help move the configuration
to a “good” state.

3) If the traversal of the configuration tree ends in a
“good” leaf node, the NetPrints server first computes the
signature of the failed application run based on the net-
work feature vector submitted by the NetPrints client.

4) The NetPrints server uses the signature to iden-
tify the relevant change tree and then traverses this tree
with the suspect configuration. If this traversal ends in a
“bad” leaf node, then the NetPrints server uses the same
procedure as indicated above to identify mutations.

5) However, if the traversal of the change tree ends in
a “good” leaf node, the NetPrints server gives up.
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Client Server
Config Feature Config Signature
scraper extractor manager generator
3159 701 1767 460

Table 3: Lines of code for NetPrints prototype.

9 Experimental Evaluation
Our experimental evaluation of NetPrints is based on the
prototype we have implemented on Windows Vista SP1,
using a combination C# and C++. Table 3 summarizes
some information on the implementation; for C4.5, we
used a standalone distribution [14].

We deployed the NetPrints client on 4 hosts behind
separate broadband connections. Given this small scale
of our current deployment, we used hosts on a separate
testbed to scale up the effective size of the deployment,
as we elaborate on below. The data gathered from the
testbed was used in the “construction” phase of Net-
Prints during which the NetPrints server, which ran on
a separate host, learnt the configuration, signature, and
change trees. The “diagnosis” phase was initiated from
one of the 4 broadband hosts and involved communica-
tion with the NetPrints server to perform diagnosis.

9.1 Setup and Methodology
We evaluated NetPrints with 4 applications: Microsoft’s
VPN client, a Perl-based FTP client, Windows Vista file
sharing, and Xbox Live. These applications were run
both on our testbed (construction phase) and a separate
set of broadband hosts (diagnosis phase). Our testbed in-
cluded a Windows Vista laptop (two in the case of the file
sharing application), each running the NetPrints client,
and also an Xbox 360 gaming console, all of which were
uplinked via a home router and a DSL broadband mo-
dem. We also had 4 other hosts, including 2 at peo-
ple’s homes, on separate broadband connections, each
running the NetPrints client from which diagnosis was
initiated. Finally, for the FTP application, we also had
an external machine running the client, not on a broad-
band network, that connected to one of the broadband
hosts via the Internet.

For diversity, we used 7 different routers from Net-
gear, Linksys, D-Link, and Belkin (Table 5), in turn, as
the home router in our testbed. To obtain greater di-
versity, as one might see with a large-scale deployment,
we varied the configuration settings on these routers, re-
running the applications each time. Note that although
we varied these configuration settings artificially, we ran
the applications and NetPrints just as they would be run
in the real world.

We identified 11 parameters (Table 4) and learnt vari-
ations in their settings based on a study of online discus-
sion forums. Even with this subset of parameters, many

Router parameters:
MTU {1100, 1200, 1300, 1400, 1500 bytes}: sup-
ported by all routers except Belkin F5D7230.
VPN-specific parameters {on, off}: the D-Link
router supports pass-through for IPSEC and PPTP,
while the Linksys routers support these and also L2TP
pass-through.
Stateful Packet Inspection (SPI) {on,off}: supported
by all routers except Linksys WRT54G and Belkin
F5D7230.
Wireless security parameters {none, WEP, WPA,
WPA2}: all modes supported by all routers, except
that the Netgear WGR614v5 does not support WPA2.
DMZ {on, off}: supported by all routers.
UPnP {on, off}: supported by all routers.
NAT type {symmetric, full cone, restricted cone}:
only supported by Netgear WGR614v7 and D-Link
DIR-635.
Port forwarding for FTP {on, off}: supported by all
routers but only used for our FTP experiment.
End-host parameters:
Domain or Workgroup joined
Current user {Administrator, Guest, Everyone,
other}
Windows Vista firewall rules {on, off}

Table 4: Parameters varied in our experiments

configurations are possible (e.g., 4800 with the D-Link
DIR-635 router). So for each application, we only ex-
perimented with a subset of these variations.

To automate the data collection process, we used Au-
toHotKey [1], a GUI scripting tool. To change con-
figuration settings on the router, we used customized
HTTP POST messages. To configure end-hosts, we
manually changed the relevant parameters. For every
configuration setting, we ran the applications and used
simple application-specific heuristics to automatically
determine whether the application worked (labeled as
“good”) or not (“bad”). These heuristics varied based on
the application. For example, when the VPN client suc-
cessfully connects, opening the VPN application’s win-
dow displays the status of the connection. If the VPN
connection was unsuccessful, then the same window
shows the user an option to re-initiate the connection.
Using AutoHotKey, we captured exactly which kind of
message followed our attempt to set up the VPN con-
nection, thereby determining if the application worked
or not.

We recreated all of the problems related to VPN
clients, file sharing, FTP, and the Xbox shown in Table 1,
except for #2 and #6. In addition, our testbed itself pre-
sented new problems.
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The diversity of configurations that we artificially in-
duce in our testbed facilitates the construction of the
application-specific configuration, signature, and change
trees. However, it is hard to know how much diversity
there would be in practice, in the absence of a large-scale
deployment. Nevertheless, in Section 9.6, we demon-
strate NetPrints’ robustness to noisy data.

Finally, there is no standardized nomenclature for
router configuration parameters. The parameter names
vary across routers even when the functionality involved
is the same. We avoid any manual steps to establish
correspondence across routers or segregate information
based on router model. If two router models happen to
use the same parameter name, NetPrints will recognize
and incorporate this in its learning process. Otherwise,
it will treat the parameters as separate and unrelated. As
standards such as HNAP [2] become prevalent, duplica-
tion would be reduced, resulting in more compact and
better interpretable configuration trees.

9.2 Microsoft Connection Manager
The Microsoft Connection Manager (CM) [13] is a
PPTP-based VPN client. For our evaluation, we used the
7 different routers in turn, varying the settings on each
and then using CM to try connecting to an external VPN
server. Table 5 shows the number of “good” and “bad”
cases recorded with each router through this process.

Figure 2 shows the configuration tree for CM gener-
ated by the NetPrints server. Of all the configuration
parameters, the algorithm picked disable spi,
pptp pass, filter, ethernet.speed,
ipsec pass and l2tp pass as the discerning
ones. The numbers at every leaf node are of the form
(x/y), where x is the total number of data points that the
path from root to that leaf captures, and y is the number
of misclassifications on that path.

We can explain the structure of the tree as fol-
lows. Only the Netgear routers support the specific
disable spi parameter. For these routers, CM
works if disable spi is not set and does not work
if disable spi is set, irrespective of the other pa-
rameter settings. On one of the runs involving the
Netgear WGR614v5 router, CM failed even though
disable spi was not set, explaining the one misclas-
sification on this path.

If disable spi is not applicable, as for the
Linksys, D-Link and Belkin routers, the next parame-
ter that the tree learns is pptp pass, which is available
only on the Linksys routers. When pptp pass=1, CM
works with all three Linksys routers. If pptp pass=0,
there are further conditions, depending on the specific
Linksys router. Finally, pptp pass=NA for the D-
Link and Belkin routers, through which CM works re-
gardless of the settings. The alg pptp parameter on

the D-Link DIR-635, which is supposed to control PPTP
pass-through, is apparently a no-op.

Next, the tree looks at filter, the stateful packet in-
spection parameter on the Linksys WRT310N and DD-
WRT routers. The WRT54G does not support this op-
tion, so all configurations with filter=NA, i.e., all
WRT54G configurations with pptp pass=0, are bad.

The next parameter in the tree, on the filter=off
branch, is ethernet.speed, an interface-specific pa-
rameter on the end-host. This is a little counter-intuitive
but explainable. The only gigabit ethernet router we
used was the WRT310N. Instead of using the model
name to distinguish between the WRT310N and the DD-
WRT routers, the C4.5 algorithm picked the ethernet
speeds instead, since this has the same discriminating
power as the model name in this case. This illustrates
that learning is data-driven rather than based on intu-
ition. If data were available from more routers support-
ing gigabit ethernet, we believe that C4.5 would have
fallen back to the model name to differentiate among the
various routers.

On the WRT310N (ethernet.speed=1Gbps),
if filter=off, CM works irrespective of
the other parameters. On the DD-WRT
(ethernet.speed=100Mbps), CM’s success
depends on whether the client is placed on the DMZ.
In particular, if the client is not on the DMZ, then CM
works only if ipsec pass=0 and l2tp pass=0.
We were unaware of this restriction until NetPrints
constructed its configuration tree.

Next, we deployed the NetPrints client on 4
broadband networks using misconfigured Linksys
WRT54G and DD-WRT, and Netgear WGR614v5 and
WGR614v7 routers. When CM was invoked but the
VPN connection failed, the user pressed the “diagnose”
button on the NetPrints client. The NetPrints server
then used its mutation algorithm to identify remedial
configuration changes, which were then conveyed to
the client. For the Netgear routers, the fix was to set
disable spi=0, whereas for the Linksys routers, it
was to set pptp pass=1. The NetPrints client auto-
matically applies these fixes to the router using an HTTP
POST to the corresponding Web form on the router.

This case study shows that NetPrints’ configuration
tree has automatically captured application behaviour
with a large number of configuration settings across 7
routers and the client host, using a small number of
branch points (only 7, in this case) in an intuitive rep-
resentation. The tree also flagged configuration-related
problems that we were unaware of previously.

9.3 Perl-based FTP Client
Users often set up FTP servers within their home net-
works so that they can have easy access to data on
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Netgear Netgear Linksys Linksys Linksys DLink Belkin
WGR614v5 WGR614v7 WRT54G DD-WRT WRT310N DIR-635 F5D7230

Application � × � × � × � × � × � × � ×

Conn. Manager 25 25 24 24 13 12 34 20 50 40 48 0 25 0
FTP Client – – 156 254 309 169 – – – – 67 89 46 26
Xbox 29 20 – – 33 108 – – – – – – – –

Table 5: A summary of the number of configuration settings we obtained from each router for VPN, FTP, and Xbox
experiments. A “�” lists the number of good configurations, and a “×” lists bad configurations. Cases where a
particular router was not used with an application are marked with “–”.
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Figure 4: NetPrints configuration tree for the FTP client.
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Figure 5: NetPrints change tree for the FTP client.

their home computers from remote locations. However,
the online discussions forums include several user com-
plaints about the FTP service not running as expected
when behind a NAT (e.g., #7 and #8 in Table 1).

To investigate #8, in particular, we evaluated Net-
Prints when a Perl-based FTP client running on a remote
machine tries to connect to an IIS FTP server [3] run-
ning on a home network behind a NAT. Besides varying
the router configuration settings, we also manually set
and reset an application-specific parameter on the FTP
client that determined whether the client used passive-
or active-mode FTP. This corresponds to the hidden con-
figuration example discussed in Section 7.

Figure 4 shows the NetPrints configuration tree, indi-
cating the various server-side router settings (depending
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Figure 6: NetPrints configuration tree for file sharing.

on the router model) needed for FTP to work. Since
variable names for the same functionality vary based
on the router, the tree has learnt three different variable
names to capture the state of the DMZ (dmz enable,
dmz enabled, and dmz enable 1).

Note, however, that the misclassification count for
most of the leaf nodes in the figure is significant. To
understand why, consider the network signature and
change trees shown in Figure 5. When the client uses
active FTP, all of the server’s connection attempts to
the client fail, unless a firewall rule on the client host is
enabled for allowing incoming TCP connections to the
FTP client (this rule is disabled by default). The network
signature for this problem has the “Inbound:Three SYN
no response” feature set, since the client’s firewall drops
incoming connection attempts from the FTP server. Fig-
ure 5 also shows the change tree corresponding to this
signature, which essentially says that the above firewall
rule should be enabled.

While we used a Perl-based FTP client in this exper-
iment for ease of automation, similar hidden configura-
tion parameters exist in other clients. For example, IE
7.0 has a parameter to “turn off passive FTP connec-
tions”, which, if set, would result in similar problems
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and call for similar fixes as those discussed above.

9.4 Windows File Sharing
Home users often use file sharing within the home net-
work. Online forums contain several complaints related
to file sharing in Windows Vista, often caused by end-
host configuration errors (e.g., #5 and #6 in Table 1).

To investigate these, we set up an experiment where
a client host in our home network testbed tried to ac-
cess a folder on a server host in the same home network.
On both the client and the server, we varied the firewall
settings, and the domain or workgroup that the machine
was joined to. On the server, we varied the access con-
trol list (ACL) of users allowed to access the folder, and
on the client, we varied the identity of the user who tried
to access the folder. In all, we gathered data for 313
different configurations.

Figure 6 shows the configuration tree generated by
NetPrints. In a nutshell, the configuration tree tells us
that file sharing works if (a) the server-side firewall al-
lows file sharing, and (b.1) either the special user “ev-
eryone” is a member of the folder’s ACL or the current
user on the client is a member of the folder’s ACL, or
(b.2) the special user “guest” is a member of the server’s
ACL list and the current user on the client is not a local
user on the server.

This last point, b.2, is interesting since it suggests that
the special user “guest” includes all users except the lo-
cal users on the host machine. This is counter-intuitive
since it means that guest users can, depending on the
policy, have greater access than local users. We con-
firmed with experts within Microsoft that this is indeed
expected behavior.

9.5 Xbox Live

Xbox Live [20] is a service that allows Xbox users to
play multi-player games, chat, and interact over the In-
ternet. One issue was that we could not run the NetPrints
client directly on the Xbox since the consumer Xboxes
are not user-programmable. For the sake of our exper-
iments, we emulated a NetPrints client on the Xbox by
instead running the client on a PC that is able to monitor
all of the Xbox’s network communication.

For this experiment, we gathered data for the Netgear
WGR614v5 and the Linksys WRT54G routers, as indi-
cated in Table 5.

Figure 7 shows the configuration tree generated by
NetPrints. NetPrints learned three configuration rules.
First, to make the NAT open, the router needs to enable
UPnP. Second, Xbox 360 requires the router MTU to be
greater than 1300 to enable connectivity to Xbox Live.
Third, the Xbox wireless adapter could not connect to a
wireless network if the security mode used was WPA2.

local.upnp_enable

Bad

(76/0)

10

local.wan_mtu

Bad

(33/0)

>1300<=1300

local.connection_type

Good

(63/1)

wirelesswired

local.SecurityMode

Good

(8/0)

WPA2WEP

Good

(2/0)

WPA

Bad

(8/0)

Figure 7: NetPrints configuration tree for Xbox Live.
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Figure 8: Sensitivity to mislabeled configuration data.

NetPrints’ findings correspond to the suggested con-
figuration fixes for #18 and #19 in Table 1, except for
the MTU fix. We found out through support sites that
Xbox Live requires the MTU to be set to 1365 bytes or
larger. However, given that the data from our experi-
ments, which formed the basis for NetPrints’ learning,
only had the MTU set to one of five values, the best in-
ference we could make was that the MTU should be set
to larger than 1300 bytes.

9.6 Robustness Tests
While our experiments have used clean and diverse data,
in reality, configurations could be mislabeled and have
limited diversity. Hence, we perform experiments to
evaluate the robustness of the configuration trees to var-
ious conditions not found in our experimental data.

9.6.1 Mislabeled Configurations
In a deployed system, configurations uploaded to the
server will not always be labeled correctly. Mislabeled
configurations could potentially lead to troubleshooting
a problem incorrectly, such as identifying a bad config-
uration as a good one. To evaluate the sensitivity of our
configuration decision trees to mislabeling, we started
with a known, correct set of labeled configurations and
their associated decision trees. We then chose a ran-
dom percentage p of those configurations and mislabeled
them, flipping their labels from good to bad and vice
versa. From this set with mislabeled configurations, we
again generated decision trees and compared them with
the original trees generated using correct labels.

Figure 8 shows the results of this experiment on the
configurations for three applications: VPN (CM), File
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Sharing and Xbox. The x-axis shows the percentage
of mislabeling of configurations, and the y-axis shows
the percentage of configurations incorrectly labeled in
the decision tree based upon the mislabeled configura-
tions. Each point represents the average across 100 tri-
als. The VPN, File Sharing, and Xbox curves are sim-
ilar and therefore difficult to distinguish. The VPN(x4)
curve shows the effect of mislabeling for CM when the
tree learning used four times as much data as from our
testbed.

The results indicate that the applications are fairly re-
silient to mislabeling. While an insistence on no errors
(0%) can only tolerate 2–4% mislabeling, allowing a
1% error (i.e., returning an incorrect configuration fix
for up to 1 out of 100 diagnoses) allows tolerating 13–
17% mislabeling. When more than 20% of configura-
tions are mislabeled, though, the resulting decision trees
overfit substantially, resulting in a high error rate. We
also found that the effect of mislabeling diminishes sig-
nificantly with a larger number of data points. For the
VPN(x4) experiment, the tree tolerates 9% mislabeling
(0% error) and 26% mislabeling (1% error), making it
considerably more tolerant than the tree with the smaller
configuration set.

Note that our methodology is not performing cross-
validation on the data with training and testing sets. The
reason is that we are not using the decision trees as clas-
sifiers. In other words, NetPrints does not use decision
trees to classify or predict whether a configuration is
good or bad — all configurations from the client already
have labels (“good” or “bad”) associated with them. The
mislabeling experiment performs an extrinsic evaluation
of the problem in terms of the utility of identifying an
appropriate configuration mutation for a diagnosis in the
face of incorrect labels.

9.6.2 Reduced Diversity
The configurations from our testbed experiments are
roughly uniform in distribution in terms of the settings
of the various parameters. In practice, the distribution is
likely to be less diverse, with some settings much more
prevalent than others (e.g., SPI might be disabled in 90%
of configurations). In particular, the default configura-
tion for a device, with an incorrect setting for a parame-
ter, is likely to be prevalent, as is the resulting working
configuration after correction.

Does low diversity further change the sensitivity of
the decision trees to mislabeling? For each of the VPN,
File Sharing and Xbox applications, we chose two con-
figurations representing a default bad configuration and
a default good configuration. We then introduced dupli-
cates of those defaults to create low diversity. We varied
the percentage of identical configurations from 0–95%,
learnt the decision tree, and measured the extent of mis-

labeling similar to Section 9.6.1. For all of the applica-
tions, the effect of mislabeling was the same as with the
original distribution of configurations.

10 Discussion
We now discuss a few broad challenges for NetPrints.

10.1 Reducing the Burden of Labeling
As noted in Section 5.2, NetPrints enlists the help of
users to perform labeling of configurations (and also of
network traffic traces). NetPrints employs several sim-
ple ideas to gather rich and accurate labeled data while
minimizing the burden on users.

The labeling of “bad” configurations happens implic-
itly, as a by-product of a user invoking NetPrints for di-
agnosis when experiencing an application failure. Thus,
it is only for having the “good” configurations labeled
that the user’s help must be enlisted explicitly.

However, prompting the user to label each run of an
application as “good” or “bad” would likely be oner-
ous and perhaps also provoke deliberately dishonest be-
haviour from an irritated user. So, in NetPrints, we only
prompt each user for a small fraction of the application
runs invoked by that user, with the expectation that, with
a minimal burden placed on them, users would likely be
honest while labeling. Given the participation of a large
number of users, NetPrints is still able to accumulate a
large volume of labeled configuration information, even
while keeping the burden on any individual user low.

Furthermore, even the occassional prompting of a user
is modulated so as to yield useful data with high like-
lihood. First, since the effective application of learn-
ing would require a mix of both “good” and “bad” data,
users are prompted more frequently (with the hope of
obtaining more data points labeled as “good”) when the
system is accumulating more “bad” data points because
of users invoking NetPrints frequently to diagnose prob-
lems. Second, a user is more likely to be prompted when
there has been a recent local configuration change. This
policy increases the likelihood of novel information be-
ing fed into the learning process.

10.2 Preserving Privacy
Privacy is a key concern for NetPrints. Simply excluding
privacy-sensitive configuration parameters such as user-
names and passwords from the purview of NetPrints is
not sufficient. Even the ability to tie back to the origin
host (identified, say, by its IP address) configuration data
uploaded to the NetPrints server could be problematic.
For instance, knowledge of misconfigurations on a host
could leave it vulnerable to attacks.

In ongoing work, we are working on a distributed
aggregation system aimed at balancing two conflicting
goals: enabling nodes to contribute data anonymously
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while still enforcing tight bounds on the ability of ma-
licious nodes to pollute the aggregated data. Thus, if a
majority of nodes is honest, the aggregated data would
be mostly accurate. While the details of this aggrega-
tion system are out of the scope of the present paper, we
believe that NetPrints could directly use such a system.

10.3 Bootstrapping NetPrints
A participatory system such as NetPrints faces interest-
ing challenges in bootstrapping its deployment. There is
a chicken-and-egg problem in that users are unlikely to
participate unless the system is perceived as being valu-
able in terms of its ability to diagnose problems, which
in turn depends on the contribution of data by the partic-
ipating users’ machines. Even if this dilemma were re-
solved, there is still the challenge that users might resort
to greedy behaviour, installing and running NetPrints
only when they need to diagnose a problem and turn-
ing it off at other times, thereby starving the system of
the data it needs to perform diagnoses effectively.

One could devise incentive mechanisms to encourage
user participation. A complementary mechanism, which
we are pursuing, is to bootstrap NetPrints using infor-
mation learned via experiments in a laboratory testbed.
This is similar to the methodology used for the evalua-
tion presented in Section 9. While the richness of the
testbed data would have a direct bearing on NetPrints’
learning and hence its ability to diagnose problems, such
an approach could help bootstrap NetPrints to the point
where users perceive enough value to start participating.

11 Conclusion
We have described the design and implementation of
NetPrints, a system to automatically troubleshoot home
networking problems caused by misconfigurations. Net-
Prints uses decision tree-based learning on labeled con-
figuration information and traffic features from a popula-
tion of clients to build a shared repository of knowledge
on a per-application basis. We report experimental re-
sults for a few applications in a laboratory testbed and a
small-scale deployment. Our ongoing work focuses on
scaling up the deployment and addressing privacy issues.
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