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ABSTRACT
Except for a handful of “mobile” Web sites, the Web is
designed for browsing using personal computers with large
screens capable of fully rendering the content of most Web
pages. Browsing with handhelds, such as small-screen PDA’s
or cell phones, usually involves a lot of horizontal and ver-
tical scrolling, thus making Web browsing time-consuming
and strenuous. At the same time, one is often only inter-
ested in a fragment of a Web page, which again may not fit
on the limited-size screens of mobile devices, requiring more
scrolling in both dimensions. In this paper, we address the
problem of browsing fatigue during mobile Web access us-
ing geometric segmentation of Web pages and the notion
of context. Our prototype system, CMo, reduces informa-
tion overload by allowing its users to see the most relevant
fragment of the page and then navigate between other frag-
ments if necessary. On following a link, CMo captures the
context of the link, employing a simple topic-boundary de-
tection technique; then, it uses the context to identify rele-
vant information in the next page with the help of a Support
Vector Machine, a statistical machine-learning model. Our
experiments show that the use of context can potentially
save browsing time and improve the mobile browsing expe-
rience.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Search and Retrieval; H.5.2
[Information Interfaces and Presentation]: User Inter-
faces; H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia—architectures, navigation

General Terms
Algorithms, Design, Human Factors, Experimentation

Keywords
Context-Directed Browsing, CMo, Partitioning, Semantic
Blocks, PDA, Mobile Browsing, Content Adaptation
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1. INTRODUCTION
Recent years have seen a trend in the miniaturization of

personal computers. Handheld devices, such as PDAs and
even cell phones, have long become useful tools for mobile
computing. With the expansion of wireless Internet, hand-
helds are also gaining popularity in Web browsing applica-
tions. A number of popular Web sites now also have mobile
versions. The majority of Web developers, however, are still
primarily targeting personal computers with large screens,
capable of fully rendering most Web pages. Unfortunately,
a major limitation of most mobile devices is that their small
screens are unable to convey the richness of the Web content.

Web browsing on mobiles incurs a number of even more
serious problems. Depending on the design and layout of
Web pages, they often do not fit on small screens, requiring
considerable horizontal and vertical scrolling. Sometimes
Web pages get deformed, as mobile Web browsers try to
wrap the words and show everything in one column while
rendering the pages of the screen. Wireless data transfer is
expensive, and at current data rates can be relatively slow.
Improvements in mobile web browsing techniques that mit-
igate these issues are desirable.

At the same time, one is often only interested in a frag-
ment of a Web page, e.g. a news article or product descrip-
tion. For example, in Figure 1 (a), to read an Investors.com
article on a smartphone1, one has to wait for the page to
load, locate the beginning of the article, and then contin-
uously scroll left and right to see the end of each line, at
the same time, scrolling down to the end of the article. All
this makes Web browsing on mobiles a tedious and tiring
exercise.

In this paper, we address the problem of browsing fatigue
incurred during mobile Web access using the notion of con-
text to identify and present the most relevant information to
the user, while still preserving the richness of Web content.
Our prototype system, CMo, reduces information overload
by following the “less-is-more” design concept: CMo seg-
ments Web pages and allows its users to easily navigate be-
tween these segments, starting with the most relevant and
loading each subsequent segment when requested, see Fig-
ures 1 (b) and (c).

Identification of relevant information on any distinct Web
page is subjective until the user selects a link. We assume
that semantically related information in Web pages exhibits
spatial locality. Then, the link and the text around it are

1This and subsequent snapshots were obtained using Mi-
crosoft Visual Studio.Net PDA emulators. User evaluation
was done on real PDAs.
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(a) Regular Browsing (c) Browsing with CMo(b) CMo Front Page

Figure 1: Browsing with a Smartphone

semantically related. Therefore, when the link is clicked, the
user interest can be inferred from the link and its surround-
ing context. On following a link, CMo captures the context
of the link, employing a simple topic-boundary detection
technique. Then, the system uses the context and a Sup-
port Vector Machine (SVM), a statistical machine-learning
model, to identify relevant information in the linked page.
Finally, CMo displays the most relevant segment of the Web
page. In the case when the relevant information is not iden-
tified correctly, the user is only one pen tap away from the
beginning of the Web page.

Figure 2 shows a succession of steps used to find a new
PDA on Bizrate.com. The user finds the “PDAs & Handheld
Computers” category in the listing of product categories,
shown in Figure 2 (a). When he or she follows the link, in-
dicated by the mouse cursor, CMo uses the words of the link
to find the segment of the next page containing the desired
information, see Figure 2 (b). After the PDA of interest has
been found, the user follows the “PalmOne TX PDA” link
in Figure 2 (b). The words of the link and its context - the
text around the link - are used to find a detailed description
of the PalmOne PDA on the following page, which is imme-
diately displayed on the screen without having to scroll on
the page, see Figure 2 (c). If at any point CMo fails to iden-
tify the relevant information correctly, the user can click on
the “FIRST” link, shown in CMo’s navigation bar in Figure
2 (b), to start from the beginning of the page.

Adapting Web content for mobile browsing is an essential
problem attracting many researchers. It is unreasonable to
expect that all Internet content providers will supply both
regular and mobile versions of their Web sites. But even if
they did, why settle for stripped-down mobile Web sites and
miss out on the richness of regular sites?

In this paper we present a context-directed browsing pro-
totype for mobile devices, CMo, which brings together Con-
tent Analysis, Natural Language Processing (NLP), and Ma-
chine Learning algorithms to help mobile users quickly iden-
tify relevant information on following a link, thus, consider-
ably reducing their browsing time. Our experiments show
that the use of context can potentially save browsing time
and improve mobile browsing experience.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the architecture of CMo. Section 3.1
describes a technique for partitioning Web pages, exploit-
ing the observation that semantically-related information is
often aligned in the similar fashion, for example, see how
news headlines or menu items are aligned in Figure 4 (a).
We explain our algorithm for context collection, based on
the cosine-similarity topic detection method in Section 3.2,
and relevant information identification algorithm based on
the statistical model learned by a Support Vector Machine in
Section 3.3. A thorough performance test and a preliminary
user evaluation is presented in Section 4. We review related
research literature in Section 5, followed by our concluding
remarks and future work in Section 6.

2. SYSTEM ARCHITECTURE
CMo, our context-enabled browsing system for mobile de-

vices, takes its roots from the CSurf non-visual Web browser
[23]. The CMo prototype, designed for handheld devices, is
set up as a Java Servlet on the Apache Tomcat [37] server
acting as a proxy between the handheld users and the Inter-
net. The architecture of CMo is composed of the following
modules: Interface Manager, Context Analyzer, Frame Tree
Processor, and Browser Object (Figure 3).
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(a) Product Category (b) Product Summary (c) Product Description

Figure 2: Product Search Example
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Figure 3: Architecture of CMo

Users interact with CMo through any mobile Web browser
installed on their handhelds. After accessing CMo’s welcome
page, the user enters the address he or she wants to browse
and presses “GO”, See Figure 1 (b). The HTTP requests
are handled by the Interface Manager, which, after fur-
ther processing, generates HTML content and returns the
segments of the originally requested Web page to the mo-
bile browser. Each page generated by CMo has a navigation
bar with choices of navigating between the segments, view-
ing images or their ALT tags, and returning to CMo’s front
page to enter a new address, see Figure 1 (c) or 2 (b).

Context Analyzer is called twice for each Web page
access. When the user follows a link, e.g. pointed to by
the arrow in Figure 2 (a) or (b), the module collects the
context of the link, which includes the words of the link as
well as the text around the link. When a new Web page is
retrieved, the module executes our SVM-based algorithm to
locate the content segment, which is estimated to be most

relevant with respect to the context of the followed link.
The most relevant segments are displayed on the screen of
the PDA in Figures 2 (b) and (c) respectively. The context
processing algorithms are described in detail in Section 3.

The Browser Object module downloads Web content
every time the user requests a new Web page to be retrieved.
The module is built on top of the Mozilla Web Browser [26]
coupled with the JREX [19] Java API wrapper. Mozilla
engine takes care of all the standard browser functionalities
such as support for cookies, secure connection, etc. We have
extended JREX to extract a Frame Tree, Mozilla’s internal
representation of a Web page, after the Web page has been
rendered on the screen. This way, Mozilla takes care of any
dynamic content, cascading style-sheets, malformed HTML,
and other rendering problems. This relieves CMo from hav-
ing to deal with heavy DOM-tree objects, while giving it
even more information about the content and the style.

The Frame Tree Processor uses JREX API to extract
the Frame Tree representation of the Web page (Figures 4
(b) and 5 (b)) from the Browser Object. We define a Frame
Tree as a tree-like data structure that contains Web page
content, along with its formatting information, which spec-
ifies how that Web page has to be rendered on the screen.

A frame tree is composed of nested frames2, so that the
entire page is a root frame, containing other nested frames
down to the smallest individual objects on the page. For ex-
ample, Figure 4 shows a snapshot of the Google News front
page and the corresponding frame-tree partially expanded
to demonstrate the types of frames. We distinguish between
the following classes of frames: text, links, images, image-
links, and non-leaf frames. Section 1 of Figure 4 (a) shows
several nested frames enclosed by rounded boxes. We will
continue referring to any node of a frame tree as a frame.

Frame Tree Processor uses a number of heuristic algo-
rithms to clean, reorganize, and partition the frame tree.
The module also detects blocks representing semantic seg-

2not to be confused with HTML frames.
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Figure 4: Context Identification

ments of information in a Web page. Figure 4 shows the
front page of Google News split into logical sections (blocks)
on the left, and the corresponding subtrees of the frame
tree, marked with 3-D block icons, on the right. Block 1
contains the title and the search bar, blocks 2 and 3 contain
taxonomies, block 4 - language selector, block 5 - news head-
lines, etc. Section 3 describes the corresponding algorithms
in detail. Subsequently, the Context Analyzer identifies the
most relevant block, before passing the frame tree to the
Interface Manager.

Following the processing stages, the Interface Manager
uses the frame tree to generate a linked-list of separate
HTML Web pages, each representing a block of the origi-
nal Web page. Each newly generated page has links to the
first, previous, next, and last pages in the linked-list, Figure
2 (b). Subsequently, the Interface Manager returns to the
mobile browser the generated HTML page that corresponds
to the most relevant block of the original Web page. In case
when the segment was not identified correctly, the user can
simply tap on “FIRST” link to go to the block corresponding
to the beginning of the original Web page.

CMo is a prototype system, and it does not yet handle
all types of Web content. For example, form objects and
dynamic content are not reflected on the HTML paged gen-
erated by CMo. We will next describe the techniques and
algorithms of context processing in more detail.

3. CONTEXTUAL BROWSING
This section presents the core of CMo’s Context Analyzer

module, which drives contextual browsing. The two main
algorithms enabling contextual browsing are Context Iden-
tification and Relevant Block Identification. Both of these al-
gorithms utilize a Geometrical Segmentation algorithm used
by the Frame Tree Processor module to partition Web pages
into segments, containing semantically related content.

To collect the context, a topic-detection algorithm is ap-
plied to the information surrounding the followed link. We
gather the text that shares a common topic [1] with the link,
and use this context to identify the relevant information on

the destination Web page. Then, a support vector machine
[38] is used to compute the relevance score of these sections
with respect to the context. Subsequently, the Web page
is presented to the user starting with the highest ranking
section. If the relevant section was not identified correctly,
the user can always skip to the beginning of the page. The
following subsections discuss the algorithms in detail.

3.1 Geometric Segmentation
As described in Section 2, instead of implementing its own

segmentation algorithm, CMo utilizes a data structure cre-
ated by the Mozilla’s rendering engine. While rendering a
page on the screen, Mozilla creates a tree-like structure of
nested frames that holds the content of the Web page: the
leaf frames of the tree contain the smallest individual ele-
ments, e.g. a link, an image, etc.; non-leaf frames “enclose”
one or more leaf frames and/or other non-leaf frames; and
the root frame “contains” the entire page. We refer to this
data structure as a frame tree. For example, Figures 4(a)
and (b) show a Web page and its corresponding frame tree.

We use an observation that semantically related informa-
tion exhibits spatial locality [29, 28] and often shares the
same alignment on a Web page. Since a frame tree repre-
sents the layout of a Web page, we infer that geometrical
alignment of frames may imply semantic relationship be-
tween their respective content. If all descendants of a frame
are consistently aligned either along X or Y axes, we call
such a frame consistent.

A Maximal Semantic Block, or simply block, is the largest
of the consistent frames on the path from a leaf to the root
of a frame tree. Using the assumption that semantically
related content exhibits spatial locality (See section 1), we
consider a block to be the largest possible segment contain-
ing semantically related items of information. For example,
Figure 4(a) shows how we geometrically segment the infor-
mation on news.google.com into maximal semantic blocks:
title and search bar block - labeled as 1, taxonomies - 2 and
3, Language selector - 4, and headline news - 5 and 6. Fig-
ure 4(b) shows a snapshot of the frame tree, in which the
subtrees corresponding to blocks are numbered accordingly.
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The FindBlocks algorithm is used to find the blocks in a
frame tree. The algorithm runs a depth-first search over the
frame tree and recursively determines whether the frames
are consistent, ignoring the alignment of leaf-frames. A
frame is consistently X-aligned if all of its non-leaf descen-
dants are X-aligned. Similarly, a frame is consistently Y-
aligned if all of its non-leaf descendants are Y-aligned. Oth-
erwise, the frame is not considered to be consistent. In such
case, all of its children are marked as blocks.

Algorithm FindBlocks
Input: Frame: node of a frame tree
Output: Blocks: set of maximal semantic blocks
1. Identify all children C1, C2, . . . , Cm of Frame
2. Frame.IsConsistent ←true
3. for j ← 1 to m
4. do if Cj .IsLeaf = false
5. then FindBlocks(Cj)
6. if Cj .Alignment = NONE
7. then Frame.IsConsistent ←false
8. if Frame.IsConsistent = false
9. then for j ← 1 to m
10. do if Cj .Alignment 6= NONE
11. then Blocks ←Blocks ∪ {Cj}
12. else Frame.Alignment ←GetAlignment(Frame)
13. if Frame.Alignment = NONE
14. then for j ← 1 to m
15. do if Cj .Alignment 6= NONE
16. then Blocks←Blocks ∪ {Cj}
17. return Blocks

The FindBlocks algorithm uses the GetAlignment algo-
rithm to check whether the children of a frame have match-
ing alignment. That is, the GetAlignment algorithm de-
termines that a frame is X-aligned if all of its children are
aligned on the left, right, or center of the X-axis. Y-alignment
of a frame is computed in a similar fashion.

Algorithm GetAlignment
Input: Frame: node of a frame tree
Output: Alignment : alignment of Frame’s descendants
1. Identify all children C1, C2, . . . , Cm of Frame
2. XFirst ←C1.X
3. Y First ←C1.Y
4. XAlignedDescendants ←true
5. Y AlignedDescendants ←true
6. Alignment ←NONE
7. for j ← 2 to m
8. do if Cj .IsLeaf = false
9. then XCord ←Cj .X
10. Y Cord ←Cj .Y
11. if XCord 6= XFirst
12. then XAlignedDescendants←false
13. if Y Cord 6= Y First
14. then Y AlignedDescendants←false
15. if Cj .Alignment 6= XAlign
16. then XAlignedDescendants←false
17. if Cj .Alignment 6= Y Align
18. then Y AlignedDescendants←false
19. if XAlignedDescendants = true
20. then Alignment ←XAlign
21. if Y AlignedDescendants = true
22. then Alignment ←Y Align
23. return Alignment

The maximal semantic blocks, obtained by the Geometric
Segmentation algorithm, are further used by the Context
Identification and Relevant Block Identification algorithms.

3.2 Context Identification
Once the Geometric Segmentation algorithm has split the

Web page into maximal semantic blocks, and the user se-
lected a link to be followed, the Context Identification algo-
rithm collects the context of the link. Before we proceed to
describe our algorithm in greater detail, we formally define
the notion of context as:

Context of a link is the content around the link that main-
tain the same topic as the link.

Consider Figure 4, showing the front page of The Google
News Web site and the corresponding frame tree. The con-
text of the link, indicated by an arrow, is the text surrounded
by the dotted line. Notice how the topic changes from one
headline to another.

A block, produced by the Geometric Segmentation algo-
rithm, ideally represents a segment of text on the same sub-
ject, but may have several topics within it. Therefore, we
limit topic boundary detection and context collection to the
block containing the link. Context collection begins from
the link and expands around the link until the topic of the
text changes. A simple cosine similarity technique is used
to detect the boundaries of the topic, see equation (1).

The FindContext algorithm initializes the Context mul-
tiset with the words and word combinations (bigram and
trigram), excluding the function words 3, from the link and
its non-link siblings; the text in the link siblings is ignored
because links tend to be semantically independent of each
other, i.e. have different topics. It then collects all text per-
taining to the same topic around the link, adding the words
to the Context multiset.

In the Google News example, Figure 4(a), the user fol-
lows the link “US-Iraq summit delayed”, indicated by the
mouse pointer. We initialize the multiset with the text col-
lected from the link node of the frame tree, also indicated
by a mouse pointer in Figure 4(b), as well as from the non-
leaf sibling which follows the link node. The multiset now
contains single words (e.g. “summit”, “delayed”, “presi-
dent”, “bush” “iraqi”, “prime”, “minister”, etc.), their bi-
grams (e.g. “summit delayed”, “president bush”, “prime
minister”), and trigrams (e.g. “iraqi prime minister”).

After the initialization stage, we collect the context of the
link, starting from the parent frame of the link node, by
expanding the context to include the frame’s siblings. We
divide the siblings into the PredList and SuccList, con-
taining the predecessor and successor siblings respectively,
to expand the context window in both directions. Next, we
calculate the geometric distances4 between the initial frame
and its siblings and sort the siblings accordingly.

Again, in our example, the parent frame of the link in the
frame tree is the node labeled as “a” in Figure 4(b). The
node does not have any predecessor siblings. Its successor

3Function Words or grammatical words are words that
have little lexical meaning or have ambiguous meaning,
but instead serve to express grammatical relationships with
other words within a sentence, or specify the attitude or
mood of the speaker (Wikipedia.org)
4Geometric distance between two frames is the Euclidean
distance between their upper-left corners on the screen.
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Figure 5: Most Relevant Block Identification

siblings, labeled as “b” and “c”, are respectively 2512 and
3325 pixels away from frame “a”. Hence, we start with
the sibling “b”, construct multiset SText from the sibling’s
text, and compare its content to the content of the Context
multiset. The comparison is done using cosine similarity of
the multisets. More formally, for any two multisets M1 and
M2, their cosine similarity is defined as:

Cos(M1, M2) =
|M1 ∩M2|p
|M1|

p
|M2|

(1)

In the above formula, each multiset, containing words
from some passage of text, is considered to be a vector. The
cosine of the angle between the vectors is equal to 1 if the
multisets are identical, i.e. have the same size and members.
The cosine of the angle between the vectors is equal to 0, if
the multisets are completely dissimilar, i.e. have no common
members. Consider two multisets M1 = {usa, news, sports}
and M2 = {USA, world}. Intersection of these multisets is
{USA} with cardinality of 1. Cardinalities of M1 and M2

are 3 and 2 respectively. Their cosine similarity computed
by the above formula is then 1/(

√
2 · √3) ≈ 0.4082. If M1

= {USA, news}, then the similarity is 0.5.
We consider two multisets to be similar if their cosine

similarity is above a threshold. We have statistically com-
puted the threshold (See section 4.2 for details) that best
determines whether a topic changes between the Context
and the SText multisets. If the cosine similarity between
the multisets is above the threshold, i.e. topic boundary is
not detected, the multisets are merged. Otherwise, we stop
expanding the context window in that direction. The pro-
cess continues until the Block boundary is reached or when
there is no direction to expand. At that point, the algorithm
returns the Context multiset as the context of the link.

Continuing with our example in Figure 4, we collect the
text from the closest sibling frame “b”, corresponding to
the news item “Panel to recommend US troops pull back”.
The multiset SText, constructed for this frame, now contains
{“panel”, “recommend”, “us”, . . ., “panel recommend”, . . .,

“panel recommend us”, . . .}. We compute the cosine simi-
larity of the Context and a SText multisets, which turn out
to be below our threshold. The algorithm detects a topic
boundary between the content of the multisets and, there-
fore, stops expanding the context window and returns the
Context multiset. The context of the followed link, Figure
4(a), is enclosed by the dotted line.

Algorithm FindContext
Input: LinkNode: leaf-frame containing the link
Output: Context: multiset with collected context
1. Context ←non-function words, their bigrams and tri-

grams from LinkNode and its non-link siblings
2. Let ancesBlock be the ancestor Block of LinkNode
3. if ancesBlock 6= LinkNode.Parent
4. then Node ←LinkNode.Parent
5. Expand ←true
6. repeat
7. ChildList ←Node.Parent.Children
8. Let PredList and SuccList be the lists

of predecessors and successors of Node in
ChildList, sorted by their geometric dis-
tance from Node

9. StopExpand ←false
10. repeat
11. Sibling ←PredList.Next
12. SText ←non-function words, their bi-

grams, trigrams from Sibling
13. Similarity ←Cos(Context ,SText)
14. if Similarity > Threshold
15. then Context←Context ∪ {SText}

else StopExpand ←true
16. Expand ←false
17. until PredList.IsLast or StopExpand
18. Repeat line 9 to 17 for SuccList
19. Node ←Node.Parent
20. until Node = ancesBlock or Expand = false
21. return Context
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Table 1: Description of Block Features
Feature Description
funigram exact match of context words
fbigram exact bigram match (pairs of words)
ftrigram exact trigram match (triples of words)
fstemUnigram match of word stems*
fstemBigram match of stemmed bigrams
fstemTrigram match of stemmed trigrams

3.3 Relevant Block Identification
After the context of the link has been gathered on the

source page, the Browser Object module downloads the des-
tination Web page and generates a new frame tree. Again,
Geometric Segmentation algorithm segments the page into
blocks, marked 1-6 in Figure 5. Then, the Relevant Block
Identification algorithm matches the context against every
block in the frame tree and computes the relevance of each
block with respect to the collected context.

Intuitively, a relevant block identification algorithm should
use a function to rank the blocks and, then, pick the top-
scoring block as the most relevant one. Formally, block rank-

ing is a function which takes a vector ~f of block feature val-
ues f1, f2, . . . , fn and a vector ~w with feature contributions
w1, w2, . . . , wn, and returns the weight W of the block:

F : (f1, f2, . . . , fn)× (w1, w2, . . . , wn) → W (2)

A naive approach is to manually design these functions
and fix the individual weights for each feature vector, e.g.:
a function can be a linear combination of feature values:

F(~f × ~w) = w1 · f1 + w2 · f2 + . . . + wn · fn (3)

However, manually designing these functions is not prac-
tical, justifiable, or scalable over a multitude of features.
Therefore, we learn a block ranking function using a statis-
tical learning method: we define “block ranking” as a learn-
ing problem and use a support vector machine (SVM) [38,
11], a well-known statistical model used in classification and
regression analysis, to learn a block relevance model. Then,
we use the machine-learned model to determine the rele-
vance of blocks with respect to a given context. The blocks
are ranked according to their relevance to the context.

As many other machine learning tools, SVM takes a fea-
ture vector as input and produces its classification (when
SVM is used in classification problem). We define two classes
for our block relevance model: relevant and not relevant,
and describe each block of the destination page with a set of
feature values, which we compute by trying to match single
words, bigrams, trigrams, and their stemmed5 counterparts,
contained in context, to the text in the blocks. The features
are listed in Table 1. On each successful match the corre-
sponding feature value is incremented.

We used a freely available SVM package, libsvm [11], to
learn the block relevance model. To train the SVM model,
we collected and labeled training examples, where each block

is represented by a tuple (~f , l), where ~f is a feature vector
for that block and l is its relevance label. To simplify the
labeling, a block can be either relevant with respect to some
context: l = 1, or not relevant: l = 0.

5Word stemming is done using Porter’s stemmer [31]

Figure 6: Chicago Tribune News Using CMo

To compile labeled training data, we collected Web logs
from about 1000 Web pages using our data-collect-ion tool
described in Section 4.1. Each Web log is a tuple of (Source
Page, Destination Page), with the context and the link se-
lected on the source page, and the most relevant block se-
lected on the destination page. We identified the set of
blocks B1, B2, . . . , Bm on the destination Web page, com-
puted their feature values, and labeled the blocks as relevant
(1 ) or not relevant (0 ). The training examples were, then,
used to train the SVM and learn the SVM model.

The machine-learned SVM model is now used to predict
the relevance of a given block with respect to some context.
Given a set of blocks B1, B2, . . . , Bm, we compute the
feature values for each block by matching the context against
the text in the block. Next, we use the learned SVM model
to label the blocks as either relevant or not-relevant, and get
the associated probability values. Then, we pick the highest
ranking block, in terms of the probability values, as the most
relevant one. Block 6, expanded in Figure 5(b), was chosen
by the SVM as the most probable candidate for contextual
relevancy. Subsequently, CMo will return section 6 to the
mobile device to be displayed on the screen, see Figure 6.
The other sections of the original Web page can be browsed
using the CMo navigation bar at the top of the screen.

4. EVALUATION AND EXPERIMENTS

4.1 Data Collection
We used twenty five Web sites for data collection - 5

Web sites in each of 5 content domains: news, books, con-
sumer electronics, office supplies, and informational. The
“informational” category included various Web sites, such
as LIRR6 and Medicaid7.

6http://www.mta.nyc.ny.us/lirr
7www.cms.hhs.gov/home/medicaid.asp
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Figure 7: Performance of Context Identification

To have an efficient infrastructure for experiments, we de-
signed a visual tool with an embedded Web browser that
allowed us to view frame trees and collect training data.
We collected 1000 (source-destination) pairs of Web pages
to calculate a threshold for topic identification and to train
the SVM model. During the data collection stage, the ex-
perimenters were asked to select any link and the context
around it on the source pages. Then, they were told to follow
the link and, on the next page, select one block containing
what, they thought, was the most relevant information with
respect to the link they had chosen. The pairs of frame trees,
corresponding to the source and the destination Web pages,
were automatically saved together with user selections.

4.2 Performance of Context Identification
We used the collected source pages to statistically com-

pute the performance of context identification algorithm and
the threshold for our topic boundary detection algorithm, as
described in Section 3.2. We used 50% of the page samples
to estimate the threshold value and the remaining 50% were
used to calculate the performance of the context identifica-
tion algorithm in terms of recall, precision, and F-measure
presented in Figure 7.

Let M1 be the multiset with the context selected by the
user, and let M2 be the multiset computed by our algorithm,
then, the recall value for the context identification algorithm
is |M1∩M2|/|M1|, and the precision value is |M1∩M2|/|M2|.
The F-measure is calculated by taking the harmonic mean
of recall and precision.

We used the F-measure to estimate the cosine similarity
threshold. We designed a greedy algorithm that started with
an unrealistically high threshold, used our context identifi-
cation algorithm to find the context of the selected links in
the 500 sample Web pages, compared the results with the
human-selected context, and, then, adjusted the threshold
value iteratively until it converged to the F-measure that
locally could not be improved any further. Specifically, we
set the threshold T1 = 1, n = 1, and δ = 0.1; we compared
the F-measures Fn and Fn+1 while adjusting the threshold
Tn+1 = Tn − δ iteratively, as long as Fn < Fn+1. Then, we
used a binary-search approach to converge to the optimal
threshold Topt between Tn and Tn+1, where the F-measure
Fopt was the local maximum.

Once the threshold was determined, we used the remain-
ing 50% of the human-selected context to compute the aver-
age recall, precision, and F-measure in each of the 5 domains.
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Figure 8: Relevant Block Identification Performance

Figure 7 summarizes the experimental results. We observe
that, CMo achieved higher recall, precision, and F-measure
with the “News” and ”Informational” Web sites; higher per-
formance of context identification in these domains can be
explained by the fact that they are better organized and have
more textual content. Context identification performance
received the worst score in the “Electronics” domain, and
average scores in “Books” and “Office Supplies” Web sites,
most likely, because e-commerce Web sites crowd their pages
with more diverse information, preferring images over text.
While CMo handles ALT tagged images, many online stores
disregard Web accessibility guidelines, making it difficult to
use images as context.

4.3 Relevant Block Identification Performance
The collected data was also used for SVM training and

evaluation of the algorithm’s performance. Using the rel-
evant block identification algorithm on each of the source-
destination pairs of the collected Web pages, we computed
a feature vector for each block of the destination Web page,
described in (Section 3.3). The human-selected most-relevant
blocks were labeled with 1’s (i.e. relevant), while the rest
were labeled with 0’s. We divided the training data in two
sets: training (90%) and cross-validation (10%).

Once the SVM model was learned, we tested it on 100
Web page pairs of the cross-validation set to predict block
labels. The labels were then compared with the human-
selected ones to compute the performance of our relevant
block identification algorithm in terms of recall, precision,
and F-measure.

Let A be a set of blocks identified as relevant by the al-
gorithm, and H be a set of relevant blocks selected by the
user, then, the recall value is |A∩H|/|H|, and the precision
is |A∩H|/|A|. The F-measure is again calculated by taking
the harmonic mean of recall and precision.

The learned model showed reasonable performance in all
five content domains, as summarized in Figure 8. It is no-
table that the model again achieved the best result in the
news domain. The relevant information identification algo-
rithm depends on the geometric organization of Web pages
and the performance of the Geometric Segmentation Algo-
rithm; the latter performs the best on well-structured Web
sites. The structural organization is often much better in
News Web sites than in other domains, which may be the
reason for CMo’s higher performance in that domain. The
relevant block identification algorithm also averaged around
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Table 2: Task Description
Task Website Followed Link Relevant Information

T1 NYTimes “Protesters Seek Leader’s Ouster in Lebanon” slogan used by protestors
T2 CNN “Iraqi Shiite with Iran ties to visit Bush” name of the Iraqi Shiite leader
T3 LATimes “L.A. Fire Chief submits resignation to mayor” name of the FireChief
T4 NewsDay “Glavine stays with Mets” No. of matches won by Glavine

T5 Khazana “Books: Cambridge University Press” the book “A Dictionary of Plant Pathology”
T6 TheatreBooks “Opera” the book “The Grove Book of Operas”
T7 Yahoo Shopping “Canon Powershot SD 630 digital camera” stores where the item is available
T8 Amazon “Apple 4GB ipod Nano pink” sales rank of the item
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Figure 9: Time Taken with and without CMo

90% in each of the recall, precision, and F-measure in the
e-commerce categories. This decrease of performance, com-
pared to the News Web sites, may be caused by the am-
biguity introduced by the high similarity among the differ-
ent items occurring within the page. Another contributing
factor was the presence of user reviews, having more word
matches and, thus, scoring higher than product descriptions.

4.4 Browsing Efficiency Evaluation
We conducted within-the-group user-evaluations with 8

people completing 8 tasks (8 times each) on 8 Web sites. For
the evaluation we used an IPAQ Pocket PC equipped with
Microsoft Pocket PC operating system with wireless Internet
connectivity. Prior to the experiments, the evaluators were
taught the basics of using a standard mobile Web browser
installed on the PDA, and were also shown how to use CMo.

The tasks and the links were preselected to ensure that
the relevant blocks were identified correctly after following
the link. If CMo makes a mistake, the users can always
proceed to the beginning of the page, in which case the time
and the number of stylus taps to complete the tasks may be
comparable to browsing without CMo. Thus, a much larger
population sample would be required to properly report the
performance comparison that includes these scenarios.

We performed the evaluation on 4 well-known news and 4
shopping Web sites listed in the second column of Table 2.
Incidentally, most of these Web Sites had mobile versions.
However, we chose to evaluate on their regular counterparts,
because mobile sites already condense and adapt their con-
tent for better browsing with handhelds. In contrast, we are
striving to preserve the richness of Web content by following
the “less-is-more” design principle: we show less content at
a time, but present the relevant information first.
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Figure 10: Pen Taps with and without CMo

The evaluators were asked to perform the tasks that would
require following a link from one page to another and find-
ing the answer to the questions listed in Table 2, columns 3
and 4 respectively. Each evaluator completed 4 tasks twice;
each task was performed a total of 8 times: 4 times with
CMo and 4 times without CMo. The within-the-group ex-
periment implied that half of the users first evaluated Web
browsing with CMo and then without CMo, and the other
half performed the tasks first without; and then with CMo.
This was done to offset the effects of “site familiarity”, be-
cause the same users had to repeat each task twice.

Since our goal was to provide faster access to relevant
information, we measured and averaged the time taken to
complete each task starting from the moment when the user
followed the link and the next page finished loading to the
PDA. We assessed only the user interaction time and did not
benchmark the system, because the results would have been
device-specific, depending on the connection bandwidth. Also
CMo was only a prototype implementation with lots of room
for speed optimization. Nevertheless, the evaluators remarked
that loading a Web page with CMo took considerably less
time.

Apart from the interaction time, Web browsing on hand-
helds usually involves hand movements, which is why we
also measured the number of stylus taps that were neces-
sary to complete the tasks. We define a pen tap as a screen
touch with a stylus. Dragging the scroller of the browser
window counted as one tap. Figure 9 summarizes the time
in seconds taken to complete the tasks T1 through T8 with
and without CMo. Our system averaged 46% improvement
over regular Web browsing with a PDA. Figure 10 shows
a similar comparison of the number of pen taps averaging
41% improvement. Both charts show that browsing on shop-
ping sites took more time and taps than on news Web sites.
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The reason being, that for our set of tasks, there were more
items in shopping Web sites, taking more time and pen taps
to look through, while each of the news Web pages mostly
had a single news article.

In summary, our preliminary evaluation results showed
promise that context-directed browsing could substantially
improve mobile Web browsing and make it less tiring and
time-consuming even when browsing regular non-mobile sites.

5. RELATED WORK
The work described in this paper has broad connections

to research in content adaptation for mobile devices, Web
content analysis, and context analysis.
Content Adaptation. Adapting Web content for brows-
ing with mobile devices is an ongoing research activity. Ini-
tial efforts relied on WML (Wireless Markup Language) and
WAP (Wireless Application Protocol) for designing and dis-
playing Web pages [21, 6, 20] in mobile Web browsers. These
approaches imposed additional burden on Web designers to
create separate WML content. In contrast, we do not re-
quire any additional effort on the part of content providers
- CMo takes the original Web pages, processes them, and
presents them to the users.

Subsequent research automatically adapted regular Web
content for small-screen devices. The works described in [7,
10, 9, 8, 40] focused on organizing Web pages into tree struc-
tures and summarizing their content. They were effective for
ad-hoc exploratory browsing. However, summary structures
often cause needless navigational steps when a user is inter-
ested in some specific content. CMo, on the other hand,
allows its users to avoid unnecessary navigational steps by
presenting only the relevant information that can be iden-
tified after following a link. In the future, CMo could also
use summarization to condense the relevant content.

Page-splitting techniques used in content adaptation for
small-screen devices are described in [12, 39]. A page-analysis
technique is proposed in [12] to analyze the structure of a
Web page and split it into small logically-related units that
fit on the screen of a mobile device. In the case when a Web
page is not suitable for splitting, an auto-positioning method
or scrolling-by-block is used to facilitate browsing without
splitting the original Web page. In [39], a Web page that
does not fit on a small screen is transformed into a set of
pages, each of which fits into the screen. Page-splitting tech-
niques could be somewhat disorienting for the users famil-
iar with the original page structure, however, browsing full
pages on mobiles is far more disorienting because most of the
mobile browsers distort the pages while rendering. CMo also
uses a geometric segmentation algorithm to split Web pages
into sections (maximal semantic blocks), and then, gener-
ates separate HTML pages for each of the sections of the
original Web page. However, CMo goes beyond the above-
mentioned systems, because it also helps its users identify
the most relevant sections of Web pages.

Yin and Lee [43] proposed to construct a graph model of
a Web page and, then, apply a link-analysis method, similar
to Google’s PageRank algorithm [5], in order to compute an
importance value for each basic element of an HTML DOM
tree. This allows the extraction of only the important parts
of Web pages for delivery to mobile devices. In contrast,
CMo uses the notion of relevance, rather than importance.
CMo does not try to find the most important section in an
individual Web page. Instead, it uses the context of the link

chosen by the user in the source Web page to identify the
most relevant information on the destination page.

A number of research projects have tried to condense Web
pages by displaying thumbnails and summarizing Web con-
tent [3, 22, 32, 24]. For example, SmartView [24] uses a
page-splitting technique to group the elements of a Web
page and present them together while allowing a user to
zoom into the individual elements. The work described in
[3] segments Web pages into regions, presents each region us-
ing a thumbnail, and also allows a user to zoom into a region
by pressing a single key. In the latter work, the segmenta-
tion task is formulated as a machine learning problem based
on entropy reduction and decision tree learning. Zooming
and thumbnail presentation styles can facilitate the identi-
fication of relevant sections in Web pages, but they do not
pinpoint the most relevant information in a page. These
features, however, can further enhance CMo’s usability.

The PageTailor system [4] adapts layout of Web pages
for mobile browsing by allowing users to move, resize, and
remove page elements. When tailored pages are revisited,
PageTailor uses contextual information to locate customized
page elements and adapt the page for mobile browsing. In
contrast, CMo does not remove Web content, but instead
automatically identifies the most relevant part of the page
and displays it first. CMo could also benefit from page cus-
tomization similar to that of the PageTailor system.

Noise elimination on Web pages is described in [14, 42].
For example, Gupta et. al. [14] implemented an ad remover
by maintaining a list of advertiser hosts and calculating the
ratio of the number of words within links and in plain text.
These techniques are orthogonal to our focus because CMo
strives to preserve the richness of Web content, which also
includes ads and banners. However, providing an option to
remove banners and other commercials can further improve
the browsing experience for CMo users. Besides, CMo al-
ready has an option of showing images or their ALT tags.

Recently, desktop-class applications for browsing on mo-
bile devices appeared on the market. Apple iPhone [17],
for instance, provides access to desktop-class applications
and various software, (e.g. rich HTML email, full-featured
Web browsing, widgets, etc.). The ThunderHawk [36] mo-
bile Web browser offers desktop level browsing experience
to mobile users. It provides rapid operation, zooming capa-
bilities, different viewing modes (e.g. full screen and split
screen), etc. Users can adjust a Web page’s resolution ac-
cording to their preferences and view the page with mini-
mal scrolling. Desktop-class browsers are the future of mo-
bile browsing. However, they also require user interaction
to scroll and zoom in on the information. Therefore, they
could also benefit from relevant information identification to
further improve user experience.

Mobile devices with increased screen resolutions and in-
creasing data-transfer speeds may eventually make our ap-
proach outdated. However, it will be awhile before the tech-
nology becomes ubiquitous and affordable in the developed
and, especially, in the developing countries. Even though
the latest ultra-mobile PCs, such as Sony UX50 or OQO,
are capable of fully rendering the content of Web pages, it
is hard to read small font off their tiny screens. Therefore,
they could also adapt our approach and zoom in on relevant
information to improve their usability.

CMo draws on the best research ideas in the area of Web
content adaptation for handheld devices and further ad-
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vances the field by introducing context-directed browsing
for mobile devices. Other ideas, such as extracting content-
rich parts of a Web page, summarizing, and presenting page
segments by thumbnails can help users identify important
information. However, only after a user follows a link, it is
possible to identify what information is relevant. We bring
in the notion of relevance to help mobile users quickly find
what is important to them in a Web page after they followed
a link. As a result of our content adaptation, we present the
most relevant information first, while preserving the richness
of the Web page.
Web Content Analysis. The essence of the technique
underlying our context analysis algorithm is in partition-
ing Web pages into geometric sections. Substantial research
has been done on segmenting Web documents [35, 13, 41].
These techniques are either domain [13] or site [35] specific
or depend on fixed sets of HTML markups [41]. Semantic
partitioning of Web pages has been described in [27, 28, 29].
These systems require semantic information (e.g. ontolo-
gies) to partition a Web page.

In contrast to all of these works, our geometric segmenta-
tion (partitioning) method does not depend on any domain
knowledge or semantic information.

Besides content adaptation, Web page partitioning tech-
niques have also been used in content caching [33] and data
cleaning [42]. VIPS [44] algorithm uses visual cues to par-
tition a Web page into geometric segments. The algorithm
extracts nodes from the DOM tree, finds vertical and hori-
zontal separator lines between the nodes, and segments the
Web page into regions based on a number of handcrafted
rules. This algorithm is used in [34], where the segments are
described by a set of features (e.g. spatial features, number
of images, sizes, links, etc.). The feature values are then fed
into an SVM, which labels the segments according to their
importance.

CMo also uses an SVM to rank the blocks on the desti-
nation Web page w.r.t. the context of the link in the source
page. In contrast to [34], where the SVM model was learned
using features only from the content of the segment, we use
the SVM to learn the block-relevance model using the fea-
ture set (See Table 1), computed from both the context of
the link and the content of the block.

The fundamental difference between our research and the
above-mentioned content analysis techniques is that we ex-
ploit the geometrical and logical structure of Web pages both
to collect context as well as to identify relevant information
on the next Web page.
Contextual Analysis. The notion of context has been
used in different areas of Computer Science research. For
example, [18] defines context of a Web page as a collec-
tion of text, gathered around the links in other pages that
are pointing to that Web page. The context is then used
to obtain a summary of the page. Summarization using
context is also explored by the InCommonSense system [2],
where search engine results are summarized to generate text
snippets. Context analysis for non-visual Web access is de-
scribed in [15, 16], where context information of a link is
used to get the preview of the next Web page, so that visu-
ally disabled individuals could choose whether or not they
should follow the link. This idea is used in AcceSS system
[30], to get the preview of the entire page. All of these
works define the context of the link as an ad-hoc collection
of words surrounding it. In contrast, our notion of context

is based on topic similarity of words around the link. We
use a principled approach for context analysis using a simple
topic boundary detection method [1], confined to geometric
segments that have semantically related content.

CMo is fundamentally different from all of these works
in its application. Specifically, CMo aims to help mobile
users to quickly identify relevant information on following a
link, thus, reducing a user’s browsing time and potentially
preventing browsing fatigue caused by needless scrolling.

Our ideas for context-directed browsing were initially con-
ceived for improving browsing efficiency in non-visual Web
access. A short paper describing these preliminary ideas
will appear in [23]. We adapted these ideas for mobile Web
browsing and substantially extended this preliminary work
with a geometric segmentation technique to identify maxi-
mal semantic segments; a topic detection [1] algorithm for
context collection; an SVM block-relevance model to iden-
tify relevant information in Web pages for context-directed
browsing and searching; as well as word-stemming and other
Natural Language Processing techniques. We developed the
CMo prototype as a system to support context browsing
in handhelds. We have also conducted preliminary perfor-
mance evaluation of the browsing efficiency of CMo.

6. CONCLUSION AND FUTURE WORK
In this paper, we described the design and implementa-

tion of CMo, our context-directed Web browsing system,
that acts as a proxy server and facilitates mobile browsing
by logically dividing a Web page into into several mobile
pages, showing the most relevant page by default. CMo
employs our geometric segmentation algorithm to segment
semantically-related information in Web pages. Then, it
uses various Natural Language Processing and Machine Learn-
ing techniques to identify the most relevant segment to be
displayed in a mobile Web browser.

In the future, it will be interesting to explore the use of
other features for enhancing the performance of context-
browsing. For example, by introducing more features that
distinguish between parts of speech and text-formatting, the
accuracy of the SVM model could be improved. Bringing ad-
vanced NLP techniques, such as summarization and Word-
Net ontology, to further enhance the Web browsing experi-
ence is another interesting direction for research.

We are also exploring partitioning within maximal seman-
tic blocks. Partitioning techniques can identify repeating
substructures, such as news headlines, within a block of in-
formation. CMo can further improve usability by using a
finer granularity of block size, and allowing a user to navi-
gate between the blocks, and within large blocks.

Currently CMo is set up to run on a proxy server handling
client requests and doing all the processing. In the future
it should be possible to bring the context algorithms to the
client side. We are exploring the possibility of extending the
Mozilla’s Minimo [25] mobile browser with CMo function-
alities to make the first standalone context-directed mobile
browser. However, this would require downloading complete
Web pages to the mobile device and porting the processing
algorithms, thus making the system slower.

We demonstrated the effectiveness of our algorithms by
statistically computing the accuracy of the relevant block
identification, and doing user evaluations to compare user-
interaction time and the number of stylus taps taken to find
relevant information in Web pages; with and without CMo.
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Using our system, mobile Web surfers can potentially save
save time by having to make fewer stylus taps to find and
read relevant information while navigating from one Web
page to another. In the cases when CMo fails to identify
relevant information correctly, the users are just one stylus
tap away from the beginning of the Web page. Moreover,
CMo users can enjoy the full richness of Web content with-
out having to use mobile Web sites or do excessive scrolling
in regular Web sites. Thus, CMo goes beyond traditional
mobile Web browsers in its ability to combat information
overload and mitigate fatigue while Web browsing on mo-
bile devices.
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