
OverCite: A Distributed, Cooperative CiteSeer

Jeremy Stribling, Jinyang Li,† Isaac G. Councill,†† M. Frans Kaashoek, Robert Morris

MIT Computer Science and Artificial Intelligence Laboratory
†New York University and MIT CSAIL, via UC Berkeley ††Pennsylvania State University

Abstract

CiteSeer is a popular online resource for the computer sci-
ence research community, allowing users to search and
browse a large archive of research papers. CiteSeer is ex-
pensive: it generates 35 GB of network traffic per day, re-
quires nearly one terabyte of disk storage, and needs sig-
nificant human maintenance.

OverCite is a new digital research library system that
aggregates donated resources at multiple sites to provide
CiteSeer-like document search and retrieval. OverCite en-
ables members of the community to share the costs of run-
ning CiteSeer. The challenge facing OverCite is how to
provide scalable and load-balanced storage and query pro-
cessing with automatic data management. OverCite uses
a three-tier design: presentation servers provide an iden-
tical user interface to CiteSeer’s; application servers par-
tition and replicate a search index to spread the work of
answering each query among several nodes; and a dis-
tributed hash table stores documents and meta-data, and
coordinates the activities of the servers.

Evaluation of a prototype shows that OverCite in-
creases its query throughput by a factor of seven with
a nine-fold increase in the number of servers. OverCite
requires more total storage and network bandwidth than
centralized CiteSeer, but spreads these costs over all the
sites. OverCite can exploit the resources of these sites to
support new features such as document alerts and to scale
to larger data sets.

1 Introduction

Running a popular Web site is a costly endeavor, typically
requiring many physical machines to store and process
data and a fast Internet pipe to push data out quickly. It’s

This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National
Science Foundation under Cooperative Agreement No. ANI-0225660.
Isaac G. Councill receives support from NSF SGER Grant IIS-0330783
and Microsoft Research.

common for non-commercial Web sites to be popular yet
to lack the resources to support their popularity. Users of
such sites are often willing to help out, particularly in the
form of modest amounts of compute power and network
traffic. Examples of applications that thrive on volunteer
resources include SETI@home, BitTorrent, and volunteer
software distribution mirror sites. Another prominent ex-
ample is the PlanetLab wide-area testbed [36], which is
made up of hundreds of donated machines over many dif-
ferent institutions. Since donated resources are distributed
over the wide area and are usually abundant, they also al-
low the construction of a more fault tolerant system using
a geographically diverse set of replicas.

In order to harness volunteer resources at many sites, a
Web service needs a design that will increase its capacity
as servers are added. This paper explores such a design
in OverCite, a multi-site version of the CiteSeer reposi-
tory of computer science research papers [30]. We choose
CiteSeer for our study because of its value to the re-
search community. However, despite its popularity, Cite-
Seer went mostly unmaintained after its initial develop-
ment at NEC until a volunteer research group at Pennsyl-
vania State University (PSU) took over the considerable
task of running and maintaining the system.

1.1 Multi-site Web Design

Many designs and tools exist for distributing a Web ser-
vice within a single-site cluster. The three-tier design
is a common approach—a load-balancing front-end, ap-
plication servers, and a shared back-end database—and
services may also use techniques such as DDS [25],
TACC [20], and MapReduce [17]. These solutions take
advantage of reliable high-speed LANs to coordinate the
servers in the cluster. Such solutions are less well suited to
servers spread over the Internet, with relatively low speed
and less reliable connectivity [3].

Existing approaches to multi-site services include mir-
roring, strict partitioning, caching, and more recently dis-
tributed hash tables (DHTs). Mirroring and strict parti-

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 143



tioning eliminate inter-site communication during ordi-
nary operations. Mirroring is not attractive for storage-
intensive services: CiteSeer, for example, would require
each mirror site to store nearly a terabyte of data. Parti-
tioning the service among sites works only if each client
request clearly belongs to a particular partition, but this
is not true for keyword queries in CiteSeer; in addition,
CiteSeer must coordinate its crawling activities among all
sites. While content distribution networks such as Aka-
mai [2], Coral [21], or CoDeeN [48] would help distribute
static content such as the documents stored by CiteSeer,
they would not help with the dynamic portion of the Cite-
Seer workload: keyword searches, navigation of the graph
of citations between papers, ranking papers and authors in
various ways, and identification of similarity among pa-
pers. Similarly, as discussed in the related work (see Sec-
tion 6), no existing DHT has been used for an application
of the complexity of CiteSeer.

1.2 OverCite

What is needed is a design that parallelizes CiteSeer’s op-
erations over many sites to increase performance, parti-
tions the storage to minimize the per-site burden, allows
the coordination required to perform keyword searches
and crawling, and can tolerate network and site failures.
OverCite’s design satisfies these requirements. Like many
cluster applications, it has a three-tier design: multiple
Web front-ends that accept queries and display results,
application servers that crawl, generate indices, perform
keyword searches on the indices, and a DHT back-end
that aggregates the disks of the donated machines to store
documents, meta-data, and coordination state.

The DHT back-end provides several distinct benefits.
First, it is self-managing, balancing storage load automati-
cally as volunteer servers come and go. Second, it handles
replication and location of data to provide high availabil-
ity. Finally, the DHT provides a convenient rendezvous
service for producers and consumers of meta-data that
must coordinate their activities. For example, once a node
at one site has crawled a new document and stored it in
the DHT, the document will be available to DHT nodes at
other sites.

OverCite’s primary non-storage activity is indexed key-
word search, which it parallelizes with a scheme used in
cluster-based search engines [7, 20]. OverCite divides the
inverted index in k partitions. Each node stores a copy of
one partition on its local disk; with n nodes, n/k nodes
store a particular partition. OverCite sends a user query to
k index servers, one for each partition, and aggregates the
results from these index servers.

1.3 Contributions

The contributions of this paper are as follows1:

• A three-tier DHT-backed design that may be of gen-
eral use to multi-site Web services.

• OverCite, a multi-site deployment of CiteSeer.

• An experimental evaluation with 27 nodes, the full
CiteSeer document set, and a trace of user queries
issued to CiteSeer. A single-node OverCite can serve
2.8 queries/s (CiteSeer can serve 4.8 queries/s), and
OverCite scales well: with 9 nodes serving as front-
end query servers, OverCite can serve 21 queries/s.

• A case study of a challenging use of a DHT. OverCite
currently stores 850 GB of data (amounting to tens
of millions of blocks), consuming about a factor of
4 more total storage than CiteSeer itself. Each key-
word query involves tens of DHT operations and is
completed with reasonable latency.

We conjecture that OverCite’s three-tier design may be
useful for many Web services that wish to adopt a multi-
site arrangement. Services tend to consist of a mix of static
content and dynamic operations. As long as the consis-
tency requirements are not strict, a DHT can be used as a
general-purpose back-end, both to hold inter-site coordi-
nation state and to spread the storage and serving load of
large static documents.

1.4 Roadmap

Section 2 describes the design and operation of the cur-
rent CiteSeer implementation. Section 3 gives the design
of OverCite. Section 4 details the OverCite prototype im-
plementation, and Section 5 evaluates the implementation.
Section 6 discusses related work, and finally Section 7
concludes.

2 CiteSeer Background

CiteSeer [30] crawls, stores and indexes more than half a
million research papers. CiteSeer’s hardware consists of
a pair of identical servers running the following compo-
nents. A Web crawler visits a set of Web pages that are
likely to contain links to PDF and PostScript files of re-
search papers. If it sees a paper link it has not already
fetched, CiteSeer fetches the file and parses it to extract
text and citations. Then it applies heuristics to check if the

1We presented a preliminary design, without an implementation, in
an earlier workshop paper [45].

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association144



Number of papers 674,720
New documents per week 1000
HTML pages visited 113,000
Total document storage 803 GB
Avg. document size (all formats) 735 KB
Total meta-data storage 45 GB
Total inverted index size 22 GB
Hits per day 800,000
Searches per day 250,000
Total traffic per day 34 GB
Document traffic per day 21 GB
Avg. number of active conns 68
Avg. load per CPU 66%

Table 1: Statistics of the PSU CiteSeer deployment.

document duplicates an existing document; if not, it adds
meta-data about the document to its tables. CiteSeer pe-
riodically updates its inverted index with newly crawled
documents, indexing only the first 500 words of each doc-
ument. The Web user interface accepts search terms, looks
them up in the inverted index, and presents data about the
resulting documents.

CiteSeer assigns a document ID (DID) to each docu-
ment for which it has found a PDF or Postscript file, and
a citation ID (CID) to every bibliography entry within a
document. CiteSeer knows about many papers for which
it has seen citations but not found a document file. For
this reason CiteSeer assigns a “group ID” (GID) to each
known paper for use in contexts where a file is not re-
quired. The GID also serves to connect newly inserted
documents to previously discovered citations. All the IDs
are numerically increasing 14-byte numbers.

CiteSeer stores the PDF/PostScript of each research pa-
per (as well as the ASCII text extracted from it) in a lo-
cal file system. In addition, CiteSeer stores the following
meta-data tables to help identify papers and filter out pos-
sible duplicates:

1. The document meta-data table (Docs), indexed by
DID, which records each document’s authors, title,
year, abstract, GID, CIDs of the document’s cita-
tions, number of citations to the document, etc.

2. The citation meta-data table (Cites), indexed by
CID, which records each citation’s GID and citing
document DID.

3. A table (Groups) mapping each GID to the corre-
sponding DID (if a DID exists) and the list of CIDs
that cite it.

4. A table indexed by the checksum of each fetched
document file, used to decide if a file has already
been processed.

Tier 1: 
presentation

Tier 2:
app logic

Keyword
Search

Keyword
Search ... ...

Web 
server

Web 
server ...

DHT storage for
docs and meta data

Tier 3: local 
index file

local 
index file

...data storage

Crawler Crawler

Figure 1: Overview of OverCite’s three-tier architecture. The
modules at all tiers are run at many (if not all) nodes. The Tier
1 Web server interacts with multiple search engines on differ-
ent nodes to perform a single user keyword search. The Tier 2
modules use the underlying DHT to store documents and corre-
sponding meta-data. The keyword search engine also stores data
locally outside the DHT.

5. A table indexed by the hash of every sentence Cite-
Seer has seen in a document, used to gauge document
similarity.

6. A table (URLs) to keep track of which Web pages
need to be crawled, indexed by URL.

7. A table (Titles) mapping paper titles and authors
to the corresponding GID, used to find the target of
citations observed in paper bibliographies.

Table 1 lists statistics for the deployment of CiteSeer
at PSU as of September 2005. The CiteSeer Web site
uses two servers each with two 2.8 GHz processors. The
two servers run independently of each other and each has
a complete collection of PDF/Postscript documents, in-
verted indices, and meta-data. Most of the CPU time is
used to satisfy keyword searches and to convert document
files to user-requested formats.. The main costs of search-
ing are lookups in the inverted index, and collecting and
displaying meta-data about search results.

3 Design

A primary goal of OverCite’s design is to ensure that
its performance increases as volunteers contribute nodes.
OverCite addresses this challenge with a three-tier design
(see Figure 1), similar to cluster-based Web sites, but with
the database replaced with a DHT. The modules in Tier 1
accept keyword queries and aggregate results from Tier 2
modules on other nodes to present the traditional CiteSeer
interface to users. The Tier 2 modules perform keyword
searches and crawling for new documents. The Tier 1 and
2 modules use the DHT servers in Tier 3 to store and fetch

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 145



Figure 2: The timeline of a query in OverCite, and the steps
involved. Each vertical bar represents a node with a different in-
dex partition. DHT meta-data lookups are only required at index
servers without cached copies of result meta-data.

the documents, meta-data, and shared state for coordina-
tion. When a site contributes one or more nodes to the
system, each node starts a DHT server to put the donated
disk space and network bandwidth to use.

3.1 Overview: The Life of a Query

Figure 2 depicts the timeline of a query. A subset of
OverCite nodes run a Web user interface, using round-
robin DNS or OASIS [22] to spread the client load. The
front-end accepts a query with search terms from the user
and uses a scheme similar to the ones used by cluster-
based search engines to parallelize the search: the front-
end sends the query to k index servers, each responsible
for 1/kth of the index.

Given a keyword query, each index server searches for
the m most highly-ranked documents in its local index;
the search engine ranks documents by the relative fre-
quency and position of the query keywords within the text
as well as by citation count. The index server looks up
the meta-data for these m documents in the DHT to sup-
ply additional information like citation counts back to the
front-end. Servers cache this meta-data locally to speed up
future searches. The front-end is responsible for merging
the results from the k index servers and displaying the top
m to the user.

3.2 Global Data Structures

OverCite stores document files and meta-data in a DHT
shared among all the nodes. Table 2 lists the data tables
that OverCite stores in the DHT. In addition to exist-
ing CiteSeer data structures, Crawl and URLs tables are
added to coordinate distributed crawling activity as ex-
plained in Section 3.4.

OverCite needs the following four properties from the

Name Key Value
Docs DID FID, GID, CIDs, etc.
Cites CID DID, GID
Groups GID DID + CID list
Shins hash(shingle) list of DIDs
Crawl list of page URLs
URLs hash(doc URL) date file last fetched

Titles hash(Ti+Au) GID
Files FID Document file

Table 2: The data structures OverCite stores in the DHT.
The Files table stores immutable content hash blocks for
PDF/Postscript documents, indexed by a root content hash key
FID. All the rest of the tables are stored as append-only blocks.

underlying DHT. First, the DHT should be able to store
a large amount of data with a put/get interface, where a
block is named by the hash of the block’s content. To bal-
ance the storage of data well across the nodes, OverCite’s
blocks are at most 16 KB in size. OverCite stores large
files, such as PDF and PostScript files, as a Merkle tree
of content-hash blocks [35]; the file’s identifier, or FID, is
the DHT key of the root block of the Merkle tree.

Second, the DHT must support append-only
blocks [38]. OverCite stores each entry in the meta-
data tables (Docs, Cites, and Groups) listed in
Table 2 as an append-only block, indexed using a
randomly-generated 20-byte DID, CID or GID. OverCite
treats the append-only blocks as an update log, and recon-
structs the current version of the data by applying each
block of appended data as a separate update. Append-only
logs can grow arbitrarily large as a document’s meta-data
is updated, but in practice is usually small.

OverCite uses append-only blocks, rather than using
fully-mutable blocks, because append-only blocks sim-
plify keeping data consistent. Any OverCite node can ap-
pend to an append-only block at any time, and the DHT
ensures that eventually all replicas of the block will see
all appended data (though strict order is not necessarily
enforced by the DHT).

Third, the DHT should try to keep the data available
(perhaps by replicating it), although ultimately OverCite
can regenerate it by re-crawling. Furthermore, the DHT
should be resilient in the face of dynamic membership
changes (churn), though we do no expect this to be a ma-
jor issue in a managed, cooperative system like OverCite.
Finally, the DHT should support quick (preferably one-
hop) lookups in systems with a few hundred nodes.

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association146



3.3 Local Data Structures

Each OverCite node stores data required for it to partici-
pate in keyword searches on its local disk. This local data
includes an inverted index yielding the list of documents
containing each word and extracted ASCII text for each
document in the inverted index that is used to present the
context around each search result.

OverCite partitions the keyword index by document,
so that each node’s inverted index includes documents
from only one partition. Partitioning reduces the index
storage requirement at each node, and reduces latency
when load is low by performing each query in parallel on
multiple nodes. OverCite typically has fewer index par-
titions than nodes, and replicates each partition on mul-
tiple nodes. Replication increases fault-tolerance and in-
creases throughput when the system is busy since it al-
lows different queries to be processed in parallel. This in-
dex partitioning and replication strategy is used by cluster-
based search engines such as Google [7] and HotBot [20].
Compared with several other peer-to-peer search propos-
als [31,37,46,47], partitioning by document is bandwidth
efficient, load-balanced, and provides the same quality of
results as a centralized search engine.

OverCite uses k index partitions, where k is less than
the number of nodes (n). Each node stores and searches
one copy of one index partition; if there are n nodes,
there are n/k copies of each index partition. The front-end
sends a copy of each query to one server in each partition.
Each of the k servers processes the query using 1/k’th
of the full index, which requires about 1/k’th the time
needed to search a complete index.

A large k decreases query latency at low load due to
increased parallelism, and may also increase throughput
since a smaller inverted index is more likely to fit in each
node’s disk cache. However, a large k also increases net-
work traffic, since each node involved in a query returns
about 170 bytes of information about up to m of its best
matches. Another reason to restrict k is that the overall
keyword search latency may be largely determined by the
response time of the slowest among the k − 1 remote in-
dex servers. This effect is somewhat mitigated because the
front-end sends each query to the lowest-delay replica of
each index partition. We also plan to explore forwarding
queries to the least-loaded index partition replicas among
nearby servers.

A node’s index partition number is its DHT identifier
mod k. A document’s index partition number is its DID
mod k. When the crawler inserts a new document into the
system, it notifies at least one node in the document’s par-
tition; the nodes in a partition periodically exchange notes
about new documents.

3.4 Web Crawler

The OverCite crawler design builds on several existing
proposals for distributed crawling (e.g., [9, 12, 32, 41]).
Nodes coordinate the crawling effort via a list of to-be-
crawled Web page URLs stored in the DHT. Each crawler
process periodically chooses a random entry from the list
and fetches the corresponding page.

For each link to a Postscript or PDF file a node finds
on a Web page, the crawler performs a lookup in the
URLs table to see whether the document has already been
downloaded. After the download, the crawler parses the
file – extracting meta-data (e.g., title, authors, citations,
etc.) as well as the bare ASCII text of the document –
and checks whether this is a duplicate document. This re-
quires (1) looking up the FID of the file in Files; (2)
searching for an existing document with the same title and
authors using Titles; and (3) verifying that, at a shin-
gle level, the document sufficiently differs from others.
OverCite uses shingles [8] instead of individual sentences
as in CiteSeer for duplicate detection. Checking for dupli-
cates using shingles is effective and efficient, resulting in
a small Shins table. If the document is not a duplicate,
the crawler inserts the document into Files as Postscript
or PDF. The node also updates Docs, Cites, Groups,
and Titles to reflect this document and its meta-data.
The crawler puts the extracted ASCII text in the DHT and
informs one index server in the document’s partition of
newly inserted document’s DID.

While many enhancements to this basic design (such
as locality-based crawling and more intelligent URL par-
titioning) are both possible and desirable, we defer op-
timizations of the basic crawler design to future work.
Crawling and fetching new documents will take approxi-
mately three times more bandwidth than CiteSeer uses in
total, spread out among all the servers. We have shown
these calculations in previous work [45].

4 Implementation

The OverCite implementation consists of several software
modules, corresponding to the components described in
Section 3. The current implementation does not yet in-
clude a Crawler module; we have populated OverCite
with existing CiteSeer documents. The OverCite imple-
mentation consists of over 11,000 lines of C++ code, and
uses the SFS libasync library [34] to provide an event-
driven, single-threaded execution environment for each
module. Figure 3 shows the overall interactions of differ-
ent OverCite modules with each other and the DHT. Mod-
ules on the same machine communicate locally through

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 147



Figure 3: Implementation overview. This diagram shows the
communication paths between OverCite components on a single
node, and network connections between nodes.

Unix domain sockets; modules on different machines
communicate via TCP sockets. All inter-module commu-
nication occurs over the Sun RPC protocol.

The OCWeb Module. The OCWeb module provides a
Web interface to accept keyword queries and display lists
of matching documents. OCWeb is implemented as a
module for the OK Web Server (OKWS) [29], a secure,
high-performance Web server. Because OKWS also uses
libasync, this choice of Web server allows OCWeb to ac-
cess the DHTStore library and interact with DHash di-
rectly.

The DHTStore Module. The DHTStore module acts as
an interface between the rest of the OverCite system and
the DHT. The module takes the form of a library that can
be used by other system components to retrieve meta-data
and documents. The implementation uses the DHash [16]
DHT. Each OverCite node runs three DHash virtual nodes
per physical disk to balance the storage load evenly.

Meta-data Storage. OverCite stores its tables (see Ta-
ble 2) in the the DHT’s single 20-byte key space, with
each row of each table represented as a DHT data block.
A table row’s DHT key is the hash of the correspond-
ing OverCite identifier (e.g. DID, CID, etc.) concatenated
with the table’s name; for example, the keys used to in-
dex the Docs table are the hash of the string “Docs”
concatenated with the DID of the document. The hash-
ing spreads the meta-data evenly over the DHT nodes.
OverCite appends data to some kinds of table rows; for
example, OverCite appends to a Groups block when it
finds a new citation to a document. The current implemen-
tation supports the tables listed in Table 2 except Shins,
Crawl, and URLs.

The Index/Search Module. The Index/Search module
consists of a query server daemon (Queryd), a meta-

data and text-file cache, and an index generator (Indexer).
We chose to implement our own search engine instead
of reusing the current built-in CiteSeer search engine,
because we have found it difficult to extend CiteSeer’s
search engine to include new functions (e.g., to experi-
ment with different ranking functions).

The Indexer periodically retrieves the ASCII text and
meta-data for new documents to be included in the node’s
index partition from the DHT and caches them on the lo-
cal disk. It updates the local inverted index file based on
the local disk cache. The inverted index consists of post-
ing lists of document numbers and the ASCII file offset
pairs for each word. Compared to CiteSeer’s inverted in-
dex structure, Indexer’s inverted index optimizes query
speed at the cost of slower incremental index updates. The
Indexer indexes the first 5000 words of each document
(CiteSeer indexes the first 500). The document and offset
pairs in a posting list are ranked based on the correspond-
ing citation counts.

Upon receiving a query, Queryd obtains the list of
matching documents by intersecting the posting lists for
different keywords. On-disk posting lists are mmap-ed
into the memory, causing them to be paged in the buffer
cache. Queryd scores each result based on the docu-
ment ranks, the file offsets where a keyword occurs, and
the proximity of keywords in the matching document.
Queryd returns the top m scored documents as soon as
it judges that no further lower ranked documents can gen-
erate higher scores than the existing top m matches.

For each of the top m matches, Queryd obtains the con-
text (the words surrounding the matched keywords) from
the on-disk cache of ASCII files. In parallel, it also re-
trieves the corresponding meta-data from the DHT. Upon
completion of both context and meta-data fetches, Queryd
returns the results to either the local Query manager or the
remote Queryd.

5 Evaluation

This section explores how OverCite scales with the to-
tal number of nodes. Although the scale of the following
preliminary experiments is smaller than the expected size
of an OverCite system, and the code is currently an early
prototype, this evaluation demonstrates the basic scaling
properties of the OverCite design. We plan to perform a
more in-depth analysis of the system once the code base
matures and more nodes become available for testing.

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association148



5.1 Evaluation Methods

We deployed OverCite on 27 nodes: sixteen at MIT and
eleven spread over North America, most of which are part
of the RON test-bed [3]. The DHash instance on each
node spawned three virtual nodes for each physical disk to
balance load; in total, the system uses 47 physical disks.
These disks range in capacity from 35 GB to 400 GB.

We inserted the 674,720 documents from the Cite-
Seer repository into our OverCite deployment, includ-
ing the meta-data for the documents, their text and
Postscript/PDF files, and the full citation graph between
all documents. CiteSeer uses several heuristics to deter-
mine whether a document in its repository is a duplicate
of another, and indexes only non-duplicates; OverCite in-
dexes the same set of non-duplicate documents (522,726
documents in total). OverCite currently stores only the
original copy of each document (i.e., the document origi-
nally discovered and downloaded by the crawler), while
CiteSeer stores Postscript, compressed Postscript, and
PDF versions for every document. We plan to store these
versions as well in the near future.

Unless otherwise stated, each document is indexed by
its first 5000 words, and each experiment involves two in-
dex partitions (k = 2). All Queryd modules return up to
20 results per query (m = 20), and the context for each
query contains one highlighted search term. Furthermore,
each node has a complete on-disk cache of the text files for
all documents in its index partition (but not the document
meta-data or Postscript/PDF files). The results represent
the average of five trials for each experiment.

To evaluate the query performance of OverCite, we
used a trace of actual CiteSeer queries, collected in Octo-
ber 2004. The client machine issuing queries to OverCite
nodes is a local MIT node that is not participating in
OverCite, and that can generate requests concurrently to
emulate many simultaneous clients.

5.2 Query Throughput

One of the chief advantages of a distributed system such
as OverCite over its centralized counterparts is the de-
gree to which OverCite uses resources in parallel. In the
case of OverCite, clients can choose from many differ-
ent Web servers (either manually or through DNS redi-
rection), all of which have the ability to answer any query
using different sets of nodes. Because each index parti-
tion is replicated on multiple nodes, OverCite nodes have
many forwarding choices for each query. We expect that
if clients issue queries concurrently to multiple servers,
each of which is using different nodes as index neighbors,
we will achieve a corresponding increase in system-wide

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

Q
ue

ri
es

/s
ec

on
d

Number of Web servers

Figure 4: Average query throughput on a distributed OverCite
system, as a function of the number of Web (Tier 1) servers. The
client issues 128 concurrent queries at a time.

throughput. However, because the nodes are sharing (and
participating in) the same DHT, their resources are not
entirely independent, and so the effect on throughput of
adding Tier 1 and 2 servers is non-obvious.

To evaluate scalability, we measured throughput with
varying numbers of front-end nodes. The value of k was
2, and the total number of nodes in each configuration is
twice the number of front ends. Each front-end is paired
with a non-front-end holding the other partition. A client
at MIT keeps 128 queries active, spread among all of
the available Web servers (randomly choosing which Web
server gets which query). The test uses servers chosen at
random for each experiment trial.

Figure 4 shows the number of queries per second pro-
cessed by OverCite, as a function of the number of front-
end servers. Adding additional front-end servers linearly
increases the query throughput. With a single front-end
server OverCite serves about 3 queries per second, while
9 front-end servers satisfy 21 queries per second. Despite
the fact that the servers share a common DHT (used when
looking up document meta-data), the resources of the dif-
ferent machines can be used by OverCite to satisfy more
queries in parallel.

For comparison, a single-server CiteSeer can process
4.8 queries per second with the same workload but
slightly different hardware. CiteSeer indexes only the first
500 words per document. The corresponding single-node
throughput for OverCite is 2.8 queries per second.

5.3 Performance Breakdown

This subsection evaluates the latency of individual
queries. The Queryd daemon on a node performs three

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 149



Context
k Search Context DHT wait Total
2 118.14 425.11 (37.29 each) 21.27 564.52
4 78.68 329.04 (32.97 each) 23.97 431.69

No context
k Search DHT wait Total
2 53.31 170.03 223.34
4 28.07 208.30 236.37

Table 3: Average latencies (in ms) of OverCite operations for
an experiment that generates context results, and one that does
not give context results. Search shows the latency of finding re-
sults in the inverted index; Context shows the latency of gener-
ating the context for each result (the per-result latency is shown
in parentheses); DHT wait shows how long OverCite waits for
the last DHT lookup to complete, after the search and context
operations are completed. Only one query is outstanding in the
system.

main operations for each query it receives: a search over
its inverted index, the generation of context information
for each result, and a DHT meta-data lookup for each re-
sult. All DHT lookups happen in parallel, and context gen-
eration happens in parallel with the DHT lookups.

Table 3 summarizes the latencies of each individual op-
eration, for experiments with and without context gener-
ation. Search shows the latency of finding results in the
inverted index; Context shows the latency of generating
the context for each result; DHT wait shows how long
OverCite waits for the last DHT lookup to complete, af-
ter the search and context operations are completed. The
table gives results for two different values of k, 2 and 4.

The majority of the latency for a single query comes
from context generation. For each result the server must
read the ASCII text file from disk (if it is not cached in
memory), which potentially involves several disk seeks:
OverCite currently organizes the text files in a two-level
directory structure with 256 directories per level. In the fu-
ture, we plan to explore solutions that store all the ASCII
text for all documents in a single file, to avoid the over-
head of reading the directory structures. Because context
generation dominates the search time, and DHT lookups
occur in parallel with the context generation, OverCite
spends little time waiting for the DHT lookups to return;
less than 4% of the total latency is spent waiting for and
processing the meta-data lookups.

Increasing k decreases the latency of the search over
the inverted index, because each partition indexes fewer
documents and the size of the inverted index largely de-
termines search speed. Interestingly, search latency is sig-
nificantly lower when OverCite does not generate context,

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t(

M
B

/s
)

Number of Web servers

Figure 5: Average throughput of OverCite serving
Postscript/PDF files from the DHT, as a function of the
number of front-end Web servers.

presumably due to more efficient use of the buffer cache
for the inverted index when the ASCII text files are not
read.

Without context generation, the meta-data lookups be-
come a greater bottleneck to the latency, and in fact in-
creasing k causes DHT lookups to slow down. With a
larger k value, there are more total lookups happening in
the system, since each node retrieves its top m results.

5.4 File Downloads

This section evaluates how well OverCite serves PDF and
Postscript documents. We measured the rate at which a
single front-end at CMU could serve documents to the
client at MIT. The client kept 128 concurrent requests ac-
tive. The network path from CMU to MIT is capable of
carrying 11.4 megabytes/second, as measured with ttcp
using UDP.

OverCite’s document throughput averaged 1.3
megabytes/second. The download rate from the single
front-end is limited by the rate that the server can
download blocks from the DHT, which is determined
by the bottleneck bandwidth between the front-end and
the slowest node in the system [16]. The measured UDP
network capacity over the slowest access link was 1.14
MB/s.

If the client uses multiple front-ends to download files,
it can achieve a higher throughput. Figure 5 shows the
file-serving throughput of OverCite as a function of the
number of front-end Web servers used by the client, when
the client requests a total of 128 files concurrently from
the system. The throughput plateaus at nearly five times
the throughput from a single server, and is similar to the
throughput for the same number of servers measured in

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association150



Property Cost
Document/meta-data storage 270 GB
Index size 14 GB

Total storage 284 GB

Table 4: Storage statistics for a centralized server.

a previous evaluation of DHash [16]. Table 1 shows that
currently CiteSeer serves only 35 GB/day (or 425 KB/s), a
load that our OverCite implementation can easily handle.

5.5 Storage

Finally, we compare the storage costs of OverCite to those
of a centralized solution. The centralized solution keeps
one copy of the original crawled file (as noted in Sec-
tion 5.1), the extracted ASCII text, and the full set of
CiteSeer meta-data for each document, in addition to a
full inverted index built using OverCite’s Indexer module.
We compare this to the storage costs measured on our 27-
node, 47-disk, 2-partition OverCite deployment. OverCite
storage costs do not include the on-disk cache of ASCII
text files used to generate context information; these files
are included in the DHT storage costs, and the cache can
always be created by downloading the files from the DHT.

Table 4 shows the storage costs of the centralized so-
lution. The total space used is 284 GB, the majority of
which is documents and meta-data. Table 5 shows the av-
erage per-node storage costs measured on our OverCite
deployment. The system-wide storage cost is 1034.3 GB.
An individual node in the system with one physical disk
and one Index/Search module has a cost of 24.9 GB.

If we assume that each individual disk is its own node
and has its own copy of the index, the full OverCite sys-
tem would use 4.1 times as much space as the central-
ized solution. Given that OverCite’s DHash configuration
uses a replication factor of 2, this overhead is higher than
expected. Some blocks are actually replicated more than
twice, because DHash does not delete old copies of blocks
when copying data to newly-joined nodes. Storing many
small blocks in the database used by DHash also incurs
overhead, as does OverCite’s Merkle tree format for stor-
ing files.

For our current implementation, adding 47 nodes to the
system decreased the per-node storage costs by about a
factor of 11.4; assuming this scaling factor holds indefi-
nitely, adding n nodes to the system would decrease per-
node storage costs by a factor of roughly n/4. Therefore,
we expect that an OverCite network of n nodes can handle
n/4 times as many documents as a single CiteSeer node.

Property Individual cost System cost
Document/meta-data 18.1 GB 18.1 GB × 47
storage = 850.7 GB
Index size 6.8 GB 6.8 GB × 27

= 183.6 GB

Total storage 24.9 GB 1034.3 GB

Table 5: Average per-node storage statistics for the OverCite
deployment. There are 27 nodes (and 47 disks) in the system.

6 Related Work

Many digital libraries exist. Professional societies such
as ACM [1] and IEE [27] maintain online repositories
of papers published at their conferences. Specific aca-
demic fields often have their own research archives, such
as arXiv.org [5], Google Scholar [24], and CiteSeer [30],
which allow researchers to search and browse relevant
work, both new and old. More recently, initiatives like
DSpace [43] and the Digital Object Identifier system [18]
seek to provide long-term archival of publications. The
main difference between these systems and OverCite is
that OverCite is a community-based initiative that can in-
corporate donated resources at multiple sites across the
Internet.

Previous work on distributed library systems includes
LOCKSS [39], which consists of many persistent web
caches that can work together to preserve data for decades
against both malicious attacks and bit rot. Furthermore,
the Eternity Service [4] uses peer-to-peer technology to
resist censorship of electronic documents. There have also
been a number of systems for searching large data sets [6,
11,23,26,33,40,47,49]and crawling the Web [9,12,32,41]
using peer-to-peer systems. We share with these systems a
desire to distribute work across many nodes to avoid cen-
tralized points of failure and performance bottlenecks.

Services like BitTorrent [14] and Coral [21] provide an
alternative style of content distribution to a DHT. Like
DHTs such as DHash [16], these systems can find the
closest copy of a particular data item for a user, and can
fetch many data items in parallel. However, the DHT-
based three tier design is more closely aligned with Web
services that have both dynamic and static content.

DHTs have been used in many applications (e.g., [15,
19, 44]), but few have required substantial storage, or
perform intensive calculations with the data stored.
PIER [26] is a distributed query engine for wide-area dis-
tributed systems, and extends the DHT with new oper-
ators. The Place Lab Web service [10] is an investiga-
tion into how an unmodified DHT can be used to imple-
ment complex functions such as range-queries, but com-
putes with little data (1.4 million small records). Usenet-

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 151



DHT [42] stores a substantial amount of data but doesn’t
require computation on the data. Because these applica-
tions are simpler than CiteSeer, they do not require the
three-tier design used in this paper.

7 Conclusion and Future Work

Using a three-tier design, OverCite serves more queries
per second than a centralized server, despite the addi-
tion of DHT operations and remote index communication.
Given the additional resources available with OverCite’s
design, a wider range of features will be possible; in the
long run the impact of new capabilities on the way re-
searchers communicate may be the main benefit of a more
scalable CiteSeer.

For example, as the field of computer science grows, it
is becoming harder for researchers to keep track of new
work relevant to their interests. OverCite could help by
providing an alert service to e-mail a researcher when-
ever a paper entered the database that might be of inter-
est. Users could register queries that OverCite would run
daily (e.g., alert me for new papers on “distributed hash
table” authored by “Druschel”). This service clearly ben-
efits from the OverCite DHT infrastructure as the addi-
tional query load due to alerts becomes distributed over
many nodes. A recent proposal [28] describes a DHT-
based alert system for CiteSeer. Other possible features in-
clude Amazon-like document recommendations, plagia-
rism detection, or including a more diverse range of doc-
uments, such as preprints or research from other fields.

Since OverCite’s architecture allows it to include new
resources as they become available, it can scale its ca-
pacity to meet the demands of imaginative programmers.
We plan to create an open programming interface to the
OverCite data (similar to CiteSeer’s OAI interface [13]),
allowing the community to implement new features and
services on OverCite such as those listed above. We plan
to launch OverCite as a service for the academic commu-
nity in the near future to encourage these possibilities.

Acknowledgments

We thank Frank Dabek, Max Krohn, and Emil Sit for their
tireless help debugging and discussing; David Karger and
Scott Shenker for formative design conversations; Dave
Andersen, Nick Feamster, Mike Howard, Eddie Kohler,
Nikitas Liogkas, Ion Stoica, and all the RON host sites
for volunteering machines, bandwidth, and time; the re-
viewers for their insightful comments; and C. Lee Giles
for his continued support at PSU.

References
[1] The ACM Digital Library.

http://portal.acm.org/dl.cfm.

[2] Akamai technologies, inc. http://www.akamai.com.

[3] ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK, M. F., AND

MORRIS, R. Resilient overlay networks. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
’01) (2001).

[4] ANDERSON, R. J. The Eternity Service. In Proceedings of the
1st International Conference on the Theory and Applications of
Cryptology (1996).

[5] arXiv.org e-Print archive. http://www.arxiv.org.

[6] BAWA, M., MANKU, G. S., AND RAGHAVAN, P. SETS: Search
enhanced by topic segmentation. In Proceedings of the 2003 SIGIR
(July 2003).

[7] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertex-
tual Web search engine. Computer Networks and ISDN Systems
30 (1998).

[8] BRODER, A. Z. On the resemblance and containment of doc-
uments. In Proceedings of the Compression and Complexity of
Sequences (June 1997).

[9] BURKARD, T. Herodotus: A peer-to-peer web archival system.
Master’s thesis, Massachusetts Institute of Technology, May 2002.

[10] CHAWATHE, Y., RAMABHADRAN, S., RATNASAMY, S.,
LAMARCA, A., SHENKER, S., AND HELLERSTEIN, J. A case
study in building layered DHT applications. In Proceedings of the
2005 SIGCOMM (Aug. 2005).

[11] CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM, N.,
AND SHENKER, S. Making Gnutella-like P2P systems scalable.
In Proceedings of the 2003 SIGCOMM (Aug. 2003).

[12] CHO, J., AND GARCIA-MOLINA, H. Parallel crawlers. In Pro-
ceedings of the 2002 WWW Conference (May 2002).

[13] CiteSeer.PSU Open Archive Initiative Protocol.
http://citeseer.ist.psu.edu/oai.html.

[14] COHEN, B. Incentives build robustness in BitTorrent. In Proceed-
ings of the Workshop on Economics of Peer-to-Peer Systems (June
2003).

[15] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. In Proceed-
ings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01) (Oct. 2001).

[16] DABEK, F., KAASHOEK, M. F., LI, J., MORRIS, R., ROBERT-
SON, J., AND SIT, E. Designing a DHT for low latency and high
throughput. In Proceedings of the 1st NSDI (Mar. 2004).

[17] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data pro-
cessing on large clusters. In Proceedings of the 6th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI)
(Dec. 2004).

[18] The Digital Object Identifier system. http://www.doi.org.

[19] DRUSCHEL, P., AND ROWSTRON, A. PAST: Persistent and
anonymous storage in a peer-to-peer networking environment. In
Proceedings of the 8th IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII) (May 2001), pp. 65–70.

[20] FOX, A., GRIBBLE, S. D., CHAWATHE, Y., BREWER, E. A.,
AND GAUTHIER, P. Cluster-based scalable network services. In
Proceedings of the 16th ACM Symposium on Operating Systems
Principles (1997).

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association152



[21] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIÈRES, D. De-
mocratizing content publication with Coral. In Proceedings of the
1st NSDI (Mar. 2004).

[22] FREEDMAN, M. J., LAKSHMINARAYANAN, K., AND

MAZIÈRES, D. OASIS: Anycast for any service. In Pro-
ceedings of the 3rd NSDI (May 2006).

[23] GNAWALI, O. D. A keyword set search system for peer-to-peer
networks. Master’s thesis, Massachusetts Institute of Technology,
June 2002.

[24] Google Scholar. http://scholar.google.com.

[25] GRIBBLE, S. D., BREWER, E. A., HELLERSTEIN, J. M., AND

CULLER, D. Scalable, distributed data structures for Internet ser-
vice construction. In Proceedings of the 4th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 2000)
(Oct. 2000).

[26] HUEBSCH, R., HELLERSTEIN, J. M., LANHAM, N., LOO, B. T.,
SHENKER, S., AND STOICA, I. Querying the Internet with PIER.
In Proceedings of the 19th VLDB (Sept. 2003).

[27] Inspec. http://www.iee.org/Publish/INSPEC/.

[28] KANNAN, J., YANG, B., SHENKER, S., SHARMA, P., BANER-
JEE, S., BASU, S., AND LEE, S. J. SmartSeer: Using a DHT to
process continuous queries over peer-to-peer networks. In Pro-
ceedings of the 2006 IEEE INFOCOM (Apr. 2006).

[29] KROHN, M. Building secure high-performance web services with
OKWS. In Proceedings of the 2004 Usenix Technical Conference
(June 2004).

[30] LAWRENCE, S., GILES, C. L., AND BOLLACKER, K. Digital
libraries and autonomous citation indexing. IEEE Computer 32, 6
(1999), 67–71. http://www.citeseer.org.

[31] LI, J., LOO, B. T., HELLERSTEIN, J. M., KAASHOEK, M. F.,
KARGER, D., AND MORRIS, R. On the feasibility of peer-to-peer
web indexing and search. In Proceedings of the 2nd IPTPS (Feb.
2003).

[32] LOO, B. T., COOPER, O., AND KRISHNAMURTHY, S. Distributed
web crawling over DHTs. Tech. Rep. UCB//CSD-04-1332, UC
Berkeley, Computer Science Division, Feb. 2004.

[33] LOO, B. T., HUEBSCH, R., STOICA, I., AND HELLERSTEIN,
J. M. The case for a hybrid P2P search infrastructure. In Pro-
ceedings of the 3rd IPTPS (Feb. 2004).

[34] MAZIÈRES, D. A toolkit for user-level file systems. In Proceed-
ings of the 2001 Usenix Technical Conference (June 2001).

[35] MERKLE, R. C. A digital signature based on a conventional en-
cryption function. In CRYPTO ’87: Conference on the Theory and
Applications of Cryptographic Techniques on Advances in Cryp-
tology (1988), pp. 369–378.

[36] PlanetLab: An open platform for developing, deploying and ac-
cessing planetary-scale services. http://www.planet-lab.
org.

[37] REYNOLDS, P., AND VAHDAT, A. Efficient peer-to-peer keyword
searching. In Proceedings of the 4th International Middleware
Conference (June 2003).

[38] RHEA, S., GODFREY, B., KARP, B., KUBIATOWICZ, J., RAT-
NASAMY, S., SHENKER, S., STOICA, I., AND YU, H. OpenDHT:
A public DHT service and its uses. In Proceedings of the 2005
SIGCOMM (Aug. 2005).

[39] ROSENTHAL, D. S. H., AND REICH, V. Permanent web publish-
ing. In Proceedings of the 2000 USENIX Technical Conference,
Freenix Track (June 2000).

[40] SHI, S., YANG, G., WANG, D., YU, J., QU, S., AND CHEN, M.
Making peer-to-peer keyword searching feasible using multi-level
partitioning. In Proceedings of the 3rd IPTPS (Feb. 2004).

[41] SINGH, A., SRIVATSA, M., LIU, L., AND MILLER, T. Apoidea:
A decentralized peer-to-peer architecture for crawling the world
wide web. In Proceedings of the SIGIR 2003 Workshop on Dis-
tributed Information Retrieval (Aug. 2003).

[42] SIT, E., DABEK, F., AND ROBERTSON, J. UsenetDHT: A low
overhead Usenet server. In Proceedings of the 3rd International
Workshop on Peer-to-Peer Systems (Feb. 2004).

[43] SMITH, M. Dspace for e-print archives. High Energy Physics
Libraries Webzine, 9 (Mar. 2004). http://dspace.org.

[44] STOICA, I., ADKINS, D., ZHUANG, S., SHENKER, S., AND

SURANA, S. Internet indirection infrastructure. In ACM SIG-
COMM (Aug. 2002).

[45] STRIBLING, J., COUNCILL, I. G., LI, J., KAASHOEK, M. F.,
KARGER, D. R., MORRIS, R., AND SHENKER, S. OverCite: A
cooperative digital research library. In Proceedings of the 4th In-
ternational Workshop on Peer-to-Peer Systems (Feb. 2005).

[46] SUEL, T., MATHUR, C., WU, J.-W., ZHANG, J., DELIS, A.,
KHARRAZI, M., LONG, X., AND SHANMUGASUNDARAM, K.
ODISSEA: A peer-to-peer architecture for scalable web search and
information retrieval. In Proceedings of the International Work-
shop on the Web and Databases (June 2003).

[47] TANG, C., AND DWARKADAS, S. Hybrid global-local indexing
for efficient peer-to-peer information retrieval. In Proceedings of
the 1st NSDI (Mar. 2004).

[48] WANG, L., PARK, K., PANG, R., PAI, V. S., AND PETERSON, L.
Reliability and security in the codeen content distribution network.
In Proceedings of the USENIX 2004 Annual Technical Conference
(June 2004).

[49] YANG, B., AND GARCIA-MOLINA, H. Improving search in peer-
to-peer networks. In Proceedings of the 22nd ICDCS (July 2002).

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 153




