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Abstract

Modern software model checkers find safety violations: breaches
where the system enters some bad state. However, we argue that
checking liveness properties offers both a richer and more natu-
ral way to search for errors, particularly in complex concurrent
and distributed systems. Liveness properties specify desirable
system behaviors which must be satisfied eventually, but are not
always satisfied, perhaps as a result of failure or during system
initialization.

Existing software model checkers cannot verify liveness be-
cause doing so requires finding an infinite execution that does
not satisfy a liveness property. We present heuristics to find a
large class of liveness violations and the critical transition of
the execution. The critical transition is the step in an execution
that moves the system from a state that does not currently sat-
isfy some liveness property—but where recovery is possible in
the future—to a dead state that can never achieve the liveness
property. Our software model checker, MACEMC, isolates com-
plex liveness errors in our implementations of PASTRY, CHORD,
a reliable transport protocol, and an overlay tree.

1 Introduction

Hard-to-find, non-reproducible bugs have long been the
bane of systems programmers. Such errors prove espe-
cially challenging in unreliable distributed environments
with failures and asynchronous communication. For ex-
ample, we have run our MACE implementation of the
PASTRY [28] overlay on the Internet and emulated en-
vironments for three years with occasional unexplained
erroneous behavior: some nodes are unable to rejoin the
overlay after restarting. Unable to recreate the behavior,
we never succeeded in tracking down the cause of the er-
ror.

Motivated by this and similarly subtle bugs, we turned
to model checking to assist us in building robust dis-
tributed systems. Unfortunately, existing model check-
ers able to run on systems implementations (rather
than specifications) can only find safety violations—
counterexamples of a specified condition that should al-
ways be true. Simple examples of safety properties are

assert() statements and unhandled program excep-
tions. For our target systems however, specifying global
liveness properties—conditions that should always even-
tually be true—proved to be more desirable. In the above
example, we wished to verify that eventually all PASTRY

nodes would form a ring. Somewhat paradoxically, spec-
ifying the appropriate safety property requires knowledge
of the nature of the bug, whereas specifying the appropri-
ate liveness property only requires knowledge of desirable
high-level system properties. It is acceptable for a node to
be unable to join a ring temporarily, but in our case, the
bug made it impossible for a node to ever join the ring,
thus violating liveness.

Existing software model checkers focus on safety prop-
erties because verifying liveness poses a far greater chal-
lenge: the model checker cannot know when the proper-
ties should be satisfied. Identifying a liveness violation re-
quires finding an infinite execution that will not ever sat-
isfy the liveness property, making it impractical to find
such violating infinite executions in real implementations.
Thus, we set out to develop practical heuristics that enable
software model checkers to determine whether a system
satisfies a set of liveness properties.

We present MACEMC, the first software model checker
that helps programmers find liveness violations in com-
plex systems implementations. We built our solution upon
three key insights:

Life: To find subtle, complicated bugs in distributed sys-
tems, we should search for liveness violations in ad-
dition to safety violations. Liveness properties free us
from only specifying what ought not happen—that is,
error conditions and invariants, which may be hope-
lessly complicated or simply unknown—and instead let
us specify what ought to happen.

Death: Instead of searching for general liveness viola-
tions, which require finding violating infinite execu-
tions, we focus on a large subset: those that enter dead
states from which liveness can never be achieved re-
gardless of any subsequent actions. We thereby reduce
the problem of determining liveness to searching for vi-
olations of previously unknown safety properties. We
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present a novel heuristic to identify dead states and lo-
cate executions leading to them by combining exhaus-
tive search with long random executions.

Critical Transition: To understand and fix a liveness er-
ror, the developer must painstakingly analyze the tens
of thousands of steps of the non-live execution to find
where and how the system became dead. We show how
to extend our random execution technique to automat-
ically search for the critical transition, the step that ir-
recoverably cuts off all possibility of ever reaching a
live state in the future.

To further help the programmer understand the cause of an
error, we developed MDB, an interactive debugger provid-
ing forward and backward stepping through global events,
per-node state inspection, and event graph visualization.
In our experience, MDB, together with the critical transi-
tion automatically found by MACEMC, reduced the typi-
cal human time required to find and fix liveness violations
from a few hours to less than 20 minutes.

Using MACEMC and MDB, we found our PASTRY

bug: under certain circumstances, a node attempting to
rejoin a PASTRY ring using the same identifier was un-
able to join because its join messages were forwarded to
unjoined nodes. This error was both sufficiently obscure
and difficult to fix that we decided to check how FREEP-
ASTRY [1], the reference implementation, dealt with this
problem. The following log entry in a recent version of the
code (1.4.3) suggests that FREEPASTRY likely observed a
similar problem: “Dropped JoinRequest on rapid rejoin
problem – There was a problem with nodes not being able
to quickly rejoin if they used the same NodeId. Didn’t find
the cause of this bug, but can no longer reproduce.”

We have found 52 bugs using MACEMC thus far across
a variety of complex systems. While our experience is re-
stricted to MACEMC, we believe our random execution
algorithms for finding liveness violations and the criti-
cal transition generalize to any state-exploration model
checker capable of replaying executions. It should there-
fore be possible to use this technique with systems pre-
pared for other model checkers by defining liveness prop-
erties for those systems. Although our approach to finding
liveness violations is necessarily a heuristic—a proof of
a liveness violation requires finding an infinite execution
that never satisfies liveness—we have not had any false
positives among the set of identified violations to date.

2 System Model

Software model checkers find errors by exploring the
space of possible executions for systems implementations.
We establish the MACEMC system model with our sim-
plified definitions of programs and properties (see [19] for

the classical definitions). We then discuss the relationship
between liveness and safety properties.

Distributed Systems as Programs We model-check dis-
tributed systems by composing every node and a simu-
lated network environment in a single program (cf. §4.1
for the details of preparing unmodified systems for model
checking). A program state is an assignment of values to
variables. A transition maps an input state to an output
state. A program comprises a set of variables, a set of ini-
tial states, and a set of transitions. A program execution
is an infinite sequence of states, beginning in an initial
program state, with every subsequent state resulting from
the application of some transition (an atomic set of ma-
chine instructions) to its predecessor. Intuitively, the set
of variables corresponds to those of every node together
with the distributed environment, such as the messages in
the network. Thus, a state encodes a snapshot of the entire
distributed system at a given instant in time.

Conceptually, each node maintains a set of pending
events. At each step in the execution, the model checker
selects one of the nodes and an event pending at that node.
The model checker then runs the appropriate event han-
dler to transition the system to a new state. The handler
may send messages that get added to event queues of des-
tination nodes or schedule timers to add more events to its
pending set. Upon completing an event handler, control
returns to the model checker and we repeat the process.
Each program execution corresponds to a scheduling of
interleaved events and a sequence of transitions.

Properties A state predicate is a logical predicate over
the program variables. Each state predicate evaluates to
TRUE or FALSE in any given state. We say that a state
satisfies (resp., violates) a state predicate if the predicate
evaluates to TRUE (resp., FALSE) in the state.

Safety Property: a statement of the form always p where
p is a safety (state) predicate. An execution satisfies a
safety property if every state in the execution satisfies
p. Conversely, an execution violates a safety property if
some state in the execution violates p.

Liveness Property: a statement of the form always eventu-
ally p where p is a liveness (state) predicate. We define
program states to be in exactly one of three categories
with respect to a liveness property: live, dead, or tran-
sient. A live state satisfies p. A transient state does not
satisfy p, but some execution through the state leads to a
live state. A dead state does not satisfy p, and no execu-
tion through the state leads to a live state. An execution
satisfies a liveness property if every suffix of the execu-
tion contains a live state. In other words, an execution
satisfies the liveness property if the system enters a live
state infinitely often during the execution. Conversely,
an execution violates a liveness property if the execu-
tion has a suffix without any live states.
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System Name Property
Pastry AllNodes Eventually ∀n ∈ nodes : n.(successor )∗ ≡ nodes

Test that all nodes are reached by following successor pointers from each node.
SizeMatch Always ∀n ∈ nodes : n.myright .size() + n.myleft .size() = n.myleafset .size()

Test the sanity of the leafset size compared to left and right set sizes.
Chord AllNodes Eventually ∀n ∈ nodes : n.(successor )∗ ≡ nodes

Test that all nodes are reached by following successor pointers from each node.
SuccPred Always ∀n ∈ nodes : {n.predecessor = n.me ⇐⇒ n.successor = n.me}

Test that a node’s predecessor is itself if and only if its successor is itself.
RandTree OneRoot Eventually for exactly 1 n ∈ nodes : n.isRoot

Test that exactly one node believes itself to be the root node.
Timers Always ∀n ∈ nodes : {(n.state = init)‖(n.recovery .nextScheduled () 6= 0)}

Test that either the node state is init, or the recovery timer is scheduled.
MaceTransport AllAcked Eventually ∀n ∈ nodes : n.inflightSize() = 0

Test that no messages are in-flight (i.e., not acknowledged).
No corresponding safety property identified.

Table 1: Example predicates from systems tested using MACEMC. Eventually refers here to Always Eventually corresponding to
Liveness properties, and Always corresponds to Safety properties. The syntax allows a regular expression expansion ‘*’, used in the
AllNodes property.

It is important to stress that liveness properties, unlike
safety properties, apply over entire program executions
rather than individual states. Classically, states cannot be
called live (only executions)—we use the term live state
for clarity. The intuition behind the definition of liveness
properties is that any violation of a liveness state predicate
should only be temporary: in any live execution, regard-
less of some violating states, there must be a future state
in the execution satisfying the liveness predicate.

Table 1 shows example predicates from systems we
have tested in MACEMC. We use the same liveness pred-
icate for PASTRY and CHORD, as both form rings with
successor pointers.

Liveness/Safety Duality We divide executions violating
liveness into two categories: Transient-state and Dead-
state. Transient-state (TS) liveness violations correspond
to executions with a suffix containing only transient states.
For example, consider a system comprising two servers
and a randomized job scheduling process. The liveness
property is that eventually, the cumulative load should be
balanced between the servers. In one TS liveness viola-
tion, the job scheduling process repeatedly prefers one
server over the other. Along a resulting infinite execution,
the cumulative load is never balanced. However, at every
point along this execution, it is possible for the system to
recover, e.g., the scheduler could have balanced the load
by giving enough jobs to the underutilized server. Thus,
all violating states are transient and the system never en-
ters a dead state.

Dead-state (DS) liveness violations correspond to an
execution with any dead state (by definition all states fol-
lowing a dead state must also be dead because recovery
is impossible). Here, the violating execution takes a crit-
ical transition from the last transient (or live) state to the

first dead state. For example, when checking an overlay
tree (cf. §6), we found a violating execution of the “One-
Root” liveness state predicate in Table 1, in which two
trees formed independently and never merged. The criti-
cal transition incorrectly left the recovery timer of a node
A unscheduled in the presence of disjoint trees. Because
only A had knowledge of members in the other tree, the
protocol had no means to recover.

Our work focuses on finding DS liveness violations. We
could have found these violations by using safety prop-
erties specifying that the system never enters the corre-
sponding dead states. Unfortunately, these safety proper-
ties are often impossible to identify a priori. For instance,
consider the liveness property “AllNodes” for CHORD

shown in Table 1: eventually, all nodes should be reach-
able by following successor pointers. We found a viola-
tion of this property caused by our failure to maintain
the invariant that in a one-node ring, a node’s predeces-
sor and successor should be itself. Upon finding this error,
we added the corresponding safety property for CHORD.
While we now see this as an “obvious” safety property, we
argue that exhaustively listing all such safety properties
a priori is much more difficult than specifying desirable
liveness properties.

Moreover, liveness properties can identify errors that in
practice are infeasible to find using safety properties. Con-
sider the “AllAcked” property for our implementation of
a transport protocol, shown in Table 1. The property is
for the test application, which sends a configurable total
number of messages to a destination. It states that all sent
messages should eventually be acknowledged by the des-
tination (assuming no permanent failures): the transport
adds a message to the inflight queue upon sending and
removes it when it is acknowledged. The corresponding
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safety property would have to capture the following: “Al-
ways, for each message in the inflight queue or retrans-
mission timer queue, either the message is in flight (in the
network), or in the destination’s receive socket buffer, or
the receiver’s corresponding IncomingConnection .next

is less than the message sequence number, or an ac-
knowledgment is in flight from the destination to the
sender with a sequence number greater than or equal to
the message sequence number, or the same acknowledg-
ment is in the sender’s receive socket buffer, or a re-
set message is in flight between the sender and receiver
(in either direction), or . . .” Thus, attempting to spec-
ify certain conditions with safety properties quickly be-
comes overwhelming and hopelessly complicated, espe-
cially when contrasted with the simplicity and succinct-
ness of the liveness property: “Eventually, for all n in
nodes, n.inflightSize() = 0,” i.e., that eventually there
should be no packets in flight.

Thus, we recommend the following iterative process for
finding subtle protocol errors in complex concurrent envi-
ronments. A developer begins by writing desirable high-
level liveness properties. As these liveness properties typ-
ically define the correct system behavior in steady-state
operation, they are relatively easy to specify. Developers
can then leverage insight from DS liveness violations to
add new safety properties. In Table 1, we show safety
properties that became apparent while analyzing the cor-
responding DS liveness violations. While safety proper-
ties are often less intuitive, the errors they catch are typ-
ically easier to understand—the bugs usually do not in-
volve complex global state and lie close to the operations
that trigger the violations.

3 Model Checking with MACEMC

This section presents our algorithms for finding liveness
and safety violations in systems implementations. We find
potential liveness violations via a three-step state explo-
ration process. While our techniques do not present proofs
for the existence of a liveness violation, we have thus far
observed no false positives. In practice, all flagged viola-
tions must be human-verified, which is reasonable since
they point to bugs which must be fixed. As shown in Fig-
ure 1, our process isolates executions leading the system
to dead states where recovery to a configuration satisfying
the liveness state predicate becomes impossible.

Step 1: Bounded depth-first search (BDFS) We begin
by searching from an initial state with a bounded depth-
first search. We exhaustively explore all executions up to
some fixed depth in a depth-first manner and then repeat
with an increased depth bound. Due to state explosion, we
can only exhaustively explore up to a relatively shallow
depth of transitions (on the order of 25-30); as system ini-

Figure 1: State Exploration We perform bounded depth-first
search (BDFS) from the initial state (or search prefix): most pe-
riphery states are indeterminate, i.e., not live, and thus are either
dead or transient. We execute random walks from the periphery
states and flag walks not reaching live states as suspected violat-
ing executions.

tialization typically takes many more transitions (cf. Fig-
ure 2), the vast majority of states reached at the periphery
of the exhaustive search are not live. We call these states
indeterminate because at this point we do not yet know
whether they are dead or transient.

Step 2: Random Walks While the exhaustive search is
essential to finding a candidate set of liveness violations,
to prune the false positives, we must distinguish the dead
from the transient states. To do so, we perform long ran-
dom walks to give the system sufficient time to enter a
live state. If the system still fails to reach a live state by
the end of the walk, we flag the execution as a suspected
liveness violation. Our random walks typically span tens
or hundreds of thousands of transitions to minimize the
likelihood of false positives.

Step 3: Isolating the Critical Transition The model
checker presents the execution exhibiting a suspected live-
ness violation to the developer to assist in locating the
actual error. The programmer cannot understand the bug
simply by examining the first states that are not live, as
these are almost always transient states, i.e., there exist
executions that would transition these initial indetermi-
nate states to live states. Thus, we developed an algo-
rithm to automatically isolate the critical transition that
irreversibly moves the system from a transient state to a
dead state.

3.1 Finding Violating Executions

We now describe the details of our algorithms. Suppose
that MACEMC is given a system, a safety property always
ps, and a liveness property eventually pl.

Our algorithm MaceMC Search (Algorithm 1) system-
atically explores the space of possible executions. Each
execution is characterized by the sequence of choices
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Algorithm 1 MaceMC Search

Input: Depth increment

depth = 0
repeat

if Sequences(depth) is empty then
depth = depth + increment

Reset system
seq = next sequence in Sequences(depth)
MaceMC Simulator(seq)

until STOPPING CONDITION

made to determine the node-event pair to be executed at
each step. We iterate over all the sequences of choices of
some fixed length and explore the states visited in the ex-
ecution resulting from the sequence of choices. Consider
the set of all executions bounded to a given depth depth .
These executions form a tree by branching whenever one
execution makes a different choice from another. To deter-
mine the order of executions, we simply perform a depth-
first traversal over the tree formed by this depth bound.
Sequences(depth) returns a sequence of integers indicat-
ing which child to follow in the tree during the execution.
It starts by returning a sequence of 0’s, and each time it
is called it increases the sequence, searching all possible
sequences. For each sequence, MaceMC Search initial-
izes the system by resetting the values of all nodes’ vari-
ables to their initial values and then calls the procedure
MaceMC Simulator to explore the states visited along the
execution corresponding to the sequence. After searching
all sequences of length depth , we repeat with sequences
of increasing depth. We cannot search extreme system
depths due to the exponential growth in state space. While
they have not been necessary to date, optimizations such
as multiple random walks or best-first search may enhance
coverage over initial system states.

Algorithm 2 MaceMC Simulator

Input: Sequence seq of integers
for i = 0 to dmax do

readyEvents = set of pending 〈node, event〉 pairs
eventnum = Toss(i, seq, |readyEvents |)
〈node, event〉 = readyEvents [eventnum]
Simulate event on node

if ps is violated then
signal SAFETY VIOLATION

if i > depth and pl is satisfied then
return

signal SUSPECTED LIVENESS VIOLATION

Algorithm 2, MaceMC Simulator, takes a sequence of
integers as input and simulates the resulting execution us-
ing the sequence of choices corresponding to the integers.
MaceMC Simulator simulates an execution of up to dmax

transitions (cf. §4.4 for setting dmax ). At the ith step,
MaceMC Simulator calls the procedure Toss with i , the
sequence, and the number of ready events to determine
pending node event pairs to execute, and then executes the
handler for the chosen event on the chosen node to obtain
the state reached after i transitions. If this state violates
the given safety predicate, then MaceMC Simulator re-
ports the safety violation. If this state is beyond the search
depth and satisfies the given liveness predicate, then the
execution has not violated the liveness property and the
algorithm returns. Only considering liveness for states be-
yond the search depth is important because otherwise a
live state within the periphery would prevent us from find-
ing liveness bugs that enter the dead state beyond the pe-
riphery. If the loop terminates after dmax steps, then we
return the execution as a suspected liveness violation.

Combining Exhaustive Search and Random Walks
The procedure Toss ensures that MaceMC Search and
MaceMC Simulator together have the effect of exhaus-
tively searching all executions of bounded depths and then
performing random walks from the periphery of the states
reached in the exhaustive search. Toss(i , seq , k) returns
the ith element of the sequence seq if i is less than |seq |
(the length of the sequence) or some random number be-
tween 0 and k otherwise. Thus, for the first |seq| iter-
ations, MaceMC Simulator selects the seq [i ]th element
of the set of pending node event pairs, thereby ensuring
that we exhaustively search the space of all executions
of depth |seq|. Upon reaching the end of the supplied
sequence, the execution corresponds to a random walk
of length dmax − |seq | performed from the periphery of
the exhaustive search. By ensuring dmax is large enough
(hundreds of thousands of transitions), we can give the
system enough opportunity to reach a live state. If the ex-
ecution never enters a live state despite this opportunity,
we flag the execution as a suspected liveness violation.

3.2 Finding the Critical Transition

If MACEMC reaches the maximum random walk depth
dmax without entering a live state, we have a suspected
liveness violation. The execution meets one of two condi-
tions:

Condition 1 (C1): The execution is a DS liveness viola-
tion, meaning the system will never recover. The execu-
tion should be brought to the attention of the program-
mer to locate and fix the error.

Condition 2 (C2): The execution does not reach any live
states, but might still in the future. The execution should
be brought to the attention of the programmer to deter-
mine whether to proceed by increasing dmax or by in-
specting the execution for a bug.
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Before discussing how we distinguish between the two
cases, consider an execution that does enter a dead state
(meets condition C1). The programmer now faces the
daunting and time consuming task of wading through tens
of thousands of events to isolate the protocol or imple-
mentation error that transitioned the system to a dead
state. Recall that while the system may enter a transient
state early, typically a much later critical transition finally
pushes the system into a dead state. After attempting to
find liveness errors manually when only the violating ex-
ecution was available, we set out to develop an algorithm
to automatically locate the critical transition. Importantly,
this same procedure also heuristically identifies whether
an execution meets C1 or C2.

Algorithm 3 FindCriticalTransition
Input: Execution E non-live from step dinit to dmax

Input: Number of Random Walks k
Output: (Critical Transition dcrit , Condition C1 or C2)

1: {Phase 1: Exponential Search}
2: if not Recovers(E, dinit , k) then return (dinit ,C2)
3: dcurr = dinit

4: repeat
5: dprev = dcurr

6: dcurr = 2 × dcurr

7: if dcurr > dmax/2 then return (dcurr ,C2)
8: until not Recovers(E, dcurr , k)
9: {Phase 2: Binary Search}

10: {dprev is highest known recoverable}
11: {dcurr is lowest believed irrecoverable}
12: loop
13: if (dprev = dcurr − 1) then return (dcurr ,C1)
14: dmid = (dprev + dcurr )/2
15: if Recovers(E, dmid , k) then dprev = dmid

16: else dcurr = dmid

Algorithm 3 shows our two-phase method for locating
the critical transition. It takes as input the execution E
from the initial random walk, which from step dinit on-
wards never reached a live state even after executing to
the maximum depth dmax . The function Recovers(E, i, k)
performs up to k random walks starting from the ith state
on the execution E to the depth dmax and returns TRUE
if any of these walks hit a live state, indicating that the
ith state should be marked transient; and FALSE oth-
erwise, indicating that the ith state is dead. In the first
phase, MACEMC doubles dcurr until Recovers indicates
that dcurr is dead. dmax and the resulting dcurr place an
upper bound on the critical transition, and the known live
state dprev serves as a lower bound. In the second phase,
MACEMC performs a binary search using Recovers to
find the critical transition as the first dead state dcrit be-
tween dprev and dcurr . If we perform k random walks
from each state along the execution, then the above proce-

dure takes O(k · dmax · log dcrit ) time (Note that dcrit ≤
dmax ).

In addition to the full execution that left the system
in a dead state and the critical transition dcrit , we also
present to the programmer the event sequence that shares
the longest common prefix with the DS liveness violation
that ended in a live state. In our experience, the combina-
tion of knowing the critical transition and comparing it to
a similar execution that achieves liveness is invaluable in
finding the actual error.

Two interesting corner cases arise in the
FindCriticalTransition algorithm. The first case oc-
curs when Phase 1 cannot locate a dead state (indicated
by dcurr > dmax/2 in line 7). In this case, we conclude
that as the critical transition does not appear early
enough, the system was not given enough opportunity to
recover during the random walk. Thus, case C2 holds.
The developer should raise dmax and repeat. If raising
dmax does not resolve the problem, the developer should
consider the possibility that this execution is a TS liveness
violation. To help this analysis, MACEMC provides the
set of live executions similar to the violating execution,
but the developer must isolate the problem. In the second
case, we find no live executions even when in the initial
state (line 2); either the critical transition is at dinit (the
initial state), or, more likely, we did not set dmax high
enough. The programmer can typically determine with
ease whether the system condition at dinit contains a bug.
If not, once again we conclude that case C2 holds and
raise dmax and repeat Algorithm 1.

4 Implementation Details

This section describes several subtle details in our
MACEMC implementation. While we believe the tech-
niques described in Section 3 could be applied to any
state-exploration model checker capable of replaying ex-
ecutions, MACEMC operates on systems implemented
using the MACE compiler and C++ language exten-
sions [18]. MACE introduces syntax to structure each node
as a state machine with atomic handlers corresponding
to events such as message reception, timers firing, etc.
MACE implementations consist of C++ code in appropri-
ately identified code blocks describing system state vari-
ables and event handler methods; and the MACE com-
piler outputs C++ code ready to run across the Internet
by generating classes and methods to handle event dis-
patch, serialization, timers, callbacks, etc. MACE imple-
mentations perform comparably or better than hand-tuned
implementations. Leveraging MACE code frees us from
the laborious task of modifying source code to isolate the
execution of the system, e.g., to control network com-
munication events, time, and other sources of potential
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input. Thus, using MACE-implemented systems dramat-
ically improves the accessibility of model checking to the
typical programmer.

4.1 Preparing the System

To model check a system, the user writes a driver ap-
plication suitable for model checking that should initial-
ize the system, perform desired system input events, and
check high-level system progress with liveness proper-
ties. For example, to look for bugs in a file distribution
protocol, the test driver could have one node supply the
file, and the remaining nodes request the file. The live-
ness property would then require that all nodes have re-
ceived the file and the file contents match. Or for a con-
sensus protocol, a simulated driver could propose a dif-
ferent value from each node, and the liveness property
would be that each node eventually chooses a value and
that all chosen values match. The MACEMC application
links with the simulated driver, the user’s compiled MACE

object files, and MACE libraries. MACEMC simulates a
distributed environment to execute the system—loading
different simulator-specific libraries for random number
generation, timer scheduling, and message transport—to
explore a variety of event orderings for a particular sys-
tem state and input condition.

Non-determinism To exhaustively and correctly ex-
plore different event orderings of the system, we must
ensure that the model checker controls all sources of
non-determinism. So far, we have assumed that the
scheduling of pending 〈node, event〉 pairs accounts for
all non-determinism, but real systems often exhibit non-
determinism within the event handlers themselves, due to,
e.g., randomized algorithms and comparing timestamps.
When being model checked, MACE systems automati-
cally use the deterministic simulated random number gen-
erator provided by MACEMC and the support for simu-
lated time, which we discuss below. Furthermore, we use
special implementations of the MACE libraries that inter-
nally call Toss at every non-deterministic choice point.
For example, the TCP transport service uses Toss to
decide whether to break a socket connection, the UDP
transport service uses Toss to determine which message
to deliver (allowing out-of-order messages) and when to
drop messages, and the application simulator uses Toss
to determine whether to reset a node. Thus, by systemat-
ically exploring the sequences of return values of Toss
(as described in MaceMC Search in the previous sec-
tion), MACEMC analyzes all different sequences of in-
ternal non-deterministic choices. Additionally, this allows
MACEMC to deterministically replay executions for a
given sequence of choices.

Time Time introduces non-determinism, resulting in ex-
ecutions that may not be replayable or, worse, impossible

in practice. For example, a system may branch based on
the relative value of timestamps (e.g., for message time-
out). But if the model checker were to use actual val-
ues of time returned by gettimeofday(), this com-
parison might always be forced along one branch as
the simulator fires events faster than a live execution.
Thus, MACEMC must represent time abstractly enough
to permit exhaustive exploration, yet concretely enough to
only explore feasible executions. In addition, MACEMC
requires that executions be deterministically replayable
by supplying an identical sequence of chosen numbers
for all non-deterministic operations, including calls to
gettimeofday.

We observed that systems tend to use time to: (i) man-
age the passage of real time, e.g., to compare two times-
tamps when deciding whether a timeout should occur,
or, (ii) export the equivalent of monotonically increas-
ing sequence numbers, e.g., to uniquely order a sin-
gle node’s messages. Therefore, we address the prob-
lem of managing time by introducing two new MACE

object primitives—MaceTime and MonotoneTime—
to obtain and compare time values. When running
across a real network, both objects are wrappers around
gettimeofday. However, MACEMC treats every com-
parison between MaceTime objects as a call to Toss and
implements MonotoneTime objects with counters. De-
velopers concerned with negative clock adjustments (and
more generally non-monotone MonotoneTime imple-
mentations) can strictly use MaceTime to avoid miss-
ing bugs, at the cost of extra states to explore. Com-
pared to state of the art model checkers, this approach
frees developers from manually replacing time-based non-
determinism with calls to Toss, while limiting the amount
of needless non-determinism.

4.2 Mitigating State Explosion

One stumbling block for model-checking systems is the
exponential explosion of the state space as the search
depth increases. MACEMC mitigates this problem using
four techniques to find bugs deep in the search space.

1. Structured Transitions The event-driven, non-
blocking nature of MACE code significantly simplifies the
task of model-checking MACE implementations and im-
proves its effectiveness. In the worst case, a model checker
would have to check all possible orderings of the assem-
bler instructions across nodes with pending events, which
would make it impractical to explore more than a few hun-
dred lines of code across a small number of nodes. Model
checkers must develop techniques for identifying larger
atomic steps. Some use manual marking, while others in-
terpose communication primitives. Non-blocking, atomic
event handlers in MACE allow us to use event-handler
code blocks as the fundamental unit of execution. Once
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a given code block runs to completion, we return control
to MACEMC. At this point, MACEMC checks for viola-
tions of any safety or liveness conditions based on global
system state.

2. State Hashing When the code associated with a
particular event handler completes without a violation,
MACEMC calculates a hash of the resulting system state.
This state consists of the concatenation of the values of
all per-node state variables and the contents of all pend-
ing, system-wide events. The programmer may option-
ally annotate MACE code to ignore the value of state
variables believed to not contribute meaningfully to the
uniqueness of global system state, or to format the string
representation into a canonical form to avoid unneeded
state explosion (such as the order of elements in a set).
MaceMC Simulator checks the hash of a newly-entered
state against all previous state hashes. When it finds a du-
plicate hash, MACEMC breaks out of the current execu-
tion and begins the next sequence. In our experience, this
allows MACEMC to avoid long random walks for 50-90
percent of all executions, yielding speedups of 2-10.

3. Stateless Search MACEMC performs backtracking
by re-executing the system with the sequence of choices
used to reach an earlier state, similar to the approach taken
by Verisoft [11]. For example, to backtrack from the sys-
tem state characterized by the sequence 〈0, 4, 0〉 to a sub-
sequent system state characterized by choosing the se-
quence 〈0, 4, 1〉, MACEMC reruns the system from its ini-
tial state, re-executing the event handlers that correspond
to choosing events 0 and 4 before moving to a different
portion of the state space by choosing the event associated
with value 1. This approach is simple to implement and
does not require storing all of the necessary state (stack,
heap, registers) to restore the program to an intermediate
state. However, it incurs additional CPU overhead to re-
execute system states previously explored. We have found
trading additional CPU for memory in this manner to be
reasonable because CPU time has not proven to be a limi-
tation in isolating bugs for MACEMC. However, the state-
less approach is not fundamental to MACEMC—we are
presently exploring hybrid approaches that involve stor-
ing some state such as sequences for best-first searching
or state for checkpointing and restoring system states to
save CPU time.

4. Prefix-based Search Searching from an initial global
state suffers the drawback of not reaching significantly
past initialization for the distributed systems we consider.
Further, failures during the initial join phase do not have
the opportunity to exercise code paths dealing with fail-
ures in normal operation because they simply look like
an aborted join attempt (e.g., resulting from dropped mes-
sages) followed by a retry. To find violations in steady-
state system operation, we run MACEMC to output a

number of live executions of sufficient length, i.e., exe-
cutions where all liveness conditions have been satisfied,
all nodes have joined, and the system has entered steady-
state operation. We then proceed as normal from one of
these live prefixes with exhaustive searches for safety vi-
olations followed by random walks from the perimeter to
isolate and verify liveness violations. We found the PAS-
TRY bug described in the introduction using a prefix-based
search.

4.3 Biasing Random Walks

We found that choosing among the set of all possible ac-
tions with equal probability had two undesirable conse-
quences. First, the returned error paths had unlikely event
sequences that obfuscated the real cause of the violation.
For example, the system generated a sequence where the
same timer fired seven times in a row with no interven-
ing events, which would be unlikely in reality. Second,
these unlikely sequences slowed system progress, requir-
ing longer random walks to reach a live state. Setting
dmax large enough to ensure that we had allowed enough
time to reach live states slowed FindCriticalTransition by
at least a factor of ten.

We therefore modified Toss to take a set of weights cor-
responding to the rough likelihood of each event occurring
in practice. Toss returns an event chosen randomly with
the corresponding probabilities. For example, we may pri-
oritize application events higher than message arrivals,
and message arrivals higher than timers firing. In this way,
we bias the system to search event sequences in the ran-
dom walk with the hope of reaching a live state sooner, if
possible, and making the error paths easier to understand.

Biasing the random walks to common sequences may
run counter to the intuition that model checkers should
push the system into corner conditions difficult to pre-
dict or reason about. However, recall that we run random
walks only after performing exhaustive searches to a cer-
tain depth. Thus, the states reached by the periphery of the
exhaustive search encompass many of these tricky corner
cases, and the system has already started on a path leading
to—or has even entered—a dead state.

One downside to this approach is that the programmer
must set the relative weights for different types of events.
In our experience, however, every event has had a straight-
forward rough relative probability weighting. Further, the
reductions in average depth before transitioning to a live
state and the ease of understanding the violating execu-
tions returned by MACEMC have been worthwhile. If set-
ting the weights proves challenging for a particular sys-
tem, MACEMC can be run with unbiased random walks.
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Figure 2: CDF of simulator steps to a live state at a search depth
of 15.

4.4 Tuning MACEMC

In addition to event weights discussed above, MACEMC
may be tuned by setting dmax (random walk depth), k
(number of random walks), and a wide variety of knobs
turning features on and off. Feature knobs include whether
to test node failures, socket failures, UDP drops, UDP re-
ordering, and the number of simulated nodes, and are gen-
erally easy to set based on the target test environment.

Setting k is a bit more complex. k represents the trade-
off between the time to complete the critical transition al-
gorithm and the possibility that the reported critical tran-
sition is before the actual critical transition. This occurs
when k random executions of dmax steps did not satisfy
liveness, but some other path could have. We informally
refer to this occurrence as “near dead”. In our tests, we
general use k between 20 and 60. At 60, we have not ob-
served any prematurely reported critical transitions, while
at 20 we occasionally observe the reported critical transi-
tion off by up to 2 steps. To tune k, the programmer con-
siders the output critical transition. If it is not obvious why
it is the critical transition, the programmer can increase k
and re-run to refine the results.

Finally, we discuss how to set dmax . We ran MACEMC
over four systems using random walks to sample the
state space beyond an exhaustive search to 15 steps. Fig-
ure 2 plots the fraction of executions that reached the first
live state at a given depth. What we observe is that in
these four systems, since all sample executions reached
a live state by 10,000 steps, a random execution that takes
80,000 steps to reach a live state would be a significant
outlier, and likely somewhere along the execution it be-
came trapped in a region of dead states. Setting dmax too
low generally leads to the critical transition algorithm re-
porting condition C2, which is what we treat as the signal
to increase dmax .

Figure 2 also illustrates that the depths required to

initially reach a live state are much greater than what
can be found with exhaustive search. MACEMC found
only 60% of executions reached a live state for MACE-
TRANSPORT after considering 50 steps (the edge of what
can be exhaustively searched using state-of-the-art model
checkers), less than 1% of executions for RANDTREE and
CHORD, and none of the executions for PASTRY.

5 MACEMC Debugger

Although MACEMC flags violating executions and iden-
tifies the critical transition that likely led the system to
a dead state, the developer must still understand the se-
quence of events to determine the root cause of the error.
This process typically involves manually inspecting the
log files and hand-drawing sketches of evolving system
state. To simplify this process, we built MDB, our debug-
ging tool with support for interactive execution, replay,
log analysis, and visualization of system state across in-
dividual nodes and transitions. MDB is similar in func-
tion to other work in distributed debuggers such as the
WiDS Checker [22] and Friday [10]. MDB allows the pro-
grammer to: (i) perform single step system execution both
forward and backward, (ii) jump to a particular step, (iii)
branch execution from a step to explore a different path,
(iv) run to liveness, (v) select a specific node and step
through events only for that node, (vi) list all the steps
where a particular event occurred, (vii) filter the log us-
ing regular expressions, and (viii) diff the states between
two steps or the same step across different executions by
comparing against a second, similar log file.

MDB also generates event graphs that depict inter-node
communication. It orders the graph by nodes on the x-
axis and simulator steps on the y-axis. Each entry in the
graph describes a simulated event, including the transition
call stack and all message fields. Directional arrows rep-
resent message transmissions, and other visual cues high-
light dropped messages, node failures, etc.

MDB recreates the system state by analyzing detailed
log files produced by MACEMC. While searching for vi-
olations, MACEMC runs with all system logging disabled
for maximum efficiency. Upon discovering a violation,
MACEMC automatically replays the path with full log-
ging. The resulting log consists of annotations: (i) writ-
ten by the programmer, (ii) generated automatically by
the MACE compiler marking the beginning and end of
each transition, (iii) produced by the simulator runtime
libraries, such as timer scheduling and message queuing
and delivery, and (iv) generated by the simulator to track
the progress of the run, including random number requests
and results, the node simulated at each step, and the state
of the entire system after each step. For our runs, logs
can span millions of entries (hundreds to thousands of
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$ ./mdb error.log
(mdb 0) j 5
(mdb 5) filediff live.log
. . .

localaddress=2.0.0.1:10201
out=[
− OutgoingConnection(1.0.0.1:10201, connection=ConnectionInfo(cwnd=2, packetsSent=2, acksReceived=1, packetsRetransmitted=0),
− inflight=[ 6002 → MessageInfo(seq=6002, syn=0, retries=0, timeout=true) ],
− rtbuf=[ ], sendbuf=[ ], curseq=6002, dupacks=0, last=6001)
+ OutgoingConnection(1.0.0.1:10201, connection=ConnectionInfo(cwnd=1, packetsSent=1, acksReceived=0, packetsRetransmitted=0),
+ inflight=[ 6001 → MessageInfo(seq=6001, syn=1, retries=0, timeout=true) ],
+ rtbuf=[ ], sendbuf=[ MessageInfo(seq=6002, syn=0, timer=0, retries=0, timeout=true) ], curseq=6002, dupacks=0, last=0)
]
in=[ ]
−timer<retransmissionTimer>([dest=1.0.0.1:10201, msg=MessageInfo(seq=6002, syn=0, retries=0, timeout=true)])
+timer<retransmissionTimer>([dest=1.0.0.1:10201, msg=MessageInfo(seq=6001, syn=1, retries=0, timeout=true)])
. . .

Figure 3: MDB session. Lines with differences are shown in italics (− indicates the error log, + the live log), with differing text
shown in bold. The receiver is IP address 1.0.0.1 and the sender is 2.0.0.1.

Figure 4: Automatically generated event graph for MACE-
TRANSPORT liveness bug.

megabytes).

To demonstrate the utility of our debugging tools for
diagnosing and fixing errors, we consider a case study
with a bug in MACETRANSPORT: a reliable, in-order,
message delivery transport with duplicate-suppression
and TCP-friendly congestion-control built over UDP. Un-
like TCP, MACETRANSPORT is fundamentally message-
rather than stream-oriented, making it a better match for
certain higher-level application semantics. As such, rather
than using sequence numbers to denote byte offsets as
with TCP, MACETRANSPORT assigns an incrementing
sequence number to each packet. To obtain lower-latency
communication, MACETRANSPORT avoids a three-way
handshake to establish initial sequence numbers. A key
high-level liveness property for MACETRANSPORT is that

eventually every message should be acknowledged (un-
less the connection closes).

MACEMC found a violating execution of the
“AllAcked” property in Table 1, where a sender at-
tempts to send two messages to a receiver. Figure 4 shows
a pictorial version of the event graphs automatically
generated by MDB; the actual event graph is text-based
for convenience and contains more detail. In Step 1, the
sender sends a data packet with the SYN flag set and
sequence number 2001. In Step 2, the retransmission
timer causes the connection to close and MACETRANS-
PORT signals an error to the application. The application
responds by attempting to resend the packet, causing
MACETRANSPORT to open a new connection with
sequence number 6001. At this point, both the old
“SYN 2001” and the new “SYN 6001” packets are in
flight. In Step 3, the network delivers the packet for the
new 6001 connection, and the receiver replies by sending
an “ACK 6001” message. In Step 4, the network delivers
the out-of-order “SYN 2001” message, and the receiver
responds by closing the connection on 6001, thinking it is
stale, and opening a new incoming connection for 2001.

Unfortunately, in Step 5 (the critical transition) the
sender receives the “ACK 6001.” Believing the 6000-
sequence connection to be established, the sender trans-
mits “DATA 6002,” at odds with the receiver’s view. From
here on, the execution states are dead as the receiver keeps
ignoring the “DATA 6002” packet, sending ACKs for the
2001 connection instead, while the sender continues to re-
transmit the “DATA 6002” packet, believing it to be the
sequence number for the established connection.

We illustrate a portion of an MDB session analyzing
this bug in Figure 3. We load the error log in MDB,
jump to the critical transition step (5), and diff the state
with the live path with the longest shared prefix (out-
put by MACEMC while searching for the critical tran-
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sition (see §3.2)). The excerpt shows the state for the
sender node. The key insight from this output is that in
the live execution (lines indicated with +), the retransmis-
sion timer is scheduled with “SYN 6001,” meaning that
the packet could be retransmitted and the receiver could
become resynchronized with the sender. Comparing the
differences with the violating execution (lines indicated
with −), where 6001 has been removed from the inflight
map and timer because of the ACK, allows us to iden-
tify and fix the bug by attaching a monotonically increas-
ing identifier in the SYN packets, implemented using a
MonotoneTime object. Now, when the receiver gets the
“SYN 2001” message out of order, it correctly concludes
from the identifier that the message is stale and should be
ignored, allowing acknowledgment of the “DATA 6002”
message.

6 Experiences

We have used MACEMC to find safety and liveness bugs
in a variety of systems implemented in MACE, includ-
ing a reliable transport protocol, an overlay tree, PAS-
TRY, and CHORD. With the exception of CHORD, we
ran MACEMC over mature implementations manually de-
bugged both in local- and wide-area settings. MACEMC
found several subtle bugs in each system that caused vi-
olations of high-level liveness properties. All violations
(save some found in CHORD, see below) were beyond the
scope of existing software model checkers because the er-
rors manifested themselves at depths far beyond what can
be exhaustively searched. We used the debugging process
with CHORD as control—we first performed manual de-
bugging of a new implementation of CHORD and then
employed MACEMC to compare the set of bugs found
through manual and automated debugging.

Table 2 summarizes the bugs found with MACEMC to
date. This includes 52 bugs found in four systems. Span-
ning the three mature systems, the 33 bugs across 1500
lines of MACE code correspond to one bug for every 50
lines of code. MACEMC actually checks the generated
C++ code, corresponding to one bug for every 250 lines
of code. In the only comparable check of a complex dis-
tributed system, CMC found approximately one bug for
every 300 lines of code in three versions of the AODV
routing protocol [25]. Interestingly, more than 50% of the
bugs found by CMC were memory handling errors (22/40
according to Table 4 [25]) and all were safety violations.
The fact that MACEMC finds nearly the same rate of er-
rors while focusing on an entirely different class of live-
ness errors demonstrates the complementary nature of the
bugs found by checking for liveness rather than safety vio-
lations. To demonstrate the nature and complexity of live-
ness violations we detail two representative violations be-

System Bugs Liveness Safety LOC

MaceTransport 11 5 6 585/3200
RandTree 17 12 5 309/2000

Pastry 5 5 0 621/3300
Chord 19 9 10 254/2200
Totals 52 31 21

Table 2: Summary of bugs found for each system. LOC=Lines
of code and reflects both the MACE code size and the generated
C++ code size.

low; we leave a detailed discussion of each bug we found
to a technical report [17].

Typical MACEMC run times in our tests have been
from less than a second to a few days. The median time
for the search algorithm has been about 5 minutes. Typical
critical-transition algorithm runtimes are from 1 minute to
3 hours, with the median time being about 9 minutes.

RANDTREE implements a random overlay tree with a
maximum degree designed to be resilient to node failures
and network partitions. This tree forms the backbone for
a number of higher-level aggregation and gossip services
including our implementations of Bullet [21] and Ran-
Sub [20]. We have run RANDTREE across emulated and
real wide-area networks for three years, working out most
of the initial protocol errors.

RANDTREE nodes send a “Join” message to a bootstrap
node, who in turn forwards the request up the tree to the
root. Each node then forwards the request randomly down
the tree to find a node with available capacity to take on
a new child. The new parent adds the requesting node to
its child set and opens a TCP connection to the child. A
“JoinReply” message from parent to child confirms the
new relationship.
Property. A critical high-level liveness property for
RANDTREE (and other overlay tree implementations) is
that all nodes should eventually become part of a single
spanning tree.

We use four separate MACE liveness properties to cap-
ture this intuition: (i) there are no loops when following
parent pointers, (ii) a node is either the root or has a par-
ent, (iii) there is only one root (shown in Table 1), and
(iv) each node N ’s parent maintains it as a child, and N ’s
children believe N to be their parent.
Violation. MACEMC found a liveness violation where
two nodes A, D have a node C in their child set, even
though C’s parent pointer refers to D. Along the violating
execution, C initially tries to join the tree under B, which
forwards the request to A. A accepts C as a child and
sends it a “JoinReply” message. Before establishing the
connection, C experiences a node reset, losing all state.
A, however, now establishes the prior connection with
the new C, which receives the “JoinReply’ and ignores it
(having been reinitialized). Node C then attempts to join
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the tree but this time is routed to D, who accepts C as a
child. Node A assumes that if the TCP socket to C does
not break, the child has received the “JoinReply” message
and therefore does not perform any recovery. Thus, C for-
ever remains in the child sets of A and D.
Bug. The critical transition for this execution is the step
where C receives the “JoinReply” from A. MDB reveals
that upon receiving the message, C ignores the message
completely, without sending a “Remove” message to A.
Along the longest live alternate path found from the state
prior to the critical transition, we find that instead of re-
ceiving A’s join reply message, C gets a request from the
higher-level application asking it to join the overlay net-
work, which causes C to transition into a “joining” mode
from its previous “init” mode. In this alternate path, C
subsequently receives A’s “JoinReply” message, and cor-
rectly handles it by sending A a “Remove” message. Thus,
we deduced that the bug was in C’s ignoring of “JoinRe-
ply” messages when in the “init” mode. We fix the prob-
lem by ensuring that a “Remove” reply is sent in this mode
as well.

CHORD specifies a key-based routing protocol [30].
CHORD structures an overlay in a ring such that nodes
have pointers to their successor and predecessor in the
key-space. To join the overlay a new node gets its pre-
decessor and successor from another node. A node inserts
itself in the ring by telling its successor to update its pre-
decessor pointer, and a stabilize procedure ensures global
successor and predecessor pointers are correct through
each node probing its successor.
Property. We use a liveness property to specify that all
nodes should eventually become part of a single ring (see
Table 1). This minimal correctness condition guarantees
that routing reach the correct node.
Violation. MACEMC found a liveness violation in the
very first path it considered. This was not unexpected,
given that CHORD had not been tested yet. However, the
critical transition algorithm returned transition 0 and con-
dition C2, implying that the algorithm could not deter-
mine if the path had run long enough to reach liveness.

Looking at the event graph, we saw the nodes finished
their initial join quickly (step 11), and spent the remain-
ing steps performing periodic recovery. This process sug-
gested that the system as a whole was dead, since reaching
a live state would probably not require tens of thousands
of transitions when the initial join took only 11.

MDB showed us that mid-way through the execution,
client0’s successor pointer was client0 (implying that it
believed it was in a ring of size 1), which caused the live-
ness predicate to fail. The other nodes’ successor pointers
correctly followed from client1 to client2 to client0. We
believed the stabilize procedure should correct this situa-
tion, expecting client2 to discover that client0 (its succes-
sor) was in a self-loop and correct the situation. Looking

at this procedure in the event graph, we saw that there was
indeed a probe from client2 to client0. However, client2
ignored the response to this probe. We next jumped to the
transition in MDB corresponding to the probe response
from the event graph. In fact, client0 reported that client2
was its predecessor, so client2 did not correct the error.

Starting at the initial state in MDB we stepped through
client0’s transitions, checking its state after each step to
see when the error symptom occurs. After 5 steps, client0
receives a message that causes it to update its predecessor
but not its successor, thus causing the bug.

Bug. This problem arose because we based our original
implementation of CHORD on the original protocol [30],
where a joining node explicitly notified its predecessor
that it had joined. We then updated our implementation
to the revised protocol [31], which eliminated this noti-
fication and specified that all routing state should be up-
dated upon learning of a new node. However, while we
removed the join notification in our revisions, we failed
to implement the new requirements for updating routing
state, which we overlooked because it concerned a seem-
ingly unrelated piece of code. We fixed the bug by cor-
rectly implementing the new protocol description.

Overall, both our manual testing and model checking
approaches found slightly different sets of bugs. On the
one hand, manual testing found many of the correctness
bugs and also fixed several performance issues (which
cannot be found using MACEMC). Manual testing re-
quired that we spend at least half of our time trying to
determine whether or not an error even occurred. A single
application failure may have been caused by an artifact of
the experiment, or simply the fact that the liveness prop-
erties had not yet been satisfied. Because of these com-
plexities, identifying errors by hand took anywhere from
30 minutes to several hours per bug.

On the other hand, MACEMC did find some addi-
tional correctness bugs and moreover required less hu-
man time to locate the errors. MACEMC examines the
state-snapshot across all nodes after each atomic event and
reports only known bugs, thereby eliminating the guess-
work of determining whether an error actually occurred.
Furthermore, the model checker outputs which property
failed and exactly how to reproduce the circumstances of
the failure. MACEMC also produces a verbose log and
event graph, and in the case of liveness violations, an al-
ternate path which would have been successful. These fea-
tures make it much easier to verify and identify bugs using
MACEMC, without the hassle of conducting experiments
that require running many hosts on a network. We spent
only 10 minutes to an hour using MACEMC to find the
same bugs that we painstakingly identified earlier with
manual testing; and we found the new bugs (those not
caught with manual testing) in only tens of minutes.
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7 Related Work

Our work is related to several techniques for finding errors
in software systems that fall under the broad umbrella of
Model Checking.

Classical Model Checking. “Model Checking,” i.e.,
checking a system described as a graph (or a Kripke struc-
ture) was a model of a temporal logic formula indepen-
dently invented in [6, 27]. Advances like Symmetry Re-
duction, Partial-Order Reduction, and Symbolic Model
Checking have enabled the practical analysis of hardware
circuits [2, 23], cache-coherence and cryptographic pro-
tocols [9], and distributed systems and communications
protocols [15], which introduced the idea of state-hashing
used by MACEMC. However, the tools described above
require the analyzed software to be specified in a tool-
specific language, using the state graph of the system con-
structed either before or during the analysis. Thus, while
they are excellent for quickly finding specification errors
early in the design cycle, it is difficult to use them to verify
the systems implementations. MACEMC by contrast tests
the C++ implementation directly, finding bugs both in the
design and the implementation.

Model Checking by Random Walks. West [32] pro-
posed the idea of using random walks to analyze net-
working protocols whose state spaces were too large for
exhaustive search. Sivaraj and Gopalakrishnan [29] pro-
pose a method for iterating exhaustive search and random
walks to find bugs in cache-coherence protocols. Both of
the above were applied to check safety properties in sys-
tems described using specialized languages yielding finite
state systems. In contrast, MACEMC uses random walks
to find liveness bugs by classifying states as dead or tran-
sient, and further, to pinpoint the critical transition.

Model Checking by Systematic Execution. Two model
checkers that directly analyze implementations written
in C and C++ are VERISOFT [11] and CMC [25].
VERISOFT views the entire system as several processes
communicating through message queues, semaphores and
shared variables visible to VERISOFT. It schedules these
processes and traps calls that access shared resources. By
choosing the process to execute at each such trap point,
the scheduler can exhaustively explore all possible inter-
leavings of the processes’ executions. In addition, it per-
forms stateless search and partial order reduction allowing
it to find critical errors in a variety of complex programs.
Unfortunately, when we used VERISOFT to model-check
MACE services, it was unable to exploit the atomicity of
MACE’s transitions, and this combined with the stateless
search meant that it was unable to exhaustively search to
the depths required to find the bugs MACEMC found. A
more recent approach, CMC [25], also directly executes
the code and explores different executions by interpos-
ing at the scheduler level. CMC has found errors in im-

plementations of network protocols [24] and file systems
[34]. JAVAPATHFINDER [14] takes an approach similar to
CMC for JAVA programs. Unlike VERISOFT, CMC, and
JAVAPATHFINDER, MACEMC addresses the challenges
of finding liveness violations in systems code and simpli-
fying the task of isolating the cause of a violation.

Model Checking by Abstraction. A different approach
to model checking software implementations is to first ab-
stract them to obtain a finite-state model of the program,
which is then explored exhaustively [3, 4, 7, 8, 12, 16] or
up to a bounded depth using a SAT-solver [5, 33]. Of
the above, only FEAVER and BANDERA can be used for
liveness-checking of concurrent programs, and they re-
quire a user to manually specify how to abstract the pro-
gram into a finite-state model.

Isolating Causes from Violations. Naik et al. [26] and
Groce [13] propose ways to isolate the cause of a safety
violation by computing the difference between a violating
run and the closest non-violating one. MACEMC instead
uses a combination of random walks and binary search to
isolate the critical transition causing a liveness violation,
and then uses a live path with a common prefix to help the
programmer understand the root cause of the bug.

8 Conclusions

The most insidious bugs in complex distributed systems
are those that occur after some unpredictable sequence
of asynchronous interactions and failures. Such bugs are
difficult to reproduce—let alone fix—and typically mani-
fest themselves as executions where the system is unable
to ever enter some desired state after an error occurs. In
other words, these bugs correspond to violations of live-
ness properties that capture the designer’s intention of
how the system should behave in steady-state operation.
Though prior software model checkers have dramatically
improved our ability to find and eliminate errors, elusive
bugs like the subtle error we found in PASTRY have been
beyond their reach, as they only find violations of safety
properties.

We have described techniques that enable software
model checkers to heuristically isolate the complex bugs
that cause liveness violations in systems implementations.
A key insight behind our work is that many interest-
ing liveness violations correspond to the system enter-
ing a dead state, from which recovery to the desired
state is impossible. Though a safety property describing
dead states exists mathematically, it is often too com-
plex and implementation-specific for the programmer to
specify without knowing the exact bug in the first place.
Thus, we have found that the process of finding the er-
rors that cause liveness violations often reveals previ-
ously unknown safety properties, which can be used to
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find and fix more errors. We have used MACEMC to find
31 liveness (and 21 safety) errors in MACE implementa-
tions of four complex distributed systems. We believe that
our techniques—a combination of state-exploration, ran-
dom walks, critical transition identification, and MDB—
radically expand the scope of implementation model
checkers to include liveness violations, thereby enabling
programmers to isolate subtle errors in systems imple-
mentations.
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