A Decision-Analytic Approach for P2P Cooperation Policy Setting

G. Vakili¹, Th. G. Papaioannou², S. Khorsandi¹

Amirkabir University of Technology

Tehran – Iran

² Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne – Switzerland

NetEcon'10

Outline

- Our Motivation & Goal
- Our Approach
- System Model
- Decision-Analytic Approach
- Analysis
 - NE Analysis
- Evaluation
- Conclusion

Our Motivation & Goal

- Overall performance of P2P systems depends on resource contributions of individual peers.
- Rational peers decide on their cooperation policies according to their individual utilities.
- Inherent conflict among individual utilities of the rational peers results in
 - free-riding
 - unfair contribution
 - low participation
- Our goal is dealing with the inherent individual utility conflicts to improve overall performance of the system.

Our Approach

- We employ decision-theory to model cooperation policy setting of participating peers:
 - Each peer chooses its strategy according to observable strategies of the other peers.
 - Through a swarm-based iterative learning process:
 - Rational peers set their cooperation policies so as to maximize their own utility.
 - Their decisions are coordinated in a distributed manner to improve the social welfare of the system.
- The game-theoretic analysis lacks an explicit and tractable handling of the individual strategy dynamics present in the interactions among individual peers

SYSTEM MODEL

Individual-based Lagrangian Swarm Model

- Interacting participants of a P2P system exhibit general properties of an individual based Lagrangian swarm model:
 - composed of many individual peers;
 - the interactions are based on local information exchange;
 - emergence;
 - self-organization.
- We made two modifications to adopt this model in the context of a P2P system:
 - Distributed local objectives (utility functions) are defined for individual peers.
 - The interaction of particles is represented as a noncooperative game.

Definitions

- We assume that N peers p_i ; i:1,...,N participate in the system
- Policy (*d_i*)
 - a peer's policy is its level of cooperation (a numerical assessment of the peer's contributed resources to the system)
- Strategy (s_i)
 - the strategy of a peer reflects its decision on the change in its cooperation level (policy)
- Utility (*U_i*)
 - A peer's utility is determined by its strategy choices and depends on several parameters - discussed as follows.

Utility Function

- Cost and Benefit
 - the total cost for participating in the system with cooperation level of d_i will be $c_i d_i$
 - the benefit of cooperation of p_j to p_i is represented by $b_{ij}d_j$; where b_{ij} is measured (e.g.) as the inverse of latency
- Incentives for high contribution
 - it is modeled by a monotonically increasing function of the cooperation policy of a peer p_i , denoted by bc_i
- Utility:

$$U_i = bc_i \cdot \sum_{j \in N} b_{ij} \cdot d_j - c_i d_i \qquad ; b_{ii} \equiv 0$$

DECISION-ANALYTIC APPROACH

Overall

- Observable strategies of other peers are monitored by each peer in a sequence of iterations.
- Based on this empirical evidence, each peer can decide rationally on a strategy in every iteration.
- This chain of decisions are made based on a method inspired by particle swarm optimization (PSO).
- Through this chain of decisions each participating peer concludes its final cooperation policy with respect to the other peers' behavior.

More Formally

- To maximize its expected utility U_i , each peer p_i sets its final cooperation policy through an iterative decision making process:
 - p_i monitors the strategies of the other peers in its neighborhood N_i locally and evaluates their strategies.
 - It chooses its strategy s_i^{next} in the next iteration with respect to the evaluation result and to its own experience:

$$S_i^{next} = S_i^{current} + r_1 c_1 (d_p - d_i^{current}) + r_2 c_2 (d_n - d_i^{current})$$

- d_p is the best previous policy of p_i and d_n denotes the best policy of the other peers in N_i .
- Then the cooperation policy d_i of peer p_i is revised as follows:

$$d_i^{next} = d_i^{current} + s_i^{next}$$

° ANALYSIS -EVALUATION

NE Analysis

- We employ Nash equilibrium analysis to investigate the predicted strategies for the participating peers by the decision-analytic approach.
- According to [Buragohain et al. P2PComputing03] for a similar quantitative model of the system in a homogeneous setting (for all p_i , $b_{ij} = b$, c_i = c), the NE is given by:

$$d * = (b(N-1)/2c-1) \pm ((b(N-1)/2c-1)^2-1)^{1/2}$$

- As we numerically show:
 - The expected NE of the game is not the Pareto-optimal one.
 - The outcome derived from the proposed decision-analytic approach would make all players better-off.

The comparison of the average cooperation level

- Tendency toward Pareto efficiency
- Better outcome than NE
- Both homogeneous and heterogeneous settings evolve similarly

Convergence to a set of Pareto efficient strategy

Fast convergence regardless of the target cooperation level

° CONCLUSION

Conclusion – Future Work

- We propose a decision-analytic approach based on the modified swarm model, to set and coordinate rational decisions of the individual peers on their cooperation policies in a distributed manner.
- The resulting cooperation policies constitute the final set of decisions that maximize rational peers' utility in-line with the social welfare of the system.
 - Incentive-compatible for peers to follow
- Our approach quickly approximates a Pareto-optimal operating point of the system.
- In our future work, we will investigate information exchange mechanisms that involve incentives for neighbor truthfulness or own observation and verification.

THANK YOU FOR YOUR ATTENTION. MORE QUESTIONS TO:

Golnaz Vakili

g vakili@aut.ac.ir

Distributed Information Systems Lab, EPFL http://lsir.epfl.ch