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Abstract

We provide a game theoretic model of content production and sharing in a peer-to-peer (P2P) network. We characterize
two benchmark outcomes: Nash equilibrium (NE) without any incentive scheme and social optimum. We show that
the P2P network is not utilized at an NE outcome, whereas social optimum in general requires the utilization of the
P2P network. In order to obtain a socially optimal (SO) outcome among self-interested peers, we introduce a pricing
scheme where downloading peers compensate uploading peers for content provision. For any SO outcome, we can
find a pricing scheme with link-dependent linear prices that achieves the SO outcome as an NE. We illustrate our
results with several examples. Our illustration shows that the structures of social optimum and optimal prices vary
depending on the characteristics of peers such as cost parameters and connectivity.

1 Introduction

In today’s Internet, we are witnessing the emergence of
user-generated content in the form of photos, videos,
news, customer reviews, and so forth. Peer-to-peer (P2P)
networks are able to offer a useful platform for shar-
ing user-generated content, because P2P networks are
self-organizing, distributed, inexpensive, scalable, and
robust. However, as evidenced in experimental studies
[1], [2], the free-riding phenomenon prevails in P2P net-
works, which hinders the effective utilization of P2P net-
works. In this paper, we analyze a scenario where peers
produce content and share produced content in a P2P net-
work. We investigate how content pricing can be used to
overcome the free-riding problem and achieve a socially
optimal outcome, based on the principles of economics.

Recent work has studied pricing schemes in P2P net-
works using economics models [3]–[5]. [3] constructs
a game theoretic model and proposes a micro-payment
mechanism to provide an incentive for sharing. [4] com-
pares different pricing schemes and their informational
requirements in the context of a simple file-sharing game.
[5] investigates the problem of selecting multiple server
peers given the prices of service and a budget constraint.
The models of [3]–[5], however, capture only a partial
picture of the content production and sharing scenario
we are interested in. [3] allows only three sharing lev-
els while production levels are fixed. [4] considers only
sharing levels while ignoring production and transfer de-
cisions. [5] does not explain how the prices and the bud-
get are determined.

In our recent work [6], we have formulated a game
theoretic model of content production and sharing, where
peers make production, sharing, and download decisions
in order. We have shown that the P2P network is not

utilized without an incentive scheme whereas social opti-
mum requires all produced content to be shared. We have
also shown that an appropriately chosen price of content
induces peers to operate at social optimum in their self-
interest. However, we have imposed several simplifying
assumptions in [6] for analytic convenience, and in this
paper, we generalize the model of [6]. In particular, we
allow general network connectivity, heterogeneous util-
ity and production cost functions across peers, convex
production cost functions, and link-dependent download
and upload costs. We show that the main result of [6]
continues to hold in the generalized model: There exists
a discrepancy between Nash equilibrium and social op-
timum, and this discrepancy can be eliminated by intro-
ducing a pricing scheme. Moreover, by allowing general
network connectivity and heterogeneous peers, we obtain
richer structures of social optimum and optimal prices.

We briefly mention two related papers [7], [8]. [7]
analyzes a price-based exchange model for content dis-
tribution. In [7] peers choose their download and upload
rates subject to upload capacity and budget constraints,
whereas in our model peers choose production, sharing,
and download levels while incurring cost of production,
upload, and download. [8] studies the problem of infor-
mation acquisition and link formation, where informa-
tion acquisition can be interpreted as content production.
In [8] information flows freely once a link is established,
whereas in our model connectivity is fixed and the trans-
fer of content incurs cost to both uploading and down-
loading peers.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our game theoretic model of content
production and sharing. In Section 3, we characterize
two benchmark outcomes: Nash equilibrium and social



optimum. In Section 4, we introduce a pricing scheme to
show that any socially optimal outcome can be achieved
as a Nash equilibrium with appropriately chosen link-
dependent linear prices. In Section 5, we consider sev-
eral examples to illustrate the results obtained in Sections
3 and 4. We conclude the paper in Section 6.

2 Model

We consider a P2P network consisting of N peers. Peers
produce content using their own production technolo-
gies, and distribute produced content using the P2P net-
work. Let N , {1, . . . , N} be the set of peers in the P2P
network. A peer can download content from a subset of
other peers, while it can upload content to a (potentially
different) subset of other peers. We use D(i) and U(i) to
denote the set of peers that peer i can download from and
upload to, respectively, where D(i), U(i) ⊂ N \ {i} for
each i ∈ N . Thus, the connectivity topology of the P2P
network can be represented by {D(i), U(i)}i∈N . Note
that j ∈ D(i) is equivalent to i ∈ U(j) by definition.

As in [6], we model content production and sharing
in the P2P network as a sequential game consisting of
three stages, which is called the content production and
sharing (CPS) game.

• Stage One (Production): Each peer determines its
level of production. xi ∈ R+ represents the amount
of content produced by peer i and is known only to
peer i.

• Stage Two (Sharing): Each peer specifies its level
of sharing. yi ∈ [0, xi] represents the amount of
content that peer i makes available to other peers.
Peer i observes (yj)j∈D(i) at the end of stage two,
for example, through a tracker.

• Stage Three (Transfer): Each peer determines the
amounts of content that it downloads from other
peers. Peer i serves all the requests it receives from
any other peer in U(i) up to yi. zij ∈ [0, yj ] rep-
resents the amount of content that peer i downloads
from peer j ∈ D(i), or equivalently peer j uploads
to peer i.

An allocation of the CPS game is represented by
(x,y,Z), where x , (x1, . . . , xN ), y , (y1, . . . , yN ),
zi , (zij)j∈D(i), for each i ∈ N , and Z ,
(z1, . . . , zN ). An allocation (x,y,Z) is feasible if xi ≥
0, 0 ≤ yi ≤ xi, and 0 ≤ zij ≤ yj for all j ∈ D(i), for
all i ∈ N .

In stage one, peer i incurs the production cost ki(xi)
by producing the amount of content xi, where ki : R+ →
R+ is the production cost function of peer i. We as-
sume that ki is continuously differentiable and convex,

for each i ∈ N . Thus, the content production tech-
nology of each peer exhibits decreasing returns to scale.
In stage two, there is no direct cost of announcing the
level of sharing. In stage three, transferring the amount
of content zij from peer j to peer i ∈ U(j) induces a
cost of δijzij to peer i (the downloader) and σijzij to
peer j (the uploader), where δij > 0 and σij > 0 are
the marginal costs of download and upload, respectively,
from peer j to peer i. The cost of download and up-
load can be considered as cost due to bandwidth usage
and energy consumption,1 and we allow link-dependent
download and upload rates. After the transfer of con-
tent, peer i consumes content it produces and down-
loads, (xi, zi). The utility that peer i receives from con-
suming content (xi, zi) is measured by fi(xi, zi), where
fi : R|D(i)|+1

+ → R+ is the utility function of peer i.
We assume that fi is continuously differentiable and con-
cave, for each i ∈ N . Note that each peer can evaluate
content produced by different peers in a different way.
The payoff function of peer i in the CPS game can be
expressed as

vi(x,y,Z)

= fi(xi, zi)− ki(xi)−
∑

j∈D(i)

δijzij −
∑

j∈U(i)

σjizji.

As an example of the P2P network model formulated
above, consider a P2P network where peers need finan-
cial data (e.g., earnings of companies, gross domestic
products, and interest rates) in order to make forecasts
based on which they make investment decisions (e.g.,
trade stocks and bonds). To obtain financial data, peers
can either collect data by themselves or download data
shared by other peers. Financial data allow peers to make
more informed decisions, and this benefit is captured by
the utility functions of the peers.

3 Nash Equilibrium and Social Optimum

We first analyze the non-cooperative outcome of the CPS
game. Non-cooperative peers choose their strategies to
maximize their own utilities given the strategies of other
peers. A strategy for peer i in the CPS game is its com-
plete contingent plan over the three stages, which can
be represented by (xi, yi(xi), zi(xi, yi, (yj)j∈D(i))). A
stage-one strategy for peer i is represented by xi ∈ R+,
a stage-two strategy by a function yi : R+ → R+

such that yi(xi) ≤ xi for all xi ∈ R+, and a stage-
three strategy by a function zi : Ii → R|D(i)|

+ such that
zij(xi, yi, (yj)j∈D(i)) ≤ yj for all j ∈ D(i), where
Ii , {(xi, yi, (yj)j∈D(i))|xi ∈ R+, yi ∈ [0, xi], yj ∈
R+,∀j ∈ D(i)} is the set of all possible information
sets for peer i at the beginning of stage three. Nash equi-
librium (NE) of the CPS game is defined as a strategy



profile such that no peer can improve its payoff by a uni-
lateral deviation. The play on the equilibrium path (i.e.,
the realized allocation) at an NE is called an NE outcome
of the CPS game. The following proposition character-
izes the NE of the CPS game.

Proposition 1. Suppose that, for each i ∈ N , a solution
to maxx≥0{fi(x, 0)− ki(x)} exists, and denote it as xe

i .
An NE outcome of the CPS game has xi = xe

i and zij =
0 for all j ∈ D(i), for all i ∈ N .

Proof. Let (x,y,Z) be an NE outcome of the CPS game.
Suppose that zij > 0 for some i ∈ N and j ∈ D(i). This
implies that yj > 0, and peer j can increase its payoff by
at least σijzij by deviating to yj = 0, contradicting NE.
Therefore, zij = 0 for all j ∈ D(i), for all i ∈ N at any
NE outcome. Given that there is no transfer of content at
NE, only xi = xe

i satisfies the requirement of NE.

Peer i can share a positive amount of content at an NE
outcome only in a trivial case where no peer demands
content produced by peer i. Proposition 1 shows that
lack of compensation for upload leads to the collapse of
the P2P network. Without an incentive scheme, the free-
riding incentive of peers dominates, which prevents the
utilization of the P2P network.

We now turn to the socially optimal (SO) outcome of
the CPS game. As in [8], we measure social welfare by
the sum of the payoffs of peers,

∑N
i=1 vi(x,y,Z), and

define an SO allocation as an allocation that maximizes
social welfare among feasible allocations. The problem
of maximizing social welfare among feasible allocations
can be written as

max
x,y,Z

∑

i∈N

{
fi(xi, zi)− ki(xi)

−
∑

j∈D(i)

δijzij −
∑

j∈U(i)

σjizji

}

subject to xi ≥ 0, 0 ≤ yi ≤ xi, 0 ≤ zij ≤ yj

for all j ∈ D(i), for all i ∈ N . (1)

Using Karush-Kuhn-Tucker (KKT) conditions, we can
characterize SO allocations.

Proposition 2. An allocation (x∗,y∗,Z∗) is SO if and
only if it is feasible and there exist constants µi and λij

for i ∈ N and j ∈ D(i) such that

∂fi(x
∗
i , z

∗
i )

∂xi
− dki(x

∗
i )

dxi
+ µi ≤ 0,

with equality if x∗
i > 0, (2)

∑

j∈D(i)

λji − µi ≤ 0, with equality if y∗i > 0, (3)

∂fi(x
∗
i , z

∗
i )

∂zij
− δij − σij − λij ≤ 0,

with equality if z∗ij > 0, (4)

µi ≥ 0, with equality if y∗i < x∗
i , (5)

λij ≥ 0, with equality if z∗ij < y∗j , (6)

for all j ∈ D(i), for all i ∈ N .

Proof. Since the objective function of the maximization
problem in (1) is concave and the constraints are linear,
KKT conditions are both necessary and sufficient.

Unlike at an NE outcome, the P2P network may be uti-
lized at an SO allocation. For example, suppose that the
utility function of peer i is given by fi(xi, zi) = (αix

ρ
i +∑

j∈D(i) αijz
ρ
ij)

1/ρ for some αi, αij > 0, j ∈ D(i), and
ρ < 1. Then (4) cannot be satisfied when zij = 0, and
thus we have zij > 0 for all j ∈ D(i) at an SO alloca-
tion.

4 Content Pricing

In order to provide incentives for sharing, we intro-
duce a pricing scheme in the CPS game. We consider
a class of pricing schemes under which a peer down-
loading content makes a payment to the uploading peer.
We allow link-dependent prices and use pij ∈ R+ to
denote the unit price of content that peer j provides
to peer i. In other words, peers i pays peer j the
price pij when peer i downloads a unit of content from
peer j. A pricing scheme can be represented by prices
(pij)i∈N ,j∈D(i). In the CPS game with a pricing scheme
p , (pij)i∈N ,j∈D(i), peers take actions over the three
stages as in the CPS game described in Section 2 while
paying and receiving prices depending on their stage-
three choices. Prices are set by the P2P service provider,
and peers take prices as given. With pricing scheme p,
peer i pays

∑
j∈D(i) pijzij to other peers while receiving∑

j∈U(i) pjizji from other peers. Thus, the payoff func-
tion of peer i in the CPS game with pricing scheme p is
given by

πi(x,y,Z;p)

= vi(x,y,Z)−
∑

j∈D(i)

pijzij +
∑

j∈U(i)

pjizji

= fi(xi, zi)− ki(xi)−∑

j∈D(i)

(pij + δij)zij +
∑

j∈U(i)

(pji − σji)zji.

In effect, a pricing scheme increases the cost of download
while decreasing the cost of upload. If pij > σij , peer
j receives a net benefit from uploading content to peer i,
which provides peer j with an incentive for sharing.



Note that SO allocations are not affected by the intro-
duction of a pricing scheme, because payments are trans-
ferred between peers. The following proposition shows
that there exists an optimal pricing scheme in the sense
that SO allocations are achieved as non-cooperative equi-
libria of the CPS game with the pricing scheme.

Proposition 3. Let (x∗,y∗,Z∗) be an SO allocation and
(λij)i∈N ,j∈D(i) be associated constants satisfying the
KKT conditions (2)–(6). Then (x∗,y∗,Z∗) is an NE
outcome of the CPS game with pricing scheme p∗ =
(p∗ij)i∈N ,j∈D(i), where p∗ij = λij + σij for i ∈ N and
j ∈ D(i).

Proof. Choose an SO allocation (x∗,y∗,Z∗), and find
associated constants µi and λij for i ∈ N and j ∈ D(i)
given in Proposition 2. Consider a strategy of peer i,
(x̃i, ỹi(xi), z̃i(xi, yi, (yj)j∈D(i))), such that x̃i = x∗

i ,
ỹi(xi) = xi if µi > 0, ỹi(xi) = min{xi, y

∗
i } if

µi = 0, and zij(xi, yi, (yj)j∈D(i))) = min{yj , z∗ij}, for
all j ∈ D(i), for all i ∈ N .

Consider the maximization problem of peer i in the
CPS game with pricing scheme p∗, given the strategies
of other peers:

max
xi,yi,zi

{
fi(xi, zi)− ki(xi)

−
∑

j∈D(i)

(λij + σij + δij)zij +
∑

j∈U(i)

λjiz̃ji

}

subject to xi ≥ 0, 0 ≤ yi ≤ xi, 0 ≤ zij ≤ y∗j
for all j ∈ D(i). (7)

Comparing the KKT conditions for (1) and (7), we
can show that (x∗

i , y
∗
i , z

∗
i ) solves (7), which proves that

(x∗,y∗,Z∗) is an NE outcome.

In the expression of the optimal prices, p∗ij = λij+σij ,
we can see that peer i compensates peer j for the upload
cost, σij , as well as the shadow price, λij , of content sup-
plied from peer j to peer i. Proposition 3 resembles the
second fundamental theorem of welfare economics [9]
in that it shows that any SO allocation can be achieved
in a decentralized manner through prices. However, our
model is different from the general equilibrium model in
that we consider networked interactions [10] where the
set of feasible consumption bundles for a peer depends
on the sharing levels of peers from which it can down-
load.

5 Illustrative Examples

In this section, we illustrate the results in Sections 3 and
4 by imposing the following assumptions.

(a) (b)

(c) (d)

Figure 1: P2P connectivity topologies: (a) fully con-
nected topology, (b) star topology, (c) ring topology, and
(d) line topology.

1. (Perfectly substitutable content) The utility from
consumption depends only on the total amount of
content. In other words, for each peer i, there exists
a function gi : R+ → R+ such that fi(xi, zi) =
gi(xi +

∑
j∈D(i) zij). We assume that gi is twice

continuously differentiable and satisfies gi(0) = 0,
g′i > 0, g′′i < 0 on R++, and limx→∞ g′i(x) = 0
for all i ∈ N .

2. (Linear production cost) The production cost is lin-
ear in the amount of content produced. In other
words, for each peer i, there exists a constant κi > 0
such that ki(xi) = κixi. We assume that κi <
g′i(0), where g′i(0) is the right derivative of gi at 0,
for all i ∈ N so that each peer consumes a positive
amount of content at an SO allocation.

3. (Socially valuable P2P network) Obtaining a unit of
content through the P2P network costs less to peers
than producing it privately. In other words, δij +
σij < κi for all i ∈ N and j ∈ D(i).

We define g as the average benefit function, g ,
(
∑N

i=1 gi)/N . By the assumptions on gi, for every
α ∈ (0, g′(0)), there exists a unique x̂α > 0 that satisfies
g′(x̂α) = α. We define g∗(α) = supx≥0{g(x) − αx}
for α ∈ R as the conjugate of g [11].

5.1 Fully Connected Networks with Het-
erogeneous Peers

We first consider a fully connected P2P network, where
each peer can download from and upload to every other
peer in the network, as illustrated in Figure 1(a). In this
case, we have D(i) = U(i) = N \ {i} for all i ∈ N .



Let βi , [κi +
∑

j∈D(i)(δji + σji)]/N , for i ∈ N ,
and let β , min{β1, . . . , βN}. Note that βi is the per
capita cost of peer i producing one unit of content and
supplying it to every other peer to which peer i can up-
load, and we call it the cost parameter of peer i. It is SO
to have only the most “cost-efficient” peers (i.e., peers
with the smallest cost parameter in the network) produce
a positive amount, where the total amount of production
is given by x̂β . For simplicity, suppose that the most
cost-efficient peer is unique, and without loss of general-
ity index the peer as peer 1. Then at the SO allocation,
peer 1 produces the amount x̂β and uploads it to every
other peer. As a result, each peer consumes the amount
x̂β , and the maximum social welfare is Ng∗(β). The op-
timal pricing scheme is given by (p∗ij)i∈N ,j∈D(i), where
p∗ij = g′i(x̂β) − δij . The payoff of peer i under the opti-
mal pricing scheme is gi(x̂β)− g′i(x̂β)x̂β for peer i 6= 1
and g1(x̂β) − [κ1 −

∑
j 6=1(g

′
j(x̂β) − δj1 − σj1)]x̂β for

peer 1. In a fully connected P2P network, the role of up-
loading peers (servers) and downloading peers (clients)
at social optimum is determined by the cost parameters
of peers.

5.2 Networks of General Connectivity
Topology with Homogeneous Peers

We consider homogeneous peers in the sense that the
benefit function, gi, and the cost parameters, κi, δij , and
σij , do not depend on i ∈ N and j ∈ D(i). We de-
note the common respective function and parameters by
g, κ, δ, and σ. Since the results about social optimum
and optimal pricing schemes depend highly on the spe-
cific topology under consideration, we illustrate the re-
sults with three stylized network topologies: a star topol-
ogy, a ring topology, and a line topology, as shown in
Figure 1(b)–(d).

5.2.1 Star Topology

Assume N ≥ 3, and without loss of generality let peer
1 be the center of a star topology. The cost parame-
ters are given by β1 = [κ + (N − 1)(δ + σ)]/N = β
and βj = (κ + δ + σ)/2 for j 6= 1. Since peer 1 is
more connected than other peers, it is more cost-efficient
(i.e., β1 < βj for all j 6= 1). Hence, only peer 1
produces a positive amount of content x̂β and uploads
it to every other peer at the SO allocation.2 The con-
sumption of each peer is x̂β , while the maximum so-
cial welfare is Ng∗(β). The optimal price is given by
p∗ = [κ + (N − 1)σ − δ]/N , independent of the link,
which yields payoff g∗(β) to every peer. In a star P2P
network with homogeneous peers, the positions of peers
determine their roles as servers and clients, while a uni-
form price suffices to support the SO allocation at NE.

As an extension of our model, suppose that there are N
heterogeneous peers and consider the problem of build-
ing a P2P network connecting the N peers when it is
costly to establish a link. Our analysis implies that form-
ing a star network with the most cost-efficient peer as the
center requires the minimum number of links (i.e., N−1
links) among networks that realize the maximum social
welfare achievable with the N peers.

5.2.2 Ring Topology

In a ring topology, every peer is connected to two neigh-
boring peers, and thus peers have the same cost parame-
ter β̃ , [κ + 2(δ + σ)]/3. When each peer produces x
and shares its content with its neighboring peers, social
welfare is given by N{g(3x)− [κ+ 2(δ + σ)]x}. Thus,
each peer produces the amount x̂β̃/3 while consuming
x̂β̃ at the SO allocation, which achieves the maximum
social welfare Ng∗(β̃). The optimal price is given by
p∗ = (κ + 2σ − δ)/3, yielding payoff g∗(β̃) to every
peer. In a ring P2P network with homogeneous peers,
peers are in a symmetric position, which leads them to
play the roles as a server and a client at the same time.
Also, the SO amounts of production and consumption do
not depend on the number of peers in a ring network, and
thus the maximum per capita social welfare is indepen-
dent of N . On the contrary, in a fully connected or star
network with homogeneous peers, the cost parameter β
decreases as there are more peers in the network, and
thus the SO amounts of production and consumption and
the maximum per capita social welfare increase with N .

5.2.3 Line Topology

Index peers as peer 1 through N from the left to the right
of a line topology. Then the cost parameters of peers are
given by β1 = βN = (κ + δ + σ)/2 and βi = β̃ for all
i 6= 1, N . Since peers in the end (peers 1 and N ) are less
cost-efficient than peers in the middle (peers 2 through
N − 1), it is not SO to have peers in the end produce
a positive amount of content (assuming N ≥ 3). Given
the number of peers N , we can find SO production levels
by equating the marginal social benefit and the marginal
social cost. SO allocations for N between 3 and 9 are
shown in Figure 2. The optimal pricing scheme has peer-
dependent prices, where the price that peer i pays to its
neighboring peers is given by p∗i = g′(c∗i ) − δ, where
c∗i is the consumption of peer i at the SO allocation. For
example, when N = 7, p∗i = g′(2x∗)−δ, for i = 1, 4, 7,
and p∗i = g′(3x∗) − δ, for i = 2, 3, 5, 6, where x∗ is
determined as shown in Figure 2. When N is a multiple
of 3, c∗i = x̂β̃ and thus p∗i = (κ + 2σ − δ)/3 for all
i ∈ N . Note that when N is a multiple of 3, the SO
operation of the entire P2P network is the same as that
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Figure 2: SO allocations for line topology.

of N/3 sub-networks, each of which consists of three
connected peers. Therefore, the consumption level at the
SO allocation and the optimal price do not depend on N .
In a line P2P network with homogeneous peers, a peer
can become a server, a client, or a server and client at the
same time, depending on its position in the topology.

6 Conclusion

We have generalized the model of our previous work
[6] and analyzed Nash equilibrium, social optimum, and
pricing schemes. Although analytically more compli-
cated, the generalized model offers many interesting in-
sights that could not be captured under the simplifying
assumptions in [6]. For example, the cost parameter as
well as the position of a peer in connectivity topology
determines its role as a server or a client (or both). The
CPS game with a pricing scheme can be extended in sev-
eral directions. First, we can consider a scenario where
uploading peers set the prices they receive to maximize
their payoffs. Second, we can apply mechanism design
in a scenario where prices are determined based on the
report of peers on their utility and cost functions. Lastly,
we can analyze the problem of link formation by self-
interested peers.
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Notes
1By assuming linear download and upload cost functions, we are

considering a scenario where the download and upload capacity con-
straints of each node do not bind.

2This statement is true for P2P networks of any topology with ho-
mogeneous peers in which peer 1 is the only peer connected to every
other peer.


