
MobiUS: Enable Together-Viewing Video Experience
across Two Mobile Devices

Guobin Shen
Microsoft Research Asia
Beijing, 100080, China

jackysh@microsoft.com

Yanlin Li
Tianjin University

Tianjin, 300072, China
v-yanlli@microsoft.com

Yongguang Zhang
Microsoft Research Asia
Beijing, 100080, China
ygz@microsoft.com

ABSTRACT
We envision a new better-together mobile application para-
digm where multiple mobile devices are placed in a close
proximity and study a specific together-viewing video ap-
plication in which a higher resolution video is played back
across screens of two mobile devices placed side by side.
This new scenario imposes real-time, synchronous decoding
and rendering requirements which are difficult to achieve be-
cause of the intrinsic complexity of video and the resource
constraints such as processing power and battery life of mo-
bile devices. We develop a novel efficient collaborative half-
frame decoding scheme and design a tightly coupled col-
laborative system architecture that aggregates resources of
both devices to achieve the task. We have implemented
the system and conducted experimental evaluation. Results
confirm that our proposed collaborative and resource aggre-
gation techniques can achieve our vision of better-together
mobile experiences.

Categories and Subject Descriptors
C.3.3 [Special-Purpose and Application-based Sys-
tems]: Real-time and embedded systems; H.4.3 [Informa-
tion Systems Applications]: Communications Applica-
tions; C.5.3 [Microcomputers]: Portable devices

General Terms
Algorithms, Design, Performance

Keywords
Better-together, Together-viewing, mobile computing, col-
laborative decoding, proximity detection, energy efficiency,
resource aggregation, screen aggregation.

1. INTRODUCTION
Mobile devices have seen a high market penetration in the

past few years and have become increasingly indispensable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’07, June 11-14, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-614-1/07/0006 ...$5.00.

Figure 1: Example scenarios of screen aggregation.

in our daily lives. More and more of them are equipped with
both audio/video and wireless networking capabilities, such
as high-end mobile phones and personal media devices like
Microsoft Zune. This enables more and richer mobile multi-
media related user experiences. For instance, we have seen
many new emerging technologies to allow efficient informa-
tion sharing – sharing of files such as media like audio/video,
Flash, ring-tone etc., and documents like MS Word, Power-
point and PDF files etc.

In this paper, we present MobiUS, a research project aim-
ing to create new better-together experiences when multiple
mobile devices are placed together. This represents a new
application paradigm based on the collaboration and re-
source sharing and aggregation over mobile devices in close
proximity. As a first exploration, we develop software mech-
anisms and system components to enable together-viewing
video experience – a real-time, synchronized playback of a
higher resolution video across screens when two mobile de-
vices are put side-by-side (Figure 1). We choose this scenario
because it is challenging and representative, with the expec-
tation that our results and experiences can apply to other
better-together applications like mobile gaming and collab-
orative mobile authoring. We start from two mobile devices
because it is probably the most basic and common case.

In this together-viewing scenario, we assume that one de-
vice has downloaded from the Internet or otherwise obtained
a higher resolution video whose size is about twice of its
screen size. Given that the screen of today’s mobile de-
vice are relatively small, this is a reasonable assumption.
We also assume that the two devices can communicate ef-
fectively and directly via high-speed local wireless networks
such as WiFi and Bluetooth, which are equipped in most
of today’s cell phones or PDAs. We further assume that

30

the two devices are homogeneous, i.e., with same or similar
software and hardware capabilities, though we explore how
to relax this assumption in Section 6.4.

To be specific, this scenario places the following require-
ments on MobiUS. First, video decoding and playback must
be in real-time1 and must be in sync between the two de-
vices. An effective synchronization mechanism must be in
place to ensure the same video frame is rendered at two de-
vices simultaneously, even if the their clocks may be out of
sync. Second, MobiUS must work in a resource-constrained
environment in which processing power, memory, and bat-
tery life may be barely enough for each device to just decode
a video of its own screen size. MobiUS should also minimize
energy consumptions in processing and communication so
that the battery can last as long as possible. Further, it
is desirable if the system is also adaptive. For example, it
should expand the video on to two devices or shrink it on to
one screen alone as the other device comes and goes.

Unlike previous screen aggregation work where screens
from multiple PCs are put together to form a bigger vir-
tual screen [1], MobiUS is more challenging because previ-
ous techniques like a remote framebuffer protocol would con-
sume too much processing power or communication band-
width. Naive approaches such as having one device do full
decoding and send half frames to the peer, or having both
devices do full decoding and each display only half will
quickly saturate the limited resources that the mobile de-
vices have.

The solution to this and other similar problems in Mo-
biUS applications lays in a tightly coupled collaborative and
aggregated computing model for resource-constrained mo-
bile devices. To support the together-viewing video applica-
tion, we develop a collaborative half-frame video decoding
scheme that intelligently divides the decoding task between
the two devices and achieves the real-time playback require-
ment within given constraints. We further optimize this
scheme to improve energy efficiency. We also develop a sys-
tem architecture and necessary components for MobiUS ap-
plications, and implement the together-viewing application
on two mobile phones. The working system and subsequent
experimental evaluation demonstrate that our proposed col-
laborative and resource aggregation techniques can achieve
our vision of better-together mobile experience.

Ultimately, our goal for this better-together mobile para-
digm is to explore the social impact of mobile phones as
always-carried devices. Our objective is not only to let users
enjoy higher quality video, but also make it natural for them
enjoy it together, which will facilitate discussions and con-
solidate the friendship. In fact, the work presented in this
paper has motivated a new Microsoft product plan called
“Lover’s Phone” for young couples. Microsoft has conducted
a preliminary market survey (via a third-party independent
vendor) on users’ opinions on such new mobile devices. The
results will be briefly reported later in the paper.

The rest of paper is organized as follows: in Section 2, we
develop the collaborative half-frame decoding scheme. We
perform algorithmic optimization for better energy efficiency
in Section 3. In Section 4 we describe the MobiUS system
architecture and implementation details. System evaluation
results are presented in Section 5, followed by in-depth dis-

1Here, real-time playback implies at least 15 frames per sec-
ond (fps) for typical mobile video, and normally 24 fps is
expected, depending on how video clips are produced.

cussions in Section 6. We talk about related work in Section
7. Finally, Section 8 concludes the paper and highlights our
future work.

2. COLLABORATIVE HALF-FRAME
DECODING

There are many possible ways to achieve video playback
on two screens. We elaborate all of them, from more straight-
forward to more subtle solutions, and discuss their feasibility
and pros and cons. To facilitate the presentation, we name
the two mobile devices MA and MB and assume MA is the
content host. Without loss of generality, we assume MA is
sitting on the left and MB on the right. Recall that our
primary target is to achieve real-time playback of the dou-
bled resolution video on the computation constrained mobile
devices.

2.1 Full-Frame Decoding-based Approaches
The most straightforward solution would be either to let

MA decode the whole frame, display the left half-frame and
send the decoded right half-frame to MB via network, or to
let MA send the whole bitstream to MB and both devices
perform full-frame decoding but display their own respective
half-frames. We refer to these two methods as thin client
model and thick client model, respectively.

The pros of these two methods are their simplicity in im-
plementation. However, for the thin client model, the com-
puting resource of MB is not utilized and its huge band-
width demand is prohibitive. For example, it would require
more than 22 Mbps to transmit a 24 frame per second (fps)
320 × 240 sized video using YUV format.2 The energy con-
sumption is highly unbalanced between the two devices and
therefore would lead to short operating lifetime since the
application will fail if either device runs out of battery. The
thick client model requires much less bandwidth and utilizes
the computing power of both devices. However, it abuses
the computing power to decode more content than neces-
sary, which can lead to both devices not achieving real-time
decoding of the double resolution video. The reason is that
the computational complexity of video is in direct propor-
tional to its resolution if the video quality remains the same,
but mobile devices are usually cost-effectively designed such
that their computing power is just enough for real-time play-
back of a video whose resolution is no larger than that of
the screen.

In conclusion, the full-frame decoding-based approaches
are not feasible.

2.2 Half-Frame Decoding-based Approaches
Another category of solutions is to let each device to de-

code their corresponding half-frame. These methods ag-
gregate and utilize economically both devices’ computing
power. There are two alternative approaches that differ
in transmitting whole or only partial bitstreams. We re-
fer to the two approaches as whole-bitstream transmission
(WTHD) and partial-bitstream transmission (PTHD), re-
spectively.

Both approaches may reduce the decoding complexity since
only half-frames need to be decoded. However, as will be
elaborated shortly, to achieve half-frame decoding is chal-
lenging and requires substantial modifications to the decod-

2Bandwidth requirement will double if RGB format is used.

31

ing logic and procedure. PTHD saves about half of the
transmission bandwidth, which is significant, as compared
with WTHD, but adds to implementation complexity with
the extraction of the bitstream parsing process to strip out
the partial bitstream for MB .

While both schemes are feasible, from an energy efficiency
point of view, PTHD is more preferable since there is no
bandwidth waste, i.e., only the bits that are strictly nec-
essary are transmitted, which directly translates to energy
savings. We adopt PTHD in our work. More specifically, we
pre-parse the bitstream into two partial ones, stream one re-
sulting bitstream to the other device and make both devices
perform collaborative decoding. In the rest of the paper, we
focus on practical ways to achieve and improve PTHD while
bearing in mind the constraint of energy efficiency.

As a short summary, we compare all the above mentioned
approaches in Table 1.

Scheme
Comput. BW Impl. Feasi-

complexity efficiency complexity bility

Thin/C High/Low Worst Simple No
Thick/C High Bad Simple No
WTHD Low Bad Complex Possible
PTHD Low Good Complex Preferred

Table 1: Summary and comparison between differ-
ent approaches to playback video on two devices.

2.3 Challenges of Half-Frame Decoding
Note that, concluding the latter two approaches are fea-

sible, we have assumed the ability to perform half-frame
decoding. Seemingly straightforward, half-frame decoding
is actually far more difficult than that we might have imag-
ined, because of the inherent temporal frame dependency of
video coding caused by prediction, and possible cross-device
reference (i.e., reference to the half-frame on the other de-
vice) caused by motion. In the worst case, one may still
need to decode all the frames in whole from the previous
anchor frame (which is independently decodable) in order
to produce the correct references for some blocks in a very
late frame.

2.3.1 Background on Video Coding
A video sequence consists a series of frames, each of which

is simply an image. Therefore, each video frame possesses
strong spatial correlation as an image does. As the capturing
instant of neighboring frames are very close to each other,
video frames also exhibit strong temporal correlation. The
basic logic of video coding is to maximally strip off such
spatial and temporal correlation and so compress the video.

Frame n Frame n+1

MV

Moving direction

Motion
Compensated

Prediction

A
BA

Figure 2: Motion compensated prediction.

Since either the camera or the objects in the scene may
move, motion compensated prediction (MCP) is typically

used to better exploit the temporal correlation. As shown in
Figure 2, due to its movement, the same object is captured
at different positions across frames, e.g., at position A in
the nth frame and at another position B in the (n + 1)th

frame. Evidently, the best prediction to the object is offset
by a motion vector (MV) pointing from position B to A.
This is exactly what the MCP does. The motion vector is
obtained through a motion estimation process. After MCP,
the resulting residual signal is further compressed using a
procedure akin to JPEG image compression process.

Obviously, MCP creates temporal frame dependencies,
that is, to decode a later frame, its previous frame (called the
reference frame) must have been reconstructed (decoded).
Such dependency is recursive in nature unless it reaches an
anchor frame which is independently encoded/decoded (i.e.,
no MCP). The first frame is always an anchor frame because
there is no previous frame available. Other anchor frames
are periodically inserted to break the dependency chain and
provide a random access capability.

To reduce the complexity, a video frame is divided into
smaller blocks which are processed sequentially. MCP is
typically carried out at 16 × 16 macroblock level, with one
motion vector for one macroblock in MPEG-2 [2] .3 More-
over, motion vector is typically limited to certain ranges
but the ranges vary in different video coding standards. Al-
though the principle of video coding is simple, the compu-
tational complexity is inherently high because of the huge
volume of video data.

2.3.2 Challenge Arises from Motion
While the recursive temporal frame dependency certainly

creates barriers for parallel decoding along the temporal do-
main, it indirectly affects our task that hopes to perform
parallel decoding in the spatial domain, i.e., the two de-
vices MA and MB decode the left and right half-frames,
respectively. The real challenge arises from motion, but is
worsened by the recursive temporal dependency.

Due to motion, an object may move from one half-frame
to the other half-frame in subsequent frames. Therefore,
dividing the whole frame into two half-frames creates a new
cross-boundary reference effect. That is, some content of
one half-frame is predicted from the content in the other
half-frame. This implies that in order to decode one half-
frame, one has to obtain the reconstructed reference of the
other half-frame. Still take as example the object in Figure
2. Position A is in the left half-frame that belongs to MA

and position B is in the right half-frame that belongs to MB .
In order to decode the object at position B in the (n + 1)th

frame, MB needs the reference data at position A in the nth

frame, which is unfortunately not available since it is not
supposed to decode that in the previous frame.

One seemingly possible rescue to the problem caused by
cross-boundary reference is to ask MB to be more diligent
and decode the content at position A in the nth frame as
well, assuming it can pre-scan the bitstream and know the
content at position A will be required in future. Unfortu-
nately, due to the recursive nature of frame dependency, MB

has to further decode some other parts in the left half-frame
in the (n − 1)th frame in order to be able to decode the
content at position A in the nth frame, so on and so forth.
As said, in the worst case, MB has to decode all the whole

3Recent video coding standards like H.264 [3] may go to
finer block levels, but the general procedure is the same.

32

frames from the previous anchor frame in order to correctly
decode a very late frame.

2.4 Collaborative Half-Frame Decoding
Albeit challenging, there are still methods to perform ef-

ficient half-frame decoding. Notice that the reference is al-
ways the decoded previous frame, therefore, it either exists
on the left half-frame or the right half-frame. Furthermore,
since the two mobile devices have communication capabili-
ties, with minor extra effort we can make available the ref-
erence data by asking the two devices to help each other,
i.e., transmitting the missing references to each other. In
other words, half-frame decoding can be achieved through
cross-device collaboration (CDC). The rationale of cross-
device collaboration arises from the following two funda-
mental facts.

2.4.1 Fundamental Facts
A) Markovian effect of MCP. Although recursive, the tem-
poral frame dependency exhibits a first-order Markovian ef-
fect. That is, a later frame only depends on a previous refer-
ence frame, no matter how the reference frame is obtained.
This is the fundamental reason that we can perform cross-
device collaboration and obtain correct decoding result.
B) Highly skewed MV distribution. The motion vector dis-
tributions and their corresponding cumulative distribution
functions for a test sequence BestCap are shown in Figure
3. We inspect the motion vector distributions for the whole
frames as well as those for only the two columns of mac-
roblocks (referred to as the guardband) near the half-frame
boundary. Only the horizontal component of motion vec-
tors are shown since it is the only component that cause
cross-device references. From the figures, we can see that
the motion vector distribution is highly skewed, centered at
the origin (0,0) and most motion vectors are indeed very
small. More than 80% of motion vectors are smaller than
8, which is the width of a block. In fact, the distribution
of motion vectors can be modeled by a Laplacian distribu-
tion [4]. This fact implies that the traffic involved in the
cross-device collaboration is likely to be affordable.

2.4.2 Collaborative Half-Frame Decoding with
Push-based CDC

The straightforward idea of collaborative half-frame de-
coding (CHDec) is to let each device decode their respective
half-frame and request the missing reference data from the
other device. However, there exists one practical barrier if
the cross-device helping data is obtained through natural
on-demand pulling: This on-demand pull-based request of
the missing reference data incurs extra delay and stalls the
decoding process accordingly. This will have severe negative
impact on the decoding speed and the overall smoothness of
the playback. For instance, for a 24 fps video, the average
frame period is about 42 ms. According to our experiments
with WiFi (on Dopod 838 PocketPC phone), the round-trip
time (RTT) is typical in the range [10, 20] ms. Considering
the extra time to prepare the helping data, the on-demand
request scheme will prevent timely decoding and is therefore
not practical.

To overcome this barrier, we change the on-demand pull-
based scheme to a push-based cross-device helping data de-
livery scheme by looking ahead one frame. The purpose of
looking ahead is to analyze what the missing data will be for

both devices through motion vector analysis. In this way, we
know in advance what reference data are missing for both
devices and ensure this data will be sent.

We design the collaborative decoding scheme as follows:
before decoding the half-frame of the nth frame, we let the
content hosting device look ahead by one frame through a
light-weight pre-scanning process and perform motion anal-
ysis on the next frame ((n + 1)th frame). We mark those
blocks that will reference the other half-frame (for both de-
vices) and record their positions and associated motion vec-
tors. Based on such information, we can easily infer the
exact missing reference data at the other party. Then we
proceed to decode the respective half-frame but skip those
marked blocks since they will not have the reference data,
and prepare the helping data in the meantime. The helping
data will be sent out immediately or buffered till the end of
the decoding process and sent in a batch. Then each device
will perform quick rescue decoding to those marked blocks.

As will be shown in the experimental results, with the col-
laborative half-frame decoding and push-based CDC data
delivery scheme we can achieve real-time playback require-
ment on the computation capability constrained mobile de-
vices.

3. ENERGY EFFICIENCY OPTIMIZATION
Although the collaborative half-frame decoding scheme

fulfills the real-time requirement, as stated before, it is also
highly desired to prolong the operating time by minimizing
the energy consumption since mobile devices are typically
battery operated. Because the CDC traffic is used to maxi-
mally reduce the computation, a natural question is if there
exists a better trade-off among the computation reduction
and the volume of the resulting CDC traffic.

3.1 Motivating Observation
In the CHDec scheme, all the missing reference contents

are transferred between the two mobile devices. This may
incur a large bandwidth consumption and cause more en-
ergy consumption. In Table 2, we list the percentage of
boundary blocks (i.e., the column of macroblocks neighbor-
ing the half-frame boundary) that perform cross-boundary
reference and their corresponding CDC traffic for the three
test sequences. Note that the bandwidth requirement of
CDC traffic is not proportional to the percentage of cross-
device reference blocks because the motion vectors are dif-
ferent even though they are all referencing content on the
other device. Clearly, the bandwidth requirement of the
helping traffic is relatively high, reaching half of the band-
width required for sending the half bitstream, because the
cross-boundary referencing is still frequent.

Sequence
CHDec GB-CHDec

CD Ref BW Req CD Ref BW Req

BestCap 22.8% 253 kbps 3.4% 76.9 kbps
SmallTrap 26.2% 192 kbps 1.3% 30.6 kbps
Liquid 20.7% 231 kbps 2.5% 53.2 kbps

Table 2: Percentage of boundary blocks that require
cross-device collaboration and their corresponding
bandwidth requirement. Collected over the first 600
frames of three test sequences. The resolution is
480 × 320 and the bit rate is 1Mbps.

33

−20

−10

0

10

20

−20

−10

0

10

20
0

2

4

6

8

10

12

14

16

18

x 10
4

MVx

Frequence

MVy −20

−10

0

10

20

−20

−10

0

10

20
0

2000

4000

6000

8000

10000

12000

MVx

Frequence

MVy
0 10 20 30 40 50 60

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Motion vector length

C
um

ul
at

iv
e

di
st

rib
ut

io
n

BestCap

Guardband
Wholeframe

Figure 3: Plots related to motion vector distribution for 600 frames of the test sequence BestCap. The video
resolution is 480×320. From left to right: distribution of horizontal component of motion vectors for the whole
frames, for the boundary columns near the half-frame boundary (i.e., guardband), and their corresponding
cumulative distribution functions.

Since WiFi consumes energy heavily, the CDC traffic should
be reduced. As advocated in [5], adaptive use of multiple
radio interfaces can lead to significant energy savings. How-
ever, the extent to which the adaptation can be made is
subject to the applications’ specific requirement. In their
streaming experiments, the ideal case is to use the “Bluetooth-
fixed” policy which always uses Bluetooth. The fundamental
reason, as pointed out by the authors, is that the stream-
ing data rate is low enough for the Bluetooth’s throughput
to be capable of. Nevertheless, if a higher data rate is re-
quired, then it will need to activate WiFi for most of the
time. This implies that the CDC traffic has to be reduced
to be eligible for adaptive use of multiple radio interfaces
for better energy efficiency. These considerations lead to
the design of the guardband-based collaborative half-frame
decoding technique to be presented below.

3.2 Algorithmic Optimization
From the motion vector distribution shown in Figure 3,

we see that more than 90% motion vectors are smaller than
16, which is the width of a macroblock. This implies that
more than 90% of boundary blocks can be correctly decoded
without incurring any CDC traffic if we let each device to
decode an extra column of macroblocks across the boundary.
Such extra decoding area is called the guardband hereafter.

With this observation in mind, we design a guardband-
based collaborative half-frame decoding scheme, in which each
device not only decodes its own half-frame, but also decodes
an extra guardband so as to reduce the CDC traffic. We
refer to the half-frame area plus the extra guardband as ex-
panded half-frame (EHF), as illustrated in Figure 4 where
LEHF and REHF represents EHF for the left device MA

and right device MB , respectively.
To see how much the guardband helps to reduce the CDC

traffic, we also list in Table 2 the percentage and the cor-
responding CDC traffic of boundary blocks that still have
cross-device references when the guardband is also decoded.
We see that the guardband indeed significantly reduces the
CDC traffic to as large an extent as 75%.

One might argue that the situation is actually not im-
proved since we would need CDC for decoding the bound-
ary blocks in the guardband. The argument is correct if
we need to correctly decode the whole guardband correctly.
But the introduction of guardband changes the situation: we
do not have to ensure the guardband to be completely and

Right GuardbandLeft Guardband

Left Half -Frame Right Half-Frame

LEHF of MA

REHF of MB

Figure 4: Illustration of left and right guardbands,
left and right expanded half-frames (LEHF, REHF).

correctly decoded. The subtle difference against the half-
frame decoding case is that blocks of guardbands are not to
be shown on screen while those belonging to the half-frame
will. In fact, we only need to decode those guardband blocks
that will be referenced, which can be easily achieved via the
motion analysis process on the next frame. Furthermore,
from the two fundamental facts of video coding presented in
Section 2.4.1, we derive a third (implicit) fact: multiplica-
tive decaying motion propagation effect, which says that the
guardband blocks of one frame that are referenced by some
boundary blocks of the next frame will have a much lower
probability to reference to the area exterior to the guard-
band of its previous frame. To be concise, we omit the
derivation.

Our guardband-based collaborative half-frame decoding
scheme works as follows: as CHDec does, we also look ahead
by one frame, perform motion analysis and adopt push-
based CDC traffic delivery. The major difference lies in
that each device now needs to decode the extra guardband.
Further, the blocks in the guardband are differentiated ac-
cording to their impact on the next frame: those not ref-
erenced by the next frame are not decoded at all; those
referenced by the guardband blocks of the next frame are
best-effort decoded, i.e., decoding without incurring CDC
and no insurance of the correctness; and those referenced by
the half-frame blocks of the next frame are ensured to be
correctly decoded, resorting to CDC when necessary.

As a remark, the purpose of guardband is not to com-

34

pletely remove the need for cross-device collaboration, but
to achieve better trade-off in energy efficiency with signifi-
cant reduction of the collaboration traffic at cost of slightly
more computations. From Table 2, we can calculate that to
correctly decode the whole one-macroblock-wide guardband
(which represents the worst case since in practice some not
referenced blocks need not to be decoded at all), the extra
computational cost is about 7%, but the average associated
CDC traffic savings is about 76%, which is favorable even
Bluetooth is used.

In this work, we empirically set the width of guardband
to be one macroblock column. Such decision arises from the
implementation simplicity because all the motion compen-
sation is conducted on a macroblock basis in MPEG-2, and
is dictated by the rule that real-time playback requirement
must be observed. In fact, if we use a two-macroblock-wide
guardband, it will incur another 7% computation overhead
(in worst case) but brings in only about additional 10% CDC
traffic reduction and is therefore not very beneficial. A sys-
tematic approach to achieve the optimal trade-off would ex-
haustively search or develop a model that allows systemati-
cally evaluation for all possible guardband widths. Another
more proper way is to make it adaptive: we can look ahead
for multiple frames (e.g., a group of picture, GOP), per-
form motion analysis and determine the optimal guardband
width for that specific GOP. However, a prerequisite condi-
tion is the knowledge of energy consumption characteristics
of WiFi and CPU, which could vary with different mobile
devices. This fact suggests that a profile-based approach
might be feasible.

4. SYSTEM ARCHITECTURE AND
IMPLEMENTATION

Unlike traditional loosely coupled distributed systems, e.g.,
those for file sharing, the new better-together application
paradigm of MobiUS requires a tightly coupled system be-
cause it involves not only the networking, but also the com-
puting, shared states and data, and other resources. For the
specific together-viewing video application, we have identi-
fied the following common modules: proximity detection,
synchronization, resource coordination. We leave out those
modules such as access control that are otherwise important
in traditional loosely coupled distributed systems, thanks to
the natural close proximity setting where the devices have
to be physically close.

The system architecture of MobiUS is depicted in Figure
5, where we position the common modules as a middleware
layer, sitting on top of a traditional operation system, and
lay the together-viewing video application into the appli-
cation layer. We elaborate their roles and implementation
details below.

4.1 The Middleware Modules

4.1.1 Close Proximity Networking
The bottom substrate of the MobiUS system architecture

is the close proximity networking layer, which sits directly
on top of the traditional networking layer but further ab-
stracts popular wireless technologies into a unified network-
ing framework. It also incorporates the possible physical
connection (e.g., through wire or hardware interface). The
target of this close proximity networking layer is to auto-
matically set up a network between two mobile devices [6,7],

Close Proximity Networking

Proximity
DetectionSync

WiFi, BT, IR, UWB, ... Physical connection

Resource Coordinator
[Discovery]

[Sharing/Aggregation]

BUF MGMT ADPT DEC ENG

Frame Buf Pool

Local Buf Pool Indep.
Full-frm
Decoder

Collab.
Half-frm
Decoder

Bitstream Parser

Ntwk Buf Pool

Help Data Pool

Together-viewing video

M
id

dl
ew

ar
e

Ap
p.

 L
ay

er

Figure 5: MobiUS system architecture.

without involving the users, such that resource discovery and
aggregation can be effectively performed.

We adopt the EasySetup work [8] developed in our group
that manages different wireless technologies into a unified
framework. Based on this, MobiUS can use both Bluetooth
and WiFi, and can save energy by dynamically switching
between them, depending on the traffic requirements.

4.1.2 Proximity Detection
The proximity detection module is one of the most im-

portant components whose primary function is to ensure
a close proximity setting. Depending on different applica-
tion requirements, vague or precise proximity information
can be obtained at different system complexities. For ex-
ample, for normal applications, we can use a simple radio
signal strength based strategy to determine a rough esti-
mation of distance [9], involving only wireless signals. Typi-
cally, the radio signal strength is indicated by received signal
strength index (RSSI) which is usually available from wire-
less NIC drivers. If high precision is desired, with additional
hardware we can use both wireless signals and acoustic or
ultrasonic signals to obtain precision up to a few centime-
ters [10,11].

In the special application of together-viewing video ex-
perience, the proximity detection is mainly for the purpose
of user convenience. Therefore, we have a low precision re-
quirement that only needs to determine the arrival or de-
parture of the other device. We found simple RSSI-based
strategy suffices this requirement. Lacking of a universal
model that can tell the proximity of two devices using solely
the RSSI and noticing the fact that together-viewing is con-
ducted with explicit intention, we adopt a simple heuristic:
when RSSI is high (e.g., -50 dbm of WiFi signal on Dopod
838), we inform the user that another device is nearby and
the user would confirm or reject the together-viewing re-
quest. Notification will be sent to the resource coordinator
module if confirmed. When RSSI reduces significantly (un-
der the normal quadratic signal strength decaying model),
we simply conclude that the other device has left and inform
the resource coordinator module accordingly.

We plan to look into acoustic signalling to achieve higher
accuracy in future work.

4.1.3 Synchronization
The prominent “together” feature of MobiUS requires the

mobile devices to operate in synchronization. The synchro-

35

nization can be achieved either at the application level or
the system level, at different difficulties. We can rely on ei-
ther network time protocol [12] or the fine grained reference
broadcasting synchronization mechanism [13] to synchro-
nization the mobile devices to a high precision, e.g., within
one millisecond. However, such system level synchronization
is difficult to achieve and is sometimes not necessary for the
specific applications, especially the multimedia applications.
For MobiUS, we adopt an application level synchronization
strategy, which can satisfy our requirement and is easy to
implement.

For the specific together-viewing video application, since
we are displaying each video frame on the both screens, the
two video playback sessions need to remain synchronized at
the frame level. This implies that the tolerable out-of-sync
range is about one frame period, e.g., 42 milliseconds for 24
fps video. Considering the characteristics of the human vi-
sual system, the tolerable range can actually be even larger.
It is well known in the video processing field that people will
perceive a continuous playback if the frame rate is above 15
fps, which translates to a 66 millisecond tolerable range.

Note that the target of the synchronization engine is to
sync the video display, not the two devices. Towards this
end, we use the video stream time as the reference and rely
on the estimation of round-trip-time of wireless signals to
sync the video playback. The content-hosting device per-
forms RTT measurements; once obtaining a stable RTT, it
will notify the client to display the next frame while waiting
half RTT before displaying the same frame. Such RTT-
based synchronization procedure is performed periodically
throughout the video session. In our experiment, a typical
stable RTT value is within 10 milliseconds and the RTT
value stabilizes quickly in a few rounds.

4.1.4 Resource Coordinator
The resource coordinator typically has double roles: one

role is to discover the resources including information re-
source, such as what files are being shared, and computing
resources like if the other device is capable of performing
certain tasks. The other role is to coordinate the resources
to collaboratively perform a task and to achieve load balance
among devices by shifting some tasks around.

In the together-viewing video application, we have devel-
oped a simple XML-based resource description schema for
resource discovery purposes, that says what video files are
available on a device and their basic features such as the res-
olution, bit rate etc. It also reveals some basic system config-
uration information such as the processor, system memory
(RAM) and the registered video decoder. We have not fully
exploited the resource coordinating functionality, i.e., the
second role. Currently, in our system, the resource coordi-
nating module does only one simple thing: check capability
of a newly added device and inform the content hosting de-
vice about the arrival (if it passes a capability check) or
departure of the other device. We plan to make it moni-
tor the system energy drain and to dynamically shift partial
decoding tasks between the devices.

4.2 Together-viewing Video Specific Modules

4.2.1 Buffer Management
The buffer management module manages four buffer pools:

one frame buffer pool, one helping data buffer pool, and two

bitstream buffer pools, namely local bitstream buffer (LBB)
pool and network bitstream buffer (NBB) pool.

The frame buffer pool contains several buffers to tem-
porarily hold the decoded video frames if they have been
decoded prior to their display time. Such buffers sit in be-
tween the decoder and the display and are adopted to absorb
the jitter caused by the mismatches between the variable
decoding speed and the fixed display interval. The helping
data buffer pools consists of two small buffers that hold and
send/receive the cross-device collaboration data to the other
device.

The two bitstream buffer (LBB and NBB) pools are to
hold the two half-bitstreams that are separated by the pre-
parser module in the adaptive decoding engine, for itself and
the other party, respectively. The bitstream in NBB pool
will be transferred to the other device. Note that for the
content hosting device, two bitstream buffer pools are used.
However, only one of them (i.e., NBB pool) is required for
the client device. The reason of adopting the NBB pool at
the content hosting device is three-fold: 1) to enable batch
transmission (using WiFi) for energy saving; 2) to allow a
fast switch back to single screen playback if the other device
leaves; and 3) to emulate the buffer consumption at the
client device so that when performing push-based bitstream
delivery, the previously sent but unconsumed bitstream data
will not be overwritten. Based on the fact that the two
devices playback synchronously, the content hosting device
can know exactly what part of the receiving buffer of the
client can be reused in advance.

Throughout our implementation and optimization, we found
that using a dedicated buffer management module is very
preferable. It clarified the working flow and helped to re-
move all the memory copies, which is very costly on mobile
devices. We overwhelmingly use the pointers throughout
the process. Moreover, using multiple buffers helps greatly
to the overall performance by mitigating the dependency
among several working threads.

4.2.2 Adaptive Decoding Engine
The adaptive decoding engine, which is the core of Mo-

biUS, consists of three modules, namely the bitstream pre-
parser module, the independent full-frame based fast DCT-
domain down-scaling decoding module [14] and the guardband-
based collaborative half-frame decoding module.

The bitstream pre-parser parses the original bitstream
into two half bitstreams prior to their decoding time and
also extracting the motion vectors. The resulting two half
bitstreams are put into the two bitstream buffers in the local
buffer pool and the network buffer pool, respectively.

As indicated by the resource coordinator module, if only
single display is available, the independent full-frame decod-
ing engine will be called, which retrieves bitstreams from
both bitstream buffers in LBB and NBB pools and directly
produces a down-scaled version of the original higher reso-
lution video to fit the screen size, eliminating the explicit
downscaling process. Note that for single display case, the
decoded frame needs to be rotated to match the orienta-
tion of video to that of the screen. The rotation process
can be absorbed into the color space conversion process. If
two screens are available, the guardband-based collaborative
half-frame decoding module will be activated. The content
hosting device will decode the bitstream from buffers in the
LBB pool and send those in the NBB pool to the other de-

36

vice and, correspondingly, the other device will receive the
bitstream into its NBB pool and decode from there. Note
that in this case, the two mobile devices must work concur-
rently and send to each other the helping data periodically
on a per-frame basis. The two decoding engines can switch
to each other on the fly, and automatically under the indi-
cation of the resource coordinator.

In our experience, we found separating the networking,
decoding and display into different threads is of crucial im-
portance. Without using multiple threads, the benefit of
using multiple buffers is rather limited. Moreover, it is im-
portant to assign correct priority levels to different threads.
In our implementation, we assign a higher priority (Priority
2) to the display thread and networking thread, since we
need ensure the synchronous display of the two devices and
do not want the decoding process to be blocked because of
waiting for bitstream or helping data. The decoding thread
is assigned a lower priority (Priority 1) by default, which
is still higher than other normal system threads, but will
be dynamically changed if at risk of display buffer starva-
tion. For sporadic events like proximity detection, we also
assigned Priority 2 to ensure prompt response to the arrival
or departure of the other device.

5. EXPERIMENTAL RESULTS
We have implemented the MobiUS system architecture

and the several common components, and built the together-
viewing video application on top of it, using the more energy
efficient guardband-based collaborative half-frame decoding
scheme. We used two off-the-shelf PocketPC phones, HP
iPAQ rw6828 and Dopod 838 (HTC Wizard). Both devices
are based on Microsoft Windows Mobile Version 5.0, Phone
Edition, have WiFi and Bluetooth radios, QVGA resolution
(320×240) display, 64 MB RAM. The only difference is that
they have different processors: HP rw6828 features a more
powerful Intel XScale 416 MHz processor while Dopod 838
is equipped a 195 MHz OMAP 850 processor which is much
less powerful.

Recall that we have three primary requirements: real-time
synchronous playback, energy efficiency, and dynamic adap-
tation. In this section, we first report some experimental
results with regard to the first requirement to confirm the
effectiveness of our design. We then present the experimen-
tal results on energy efficiency of the proposed collabora-
tive decoding schemes. Due to lack of alternative tools, we
have chosen to experiment by fully charging the battery and
measure the overall session lifetime for different decoding
schemes.

We also achieved the third requirement, as can be seen
from the recorded demo on our website (http://research.
microsoft.com/wn/mobius.aspx). We can immediately de-
tect the arrival of the other device, but have a latency about
2 or 6 seconds to detect the departure for HP iPAQ rw6828
and Dopod 838 mobile phones, respectively. This is the ac-
tual latency caused by the NIC drivers of the mobile devices
which reports the RSSI on a 2 or 6 seconds basis. This la-
tency can be greatly shortened if we are allowed to modify
the driver. For instance, we achieve almost instantaneous
updated RSSI information on a laptop with a modified NIC
driver for which we have source code access.

5.1 Decoding Speed
The prerequisite condition to the real-time synchronous

playback is that the decoding speed is fast enough. To mea-
sure the decoding speed, we perform free-run tests, that is
to let the device run as fast as it can. In real applications,
proper timing will be applied to limit the decoding speed
from running too fast.

Three test sequences were used in our experiments, namely
SmallTrap, BestCap, StepIntoLiquid, which we have put on
our website as well. Notice that the three selected test se-
quences are very representative in terms of video content.
They consist of simple and complex scenes, low and high
textures, slow and fast motions, abrupt and gradual scene
changes, etc. Our primary target is to test the decoding
speed of the doubled resolution (480× 320) video on mobile
devices. For comparison purpose, we also generated corre-
sponding videos at normal resolution (320 × 240), the same
as that of the screen, to benchmark the devices’ intrinsic
video playback capability. Since the bit rate of video has
impact at the decoding speed, we used different but high
bit rates to ensure good visual quality and also stress the
tests. Specifically, we use 750 kbps and 1 Mbps for normal
resolution video and use 1 Mbps and 1.5 Mbps for doubled
resolution video. All the tests are performed on the first
1200 frames, which equals to 50 seconds playback time if
interpreted at the frame rate of 24 fps or 80 seconds at the
frame rate of 15 fps. To facilitate examination, in the figures
we also draw two respective horizontal lines to indicate the
deadlines for 24 fps and 15 fps real-time playback.

The experimental results are shown in Figure 6 and Fig-
ure 7. In the legends of the figures, FD, FFD, HFD and
EHFD stands for full-frame decoding, fast full-frame down-
scaling decoding [14], collaborative half-frame decoding and
expanded collaborative half-frame (i.e., guardband-based)
decoding, respectively.

From Figure 6 we can see that, as said before, the mo-
bile devices are indeed cost-effectively designed and are just
able to meet the real-time playback requirement for videos
at the same resolution of the screen. For normal resolution
(320 × 240), the HP iPAQ rw6828 can achieve an average
speed about 23 fps for 750 kbps video and about 20 fps
for 1 Mbps video. However, the Dopod 838 is much weaker
and can hardly meet the real-time requirement for the stress
testing sequences. It achieves only about 10 to 11 fps. We
further investigated the problem and found that the graph-
ics rendering engine on mobile devices is weak and impairs
significantly the overall achievable playback speed. This is
especially the case for Dopod 838 since the HP iPAQ rw6828
supports DirectDraw which leads to a lower performance
penalty.

However, even the HP iPAQ rw6828 can not meet the real-
time requirement for the doubled resolution 480×320 videos.
It achieves about 15 to 20 fps for different test sequences. In
other words, it can ensure the real-time playback only if the
video is produced at 15 fps. The performance of the Dopod
838 is far worse. It achieves only about 7 or 8 fps for the dou-
bled resolution videos. We want to point out that there is big
penalty in the display thread for both phones because of the
rotation operation needed to match the orientation of the
videos and the screen, for the full-frame decoding case. The
extra downscaling process that converts a 480×320 video to
its 320×240 version also incurs a performance penalty, even
though it is already optimized by integration with the color
space conversion procedure (i.e., when converting YUV to
RGB format).

37

0
10
20
30
40
50
60
70
80
90

Step Into Liquid SmallTrap BestCap

Se
co
nd

s
320*240_0.75mbps_FD 320*240_1.0mbps_FD

480*320_1.0mbps_FD 480*320_1.5mbps_FD

(a) HP iPAQ rw6828

0

20

40

60

80

100

120

140

160

180

Step Into Liquid SmallTrap BestCap

Se
co
nd

s

320*240_0.75mbps_FD 320*240_1.0mbps_FD

480*320_1.0mbps_FD 480*320_1.5mbps_FD

(b) Dopod 838

Figure 6: Benchmark of the two PocketPC phones’
video playback capability. The thick solid and
dashed horizontal lines indicate the time lines of
real-time playback for 24 fps and 15 fps, respectively.

In Figure 7, we show the performance of the proposed col-
laborative half-frame decoding and its improved guardband-
based version. From the figure, we see that we can essen-
tially achieve real-time playback on the HP iPAQ rw6828
for the doubled resolution video, which significantly outper-
forms the benchmark case. Even on the Dopod 838, we can
achieve more than 15 fps in both collaborative half-frame de-
coding cases. One of our design goal is that MobiUS should
fully function when only one device is available. Therefore,
we also determine the decoding speed of our full-frame based
fast DCT-domain downscaling decoder. The fast full-frame
decoding achieves about 17 to 20 fps on the HP iPAQ rw6828
phone and only about 10 to 11 fps on the Dopod 838. While
already significantly better than the benchmark case, it still
needs improvement to reach real-time. We investigated the
problem and found that the major reason is still the rotation
process to match the orientation.

Comparing Figure 6 and Figure 7, we can further observe
that 1) both collaborative half-frame decoding schemes sig-
nificantly improve the decoding speed; 2) the guardband-
based scheme is only slightly slower than the half-frame
decoding case and the margin is less than 7%, due to the
best-effort decoding strategy for the guardband blocks; 3)
the rendering occupies a significant portion of the overall
process time, especially when a rotation process is required.

0

10

20

30

40

50

60

70

80

Step Into Liquid SmallTrap BestCap

Se
co
nd

s

480*320_1.0mbps_FFD 480*320_1.0mbps_HFD 480*320_1.0mbps_EHFD
480*320_1.5mbps_FFD 480*320_1.5mbps_HFD 480*320_1.5mbps_EHFD

(a) HP iPAQ rw6828

0

20

40

60

80

100

120

140

Step Into Liquid SmallTrap BestCap

Se
co
nd

s

480*320_1.0mbps_FFD 480*320_1.0mbps_HFD 480*320_1.0mbps_EHFD
480*320_1.5mbps_FFD 480*320_1.5mbps_HFD 480*320_1.5mbps_EHFD

(b) Dopod 838

Figure 7: Video playback performance of our pro-
posed schemes on two PocketPC phones. The thick
solid and dashed horizontal lines indicate the time
lines of real-time playback for 24 fps and 15 fps, re-
spectively.

5.2 Synchronization
As stated before, we have adopted a simple RTT-based

synchronization mechanism. To see how it performs, we
record the timestamps at which video frames are displayed
at each device. Because the clocks of the two devices are not
synchronized, direct comparison between the corresponding
time stamps is not meaningful. Instead, we calculate the in-
tervals between consecutive frames on each device and com-
pare the resulting intervals, which is shown in Figure 8.

From the figure, we can see that most of the time, the
synchronization mechanism works well despite a few spikes
that are due to the periodical synchronization. However,
there are a flurry of large discrepancy among frame display
intervals between Frame 50 to Frame 110. Further investiga-
tion revealed that those frames correspond to a large scene
change and have very high motion, which caused the decod-
ing thread to temporarily grab a higher priority (in order to
avoid display buffer starvation) and the display thread failed
to get the computing slices timely. The immediate conse-
quence is that some frames are more seriously delayed and
the device will try to catch up in the following display peri-
ods. Since the catch up process is completely local to each
device, it results in large oscillation in the display interval
between the two devices. Fortunately, the discrepancy is not
significant. It is tolerable because the human visual system

38

SmallTrap

-40

-30

-20

-10

0

10

20

30

40

0 100 200 300 400 500 600

Frame #

M
illi

se
co

nd

Figure 8: Comparison of display intervals at two de-
vices, for the first 600 frames of SmallTrap sequence.

is far less sensitive for such slight asynchronism, especially
when the motion is large.

5.3 Energy Efficiency
The energy efficiency is usually reflected through a high

accuracy measurement of current and voltage of mobile de-
vices, and requires special tools or hardware rewiring. In
this work, we choose an alternate experiment scheme by
fully charging the battery and measure the overall session
lifetime for different decoding schemes. While the results
are certainly less quantitative, we believe it is still very in-
formative.

Our target here is to see the energy efficiency advantage
of the proposed collaborative decoding scheme. We there-
fore design comparative experiments that only differs in the
decoding schemes. In this case, we turned off WiFi. To
show the real performance, we also conduct another set of
experiments with WiFi on. Note that because none of our
handy mobile devices support power saving mode for WiFi
in ad hoc mode, we are not able to conduct experiments
on the energy savings of dynamic switching between WiFi
and Bluetooth even though our implementation does sup-
port this.

Decoding scheme WiFi Lifetime (seconds)

Full-frame
OFF 16438
ON 7482

Half-frame
OFF 23736
ON 8375

Table 3: Lifetime measurement for different experi-
mental settings on the HP iPAQ rw6828.

By examining the first and the third row of Table 3, we
can see that our collaborative half-frame decoding scheme
indeed leads to significant energy savings. The lifetime in-
creased by nearly 50%. Nevertheless, we want to point out
that we have turned on the LCD backlight and set it to the
maximum brightness level. Since backlight consumes a large
percentage of energy [15], the actual energy efficiency of our
proposed scheme is actually much more significant than that
reported here.

Table 3 also reveals, by comparing the cases when WiFi
is on or off, that WiFi is most energy starving. It consumes
more than half of the overall energy. As a result, the advan-
tage of our collaborative decoding scheme is also diminished,

as can be seen from the second and the fourth row. We no-
ticed that, in the half-frame decoding case, the client still
has 18% energy left when the server dies, while it has only
4% left in the full-frame decoding case. These observations
suggest that dynamic switching between different radio in-
terfaces is crucial and that better load balancing schemes
should be designed.

6. DISCUSSIONS

6.1 Further Optimization Opportunities

6.1.1 Computation Saving
We have performed algorithmic optimization in achiev-

ing the real-time doubled resolution video playback. As
with any optimization applications, another large space is
through code optimization. In fact, we have implemented
two versions of our prototype, one implemented in C++
and one is in C. The one written in C is about 25% faster
than that written in C++. One possible reason is that our
C++ implementation emphasizes portability across differ-
ent video applications such as transcoding.

We further performed complexity profiling of our code.
We found the color space conversion (i.e., to convert YUV
format to RGB16 format) consumes about 30% of the overall
time, which is the most computational expensive module.
The second and third expensive modules are inverse DCT
module and motion compensation modules. Since all these
modules involve only heavy but regular computation, they
are excellent targets for assembly optimization.

6.1.2 Collaboration Traffic Reduction
The guardband-based collaborative decoding scheme sig-

nificantly reduces the collaboration traffic. However, since
the bandwidth and the corresponding power consumption
is expensive, we want to further reduce the bandwidth con-
sumption. One way is to use a larger guardband, but as pre-
vious mentioned, the gain of using a larger guardband (e.g.,
wider than one 16-pixel width) becomes marginal. There-
fore, it is not a good tradeoff. Also, the available computing
resources may not support a larger guardband because of
the real-time decoding requirement. One alternate way is
to apply simple compression. It is fairly easy to obtain sev-
eral times compression at light computation overhead. Yet
a third method that can also be conditionally applied is to
apply error concealment technique. Since video signal has
strong spatial and temporal redundancy, error concealment
is usually effective when the number of erroneous pixels are
small. Therefore, this is a potential method to be applied
when there are few pixels need to be transmitted across de-
vices.

6.1.3 Energy Consumption Reduction
We have explored the tradeoff between computing (de-

coding) and networking (cross device collaboration traffic)
while fulfilling synchronous real-time playback requirement.
Yet it is noticed that the screen backlight is also energy hun-
gry. As evidenced by others work, it is possible to save the
screen backlight energy consumption through the gamma
adjustment of the video signal [15].

Moreover, in systems with dynamic voltage scaling capa-
bility [16, 17], half-frame decoding can be better exploited
because of the good predicability of the frame complexity

39

and the larger optimization room offered by the efficient
half-frame decoding. We may keep the CPU in a lower
power state throughout the together-viewing session with
better scheduling.

6.2 Service Provisioning
Most of the complexity of the collaborative decoding scheme

arises from the cross-device reference. We took pain in or-
der to ensure the incremental deployment, that is, users can
directly download higher resolution video files from the In-
ternet and achieve the together-viewing experience imme-
diately. Nevertheless, there are alternative, more efficient
ways if we target disruptive service provisioning.

One possible way is to develop new encoder profiles such
that the input video is directly encoded into two substreams
with each substream corresponding to half-frame and be-
ing completely self-contained, i.e., no cross half-frame refer-
ence. Considering the volume of existing video content on
the Internet, one more feasible way is to develop transcoders
that transcode pre-encoded video bitstreams into two self-
contained substreams. Such transcoders can be integrated
into desktop sync engines like ActiveSync. In either case, the
cross-device reference is completely removed and the system
complexity is maximally reduced.

There is a concern on the availability of video content with
suitable resolution. This can be achieved using transcod-
ing as well. We have developed fast transcoding algorithms
that can perform efficient arbitrary resizing transcoding [14].
Currently, popular DVD video resolution is 720 × 480 and
typical screen resolution of mobile phones are 320 × 240
(QVGA). When the two mobile phones’ screen are aggre-
gated together, it will form a virtual screen sized 480× 320.
In this case, we can apply 3:2 downscaling transcoding to ob-
tain a suitable video. As the TV and movie industry moving
to high definition (HD) video, the typical resolution will be
1280×720, and in this case we need to apply 8:3 downscaling
transcoding.4 Note that we have seen new mobile devices
with VGA resolution (i.e., 640 × 480), if two such devices
were to be aggregated, then a 4:3 downsizing transcoding
process will readily convert a HD video to a suitable one.

6.3 User Study
Motivated by the concept of the better-together mobile

application paradigm, a production plan on new mobile phone
models (i.e., Lover’s Phone) has been formed. An indepen-
dent market survey was carried out through a third-party
vendor.

The market survey result shows that Lover’s Phone is
warmly welcomed: over 80% people like it and 47% peo-
ple think it is terrific. The details are shown in Figure 9.

While the new mobile phone model has several improved
features on user interface, information sharing, etc., the
screen aggregation is the only brand new application that
wins a good score (6 out of 10, with 8 being the highest
score). Many users said that the thick frame boundary be-
tween the two screens will hurt the viewing experience. They

4There will be two thin black bands on top and bottom of
the screen in this case since the height of the resulting video
will be 288 (rounded to multiples of 16). Another way is
to slightly prune away the content on left and right sides of
the video to make the transcoded one full screen. The most
important rule is to keep the aspect ratio.

3% 13%

37%

47%

Very like it. It is terrific

Like it. But it can be better

Not bad, but it is ordinary

No interests in it

Figure 9: Market survey results on users’ opinions
on the Lover’s Phone.

would appreciate the feature much more if the two screens
can be patched up seamlessly. Given the advances in the
micro-projector that can be readily equipped to a portable
device, for example PicoP [18] from Microvision, we think
the frame boundary barrier will soon be removed.

6.4 Assumption on Homogeneity
We have assumed homogeneity of the mobile devices in

this paper, i.e., the two mobile devices should have the same
or similar software and hardware capabilities. This is not a
hard constraint. In fact, there is no extra technical con-
straint except that each device should be capable of playing
back video on its own and have networking capabilities.

The major constraint is that the two screens should be
the same resolution, which results from the concern on the
ultimate user viewing experience. Therefore, it is possible
that mobile devices of different models can be put together
if they have the same screen size. For instance, we can
place together the HP iPAQ rw6828 phone and the Dopod
838 phone, or even a PDA and a mobile phone. In fact,
what really matters is the pixel size. The two screens should
have same pixel resolution, i.e., same dots-per-inch, since
the pixels of LCD displays are square in shape. In this case,
only part of the larger screen will be used to match the
small one. Given the fact that today’s mainstream mobile
devices have, as standard configuration, screens with QVGA
resolution, we expect the constraint on the screen size will
not be a hinderance.

However, the heterogeneity of the mobile devices will im-
pose other challenges. For example, how to automatically
achieve load balancing between the two devices while max-
imizing the user viewing experience, and how to maximize
the life time of the together-viewing session given the two
mobile devices have different initial energy deposits when
they meet. We are currently working on adaptive solutions
to these challenges.

7. RELATED WORK
There have been considerable work related to middleware

and programming environments for mobile and context-aware
applications, typically relying on pub-sub communication
structure [19] for information sharing, and proxies for con-
necting to the Internet while avoiding changing the existing
infrastructure [5,20]. Many other works are devoted to col-
laborative applications for mobile users [21–23] and some of
them are dedicated for video services [24,25]. MobiUS differs
from them in its tightly coupled device-to-device collabora-
tion architecture requirement, which is more demanding, to
support the new better-together application paradigm.

Recognizing the limited resource of mobile devices, some
work studied the resource aggregation of mobile devices, but

40

mainly focused on bandwidth aggregation [26,27]. CoolSpots
[5] debuted a framework where multiple radio interfaces can
be adaptively used (with some infrastructure support) so
as to save the precious energy for mobile devices. MobiUS
emphasizes more than merely bandwidth sharing. In the
together-viewing video application, the computing resources
from two devices are aggregated as well, besides the obvi-
ous aggregation of the display resource. Moreover, MobiUS
introduces another dimension to optimize the energy con-
sumption, namely the tradeoff between computation and
communication.

The together-viewing video application of MobiUS seeks
speedy distributed and parallel video decoding. Parallel
video (e.g., MPEG-2) decoding has attracted many research
efforts in order to achieve real-time playback. In [28], the
authors identified the huge bandwidth requirement when ex-
ploiting temporal parallelism. Both temporal and spatial
parallelism are exploited in [29] where shared memory is as-
sumed. These works are not directly applicable to MobiUS
because of the lack of shared memory among devices and
the limited communication bandwidth in between.

The artifact of together-viewing is that the video is dis-
played on the two screens aggregated together, with each
screen displays half a frame. It is therefore different from
other remote desktop display scenarios where the desktop
is remotely displayed as a whole. As pointed out in [30],
supporting video is more challenging and conventional re-
mote desktop technology can not deliver satisfactory per-
formance. A decent approach was developed there to better
support remote video display by intercepting the driver level
primitives. However, our half-frame display problem is new
and the solution requires non-trivial extensions, which we
are still investigating.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented MobiUS, a research project

that targets a new better-together mobile application para-
digm when multiple devices are placed in a close proximity.
We studied a together-viewing video application which re-
quires real-time synchronous video playback on the screens
of the two devices. We identified the key challenges, namely
the intrinsic complexity of video caused by the recursive
temporal frame dependency and motion compensated pre-
diction and the inherent constraints of mobile devices such
as limited processing power and short battery life. We over-
came these challenges through device collaboration and re-
source aggregation based on the design of a tightly coupled
collaborative system architecture. We designed a novel col-
laborative half-frame decoding scheme that significantly re-
duces the computation complexity of decoding and further
optimized it for better energy efficiency with a guardband-
based collaborative half-frame decoding scheme. We have
implemented the system and conducted experimental eval-
uations whose results demonstrate the effectiveness of our
proposed collaborative and resource aggregation techniques.

We believe the better-together mobile application para-
digm deserves further exploration. In our future work, our
immediate plan is to conduct more systematic evaluation
of our current system design and implementation. In the
long run, we plan to abstract and generalize those common
modules that have been identified in MobiUS to support
a broader spectrum of collaborative applications such as
collaborative streaming for wireless TV scenario where the

downloading bandwidth of devices can be aggregated and
more effectively utilized. We believe our work will moti-
vate a new wave of technology developments addressing and
promoting the social impact of mobile phones.

9. ACKNOWLEDGEMENT
We would like to thank Mr. Wenfeng Li for initial porting

of the video decoder to Windows Mobile platform, and Mr.
Feng Hu for conducting some experiments. We also thank
many colleagues in the Wireless and Networking research
group in MSR Asia, Kun Tan, Chunyi Peng, Yunxin Liu, to
name a few, for their strong support, encouragement, many
fruitful discussions and valuable suggestions throughout the
project. We also thank all the reviewers for their insightful
comments and valuable suggestions, and Dr. James Scott
for shepherding the final revision of the paper.

Our particular thanks go to Mr. Weihun Liew who helped
evangelizing our work, conducted third-party market survey,
and initiated the product plan.

10. REFERENCES
[1] [Online]. Available:

http://www.networkmultimedia.org/

[2] Generic Coding of Moving Pictures and Associated
Audio Information - Part 2: Video. ITU-T and
ISO/IEC JTC 1, ITU-T Recommendation H.262 and
ISO/IEC 13818-2 (MPEG-2), 1994.

[3] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and
A. Luthra, “Overview of the h.264/avc video coding
standard,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 13, pp. 560–576, July 2003.

[4] B. Zeng, R. Li, and M. L. Liou, “Optimization of fast
block motion estimation algorithms,” IEEE Trans. on
Circuits and Systems for Video Technology, vol. 7, pp.
833–844, Dec. 1997.

[5] T. Pering, Y. Agarwal, R. Gupta, and R. Want,
“Coolspots: Reducing the power consumption of
wireless mobile devices with multiple radio interfaces,”
in Proc. of the Fourth Intl. Conf. on MobiSys,
Uppsala, Sweden, 2006, pp. 220–232.

[6] [Online]. Available: http://www.upnp.org/

[7] [Online]. Available:
http://www.apple.com/macosx/features/bonjour/

[8] F. Wu, G. Shen, K. Tan, F. Yang, and S. Li, “Next
generation mobile multimedia communications: Media
codec and media transport perspectives,” China
Communications, vol. 3, pp. 30–44, Oct. 2006.

[9] J. Hightower, R. Want, and G. Borriello, “SpotON:
An indoor 3D location sensing technology based on
RF signal strength,” University of Washington, UW
CSE 00-02-02, 2000.

[10] N. B. Priyantha, A. Chakraborty, and
H. Balakrishnan, “The cricket location-support
system,” in Proc. of the Sixth Annual ACM MobiCom,
Boston, MA, USA, Aug. 2000.

[11] G. Borriello, A. Liu, T. Offer, C. Palistrant, and
R. Sharp, “Walrus: Wireless acoustic location with
room-level resolution using ultrasound,” in Proc. of
the Third Intl. Conf. on MobiSys, Seattle, WA, USA,
2005, pp. 191–203.

[12] [Online]. Available:
http://www.eecis.udel.edu/ mills/ntp.html

41

[13] J. Elson, L. Girod, and D. Estrin, “Fine-grained
network time synchronization using reference
broadcasts,” in Proc. of the Fifth OSDI, Boston, MA,
USA, 2002, pp. 147–163.

[14] G. Shen, Y. He, W. Cao, and S. Li, “Mpeg-2 to wmv
transcoder with adaptive error compensation and
dynamic switches,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 16, pp. 1460–1476,
2006.

[15] S. Pasricha, M. Luthra, S. Mohapatra, N. Dutt, and
N. Venkatasubramanian, “Dynamic backlight
adaptation for low-power handheld devices,” IEEE
Design and Test of Computers, vol. 21, no. 5, pp.
398–405, 2004.

[16] P. Pillai and K. G. Shin, “Real-time dynamic voltage
scaling for low-power embedded operating systems,”
in Proc. of the Eighteenth ACM SOSP, Banff, Alberta,
Canada, 2001, pp. 89–102.

[17] W. Yuan and K. Nahrstedt, “Practical voltage scaling
for mobile multimedia devices,” in Proc. of
the Twelfth Annual ACM Intl. Conf. on Multimedia,
New York, NY, USA, 2004, pp. 924–931.

[18] [Online]. Available:
http://www.pcmag.com/article2/0,1895,2080442,00.asp

[19] M. Caporuscio and P. Inverardi, “Yet another
framework for supporting mobile and collaborative
work,” in Proc. of the Twelfth Intl. Workshop on
Enabling Technologies, Washington, DC, USA, 2003.

[20] M. Caporuscio, A. Carzaniga, and A. L. Wolf, “Design
and evaluation of a support service for mobile,
wireless publish/subscribe applications.” IEEE Trans.
Software Eng., vol. 29, no. 12, pp. 1059–1071, 2003.

[21] D. Buszko, W.-H. D. Lee, and A. S. Helal,
“Decentralized ad-hoc groupware api and framework
for mobile collaboration,” in Proc. of the 2001 Intl
ACM SIGGROUP Conf. on Supporting Group Work,
Boulder, Colorado, USA, 2001, pp. 5–14.

[22] E. Kirda, P. Fenkam, G. Reif, and H. Gall, “A service

architecture for mobile teamwork,” in Proc. of the
14th Intl Conf. on Software Eng. and Knowledge Eng.,
2002, pp. 513–518.

[23] V. Sacramento, M. Endler, H. K. Rubinsztejn, L. S.
Lima, K. Goncalves, F. N. Nascimento, and G. A.
Bueno, “Moca: A middleware for developing
collaborative applications for mobile users,” IEEE
Distributed Systems Online, vol. 5, no. 10, 2004.

[24] E. de Lara, R. Kumar, D. S. Wallach, and
W. Zwaenepoel, “Collaboration and multimedia
authoring on mobile devices,” in Proc. of
the First Intl. Conf. on MobiSys, San Francisco, CA,
USA, 2003, pp. 287–301.

[25] N. J. McCurdy and W. G. Griswold, “A systems
architecture for ubiquitous video,” in Proc. of
the Third Intl. Conf. on MobiSys, Seattle, WA, USA,
2005, pp. 1–14.

[26] P. Sharma, S.-J. Lee, J. Brassil, and K. G. Shin,
“Handheld routers: Intelligent bandwidth aggregation
for mobile collaborative communities,” in Proc. of the
First Intl Conf on Broadband Networks, Washington,
DC, USA, 2004, pp. 537–547.

[27] J. Karlsson, H. Li, and J. Eriksson, “P2p video
multicast for wireless mobile clients,” in The
Fourth Intl. Conf. on MobiSys (poster), Uppsala,
Sweden, June 2006.

[28] J. Wang and J. C. L. Liu, “Parallel mpeg-2 decoding
with high speed network: Part ii,” in Proc. of
the IEEE Intl. Conf. on Multimedia and Expo
(ICME), 2001., Aug. 2001, pp. 333–336.

[29] A. Bilas, J. Fritts, and J. P. Singh, “Real-time parallel
mpeg-2 decoding in software,” in Proc. of the 11th
Intl. Symposium on Parallel Processing, Washington,
DC, USA, 1997, pp. 197–203.

[30] R. A. Baratto, L. N. Kim, and J. Nieh, “Thinc: A
virtual display architecture for thin-client computing,”
in Proc. of the Twentieth ACM SOSP, Brighton,
United Kingdom, 2005, pp. 277–290.

42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

