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ABSTRACT
Presence-sharing is an emerging platform for mobile applications,
but presence-privacy remains a challenge. Privacy controls must
be flexible enough to allow sharing between both trusted social re-
lations and untrusted strangers. In this paper, we present a sys-
tem called SmokeScreen that provides flexible and power-efficient
mechanisms for privacy management.

Broadcasting clique signals, which can only be interpreted by
other trusted users, enables sharing between social relations; broad-
casting opaque identifiers (OIDs), which can only be resolved to
an identity by a trusted broker, enables sharing between strangers.
Computing these messages is power-efficient since they can be pre-
computed with acceptable storage costs.

In evaluating these mechanisms we first analyzed traces from an
actual presence-sharing application. Four months of traces provide
evidence of anonymous snooping, even among trusted users. We
have also implemented our mechanisms on two devices and found
the power demands of clique signals and OIDs to be reasonable. A
mobile phone running our software can operate for several days on
a single charge.
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1. INTRODUCTION
Presence-sharing is a cooperative service provided by indepen-

dent, mobile participants periodically broadcasting their identity
via short-range wireless technology such as BlueTooth or WiFi. In
combination with location services like GPS and PlaceLab [23],
these networks provide a promising platform for emerging mobile
and pervasive applications. Examples include automatic tagging of
mobile data (e.g. digital images or lecture notes) to support file
search [7], mobile social networks [10], and messaging services
like the “missed connections” feature of CraigsList [7].

Presence-sharing is an attractive alternative to more traditional
pervasive computing architectures because of its low cost, decen-
tralized approach, and ease of deployment. For example, projects
such as the ContextCam [34] can be used to automatically tag digi-
tal images, but require a large investment in sensor and RFID tech-
nologies.

Despite the advantages of presence-sharing, privacy protection
remains an important unmet challenge. Mobile users are unlikely to
participate if anonymous strangers can roam through a crowd col-
lecting identities or marketers can surreptitiously compile users’ lo-
cation histories. Operating in a decentralized wireless environment
makes managing presence-privacy particularly difficult. Wireless
broadcasts can be heard by anyone, including unwanted snoopers.
Thus, broadcasts must be constructed so as to only reveal identify-
ing information to a subset of users.

A simple protocol that meets this requirement is one in which
members of a trusted group initially negotiate a secret symmetric
key. To later reveal themselves, members broadcast their identity
and a nonce encrypted with the secret key. Message recipients use
their secret key to verify that the decrypted content matches a mem-
ber of the group. The drawback of this approach is that it is inflexi-
ble: users cannot tune their access control policy to their social en-
vironment nor can they safely share their presence with strangers.

For example, in a file-tagging service users may want to restrict
sharing to social relations such as friends, family members, and co-
workers. However, trust in location privacy is a function of fluid so-
cial dynamics and users must be able to adjust their access control
policies accordingly. Studies of attitudes toward location privacy
have revealed adults who trust their co-workers with their location
during business hours but not otherwise [6], teenage girls who trust
their parents except when they are socializing with friends [27], and
spouses who trust each other except when shopping [6].

In addition, restricting presence to established social relations
cripples many useful presence-sharing applications. Within a mo-
bile social network users will likely want to see the presence of both
friends and like-minded strangers. For missed connection messag-
ing, users must be able to send messages to people they have en-
countered but do not know.
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In this paper, we present a privacy management system called
SmokeScreen that addresses these issues though two complemen-
tary mechanisms. To enable flexible sharing between social re-
lations, users broadcast clique signals which can be activated or
deactivated depending on the social environment. To enable flexi-
ble sharing between strangers, users also broadcast opaque identi-
fiers (OIDs) which are time-, place-, and broadcaster-specific and
can only be resolved to an identity via a centralized trusted bro-
ker. Together these mechanisms allow users to both manage their
location-privacy and reap the full benefit of presence-sharing. Fur-
thermore, these mechanisms are power-efficient since devices can
avoid broadcast-time cryptographic work by pre-computing and
comfortably storing 48 hours worth of future signals and OIDs.

The rest of this paper is organized as follows: Section 2 moti-
vates the need for flexible privacy controls by describing some rep-
resentative presence-sharing applications and summarizing a prior
study of user attitudes toward location privacy; Section 3 describes
SmokeScreen’s trust and threat model; Section 4 describes Smoke-
Screen’s design; Section 5 describes the SmokeScreen prototype;
Section 6 evaluates the prototype and examines users’ behavior in
a deployed presence-sharing application; Section 7 and Section 8
discuss related work and provides our conclusions, respectively.

2. BACKGROUND AND CONTEXT
Presence-sharing is a cooperative service among mobile devices

that provides applications with the identities of co-located users.
More concretely, participants use discovery protocols such as those
provided by BlueTooth or WiFi to scan for other co-located devices.
The set of discovered MAC addresses and device names can then
be mapped onto a set of identities by higher layers of software.
For example, a simple presence-sharing scheme might consist of
users including an email address in their mobile phone’s BlueTooth
device name.

2.1 Presence-sharing Applications
These networks can be used to support a number of useful ap-

plications. One such application is automatic file-tagging. Both
commercial [13, 37] and research [39] operating systems have be-
gun to embrace search as a first-class data organization tool. These
systems typically rely on file names, timestamps, embedded key-
words, and computational context [39] to build their search indexes.
Unfortunately, there are occasions when conventional sources of
meta-data are inadequate or unavailable.

One such occasion is when a user wants to retrieve media files
based on the identity of their subject, such as “find the pictures of
Bob.” Support for this kind of search is both important and hard.
The portion of PC users’ data composed of personal multi-media
files such as digital photographs and video is growing exponen-
tially [28] and at least one study of camera phone use found that
images of people comprised over half of all images taken [21]. Fur-
thermore, media files are notoriously difficult to index since they do
not contain text and are assigned opaque names by the devices that
create them.

Presence-sharing can automatically assign searchable, identity-
based attributes to images by associating the presence information
available when a picture is taken. MMM2 [8] comes closest to
this idea by using presence to suggest users with whom to share an
image.

Presence-sharing can also be used to support mobile social net-
works. Traditional social network websites, such as Facebook,
Friendster, and MySpace, allow users to create personalized pro-
files that are linked to their friends’. This allows users to find peo-
ple with common interests by browsing the profile graph. A mobile

social network network provides similar opportunities to meet new
people only in physical space rather than over the Internet.

Social Serendipity [10] typifies such a network. Each Serendip-
ity user fills out a profile containing a small photograph, interests,
username, and list of friends. Serendipity also associates each pro-
file with a BlueTooth MAC address and mobile phone number. In
social situations, a Serendipity server called BlueDar listens for
nearby BlueTooth devices and uses the devices’ MAC addresses to
look up their associated profiles. If there are co-located users with
overlapping interests, Serendipity sends a text message containing
the profile of each user’s match along with a suggestion that they
meet. Based on the profile’s photo, a user may then look for their
match in the room and introduce themselves.

Finally, our prior work described how presence information can
be used to support “missed connection” messaging among mobile
users [7]. The term “missed connection” is derived from a fea-
ture of the popular website CraigsList. This service allows users
to post messages for people they encountered in the recent past but
were unable to speak to at the time. Cities such as Boston, New
York and San Francisco generate hundreds of missed connections
on craigslist.com each day. Most postings are romantic inquiries,
but there are also requests for lost items, such as “did anyone find
the laptop I left in my taxi around 2PM,” and notifications of found
items, such as “I found a set of keys at the coffeeshop.”

While popular, this service is by no means ideal. First, users
can never be sure if their message has been seen by the intended
recipient. Second, authenticating respondents can be difficult. It is
not uncommon to see messages in which a respondent is required
to provide some detail of the encounter, such as “You were my
waitress, please tell me what I ordered.” Presence-sharing along
with a trusted service mapping devices to profiles could improve
both problems.

Users could record the identities of the devices they came into
contact with. Then based on the presence information recorded
during a social setting, they could ask the service to route messages
to the owners of each device. To further ensure that the message
reached the correct target, the sender might be allowed to browse
the profiles corresponding to the devices she saw or specify that the
message only be forwarded to users with specific attributes (male
or female, older or younger, etc.). This design could also support
messaging users with indirect links. For example, a taxi driver’s
presence could be used to connect the owner of a lost laptop to the
passengers that followed him.

2.2 Location Privacy
In addition to the potential benefits of presence-sharing there are

also many plausible scenarios in which presence-information could
be abused. These can range in severity from the inconvenience of
unwanted advertising to the danger of high-tech stalking. Though
it is impossible to know how likely these abuses will be, system
designers can still ask users what their concerns are.

There have been many studies of users’ attitudes toward tech-
nology and privacy [24, 27, 33], but researchers from Intel’s Seat-
tle Research Lablet recently carried out a particularly revealing
one [6]. In this study, participants provided a list of up to 17 so-
cial relations and categorized each based on the nature of their re-
lationship, such as a family, co-worker, or friend. Participants were
then given a mobile device for two weeks, to which the researchers
sent 10 randomly timed location requests from their social relations
each day.

There are three noteworthy features of the study’s methodology.
First, the study observed users in normal social settings. A weak-
ness of some previous user studies has been their focus on work en-
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vironments [3]. Second, users experienced an actual system for two
weeks. Thus, the observed behavior is more likely to reflect users’
actual attitudes than survey results alone. Third, while the study’s
system differs from a presence-sharing network in some ways (e.g.
presence-sharing assumes co-located users, but could conceivably
support remote queries), it is similar enough to provide insight into
the concerns that presence-sharers might have.

One of the key results is that 23% of location requests were de-
nied, even though requests came exclusively from users’ list of
social relations. In the words of the authors, these denials were
generally used to “reinforce or communicate social boundaries.”
For example, one participant felt that it was inappropriate for co-
workers to know his location outside of business hours. Other de-
nials include friends’ requests during work hours and spousal re-
quests while doing something the user should not have been doing,
such as shopping or resting rather than walking the family dog.

Users also had more unpredictable reasons for rejecting requests.
One user would only reply to requests from her mother when she
was not drinking alcohol. Some refused to disclose their location
because they were angry with the requester. For example, one user
refused a request from his mother because they had recently fought.
These results support the view that presence-sharers need the flexi-
bility to tune to their access controls to their social environment.

Importantly, users’ privacy concerns were not limited to social
relations. Over half of the participants (9 out of 16) expressed
more general concerns about the effect of location services on their
privacy. One user noted that thieves could benefit from knowing
where he was. Others used phrases like “being on a leash,” “stalk-
ing,” “being monitored,” and “Big Brother” to describe their un-
ease. These responses affirm our belief that anonymous snooping is
also a common concern for users. The central challenge for Smoke-
Screen is to provide support for a diverse set of presence-sharing
applications without compromising users’ privacy.

3. TRUST AND THREAT MODEL

Trust in SmokeScreen is split into two categories: 1) users may
be trusted to handle shared cryptographic state such as secret keys,
and 2) users may be trusted to record a user’s presence at a given
place and time. The first category of trust is symmetric and es-
tablished among a group of social relations. The second category
is potentially asymmetric and depends on the social context of a
particular time and place.

Importantly, neither trust category implies the other. A user may
establish a shared, secret key with a social relation, but never wish
for that social relation to know where they are. Alternatively, a user
may wish for a stranger without a pre-established trust relationship
to be aware of their presence, as in a mobile social network.

In addition to these trust relationships, all SmokeScreen users
trust a key distribution infrastructure and brokering service. Each
user has a single unique identity, defined by their public key; this
prevents SmokeScreen from being vulnerable to Sybil attacks. So-
cial networking websites such as Facebook [11] and MySpace [26]
can be used to distribute keys, and Section 4.2.2 describes our
trusted brokering architecture.

Given these trust parameters, SmokeScreen defines an adversary
as anyone who is not trusted to record a user’s presence at a par-
ticular time and place, even though the adversary may be present
themselves. Of course, SmokeScreen cannot prevent presence in-
formation from leaking though “hidden-channels” such as face-to-
face contact or a car’s license plate.

SmokeScreen is resilient to collusion among adversaries, but is
vulnerable to collusion between adversaries and trusted users. We

assume that adversaries are capable of compiling complete broad-
cast histories at a particular location and can share broadcast histo-
ries with one another. However, SmokeScreen cannot handle unau-
thorized sharing of secret keys or presence information by trusted
users with adversaries.

SmokeScreen also cannot prevent an adversary from detecting
a user’s absence. If a user leaves a location, SmokeScreen will
not continue to broadcast their presence information. It is unclear
how useful detecting a user’s absence would be. If an adversary is
unable to detect a user’s presence it could be because the user is
physically not present. However, it might also be that the user is
physically present but in non-discoverable mode or present but has
decided to stop broadcasting to the adversary.

Finally, SmokeScreen is currently focused on device information
such as BlueTooth device names and WiFi SSIDs that are easy to
change in software, but full presence-privacy also requires elimi-
nating the static MAC addresses broadcast by layer two wireless
protocols. Though SmokeScreen does not currently provide pri-
vacy protection down to the MAC layer, many WiFi cards sup-
port MAC address scrubbing [25] and nearly all BlueTooth radios’
MAC addresses can be reset via vendor-specific Host Controller
Interface (HCI) commands. Prior work on disposable MAC ad-
dresses [18] used these techniques to provide location privacy for
WiFi users.

Unfortunately, changing MAC addresses can have other con-
sequences. For example, BlueTooth devices often use MAC ad-
dresses to authenticate one another and some WiFi cards are not
fully functional while operating under a “false” address. Because
of this, for many users full location privacy may only be practical
during idle device periods. We believe that most devices will be
idle in the common case, but a full discussion of the implications
of changing MAC addresses is beyond the scope of this paper; we
hope to investigate these issues in the future.

4. DESIGN
Presence-sharing is attractive for its openness as well as its ease

of deployment and the design of SmokeScreen assumes that users
are independent, self-interested, and come and go as they please.
To address users’ privacy concerns without sacrificing these fea-
tures, we identified four design goals to guide us:

• Control Users should retain full control of when and where
their presence information is released. Location information
should never be revealed without the user’s explicit permis-
sion.

• Disclosure To eliminate anonymous snooping, presence may
only be revealed under two conditions: recipients must be
known social relations or strangers who become known. Ide-
ally, users could identify potential recipients before revealing
their presence, but this may not always be possible. Users
should at least be told who viewed their presence after the
fact.

• Isolation Revealing presence at one moment should not af-
fect past or future access control decisions. For example,
clique members must not be able to identify users unless their
clique is active. Similarly, a single OID resolution should not
provide information about other unresolved OIDs from the
same broadcaster.

• Dispersion There should be no centralized collection point.
Even though the OID broker is a centralized point of coor-
dination between strangers, it must not be able to compile
long-term location histories of users. Otherwise, it could be-
come an attractive target for hackers and nosy administrators.
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Figure 1: Minimum clique cover

With these goals in mind, we separated the problem of presence-
privacy into two cases and applied a separate solution to each case:
clique signals regulate sharing between social relations and bro-
kered exchanges regulate sharing between strangers.

Users manage access to their presence among social relations
by organizing them into mutually trusted sets of users defined by
the minimum clique cover of their social relations. In practice these
cliques correspond to natural social categories such as a user’s fam-
ily, college friends, and co-workers [6]. Each clique has an associ-
ated secret key which is used to compute a unique clique signal.

As users move through the world, they broadcast a set of signals,
one for each active clique, that notify other users of their presence.
Only a clique member can interpret the clique’s signal. A clique
is active when a user’s access control policy allows each clique
member to view its presence. Activating and deactivating signals
fits access control policies to the social context.

Presence-sharing between strangers requires a different mecha-
nism. Thus, in addition to clique signals, users broadcast opaque
identifiers (OIDs). Although time, place, and broadcaster specific,
an OID provides no useful information to its recipient unless it can
be resolved to its broadcaster’s identity. To resolve an OID, its
recipient must provide a resolution of its own. This condition elim-
inates anonymous snooping and is enforced by a trusted broker.

4.1 Sharing Between Social Relations
Users share their presence with social relations at the granularity

of a clique. Within a clique, each member trusts every other mem-
ber. The smallest possible clique is a pair of users, though larger
cliques arise naturally from users’ social networks; all members of
a family trust one another as do all members of a group of college
friends. We first examine how to discover a user’s cliques by com-
puting the minimum clique cover of its social relations and then
show how these cliques can be used to regulate presence-sharing.

4.1.1 Computing Cliques
For a user, u, with social relations, R = {r1, r2, . . . , rn}, a

clique cover is a set of subsets, C1, C2, . . . , Cm of R ∪ {u} such
that u ∈ Ci; C1∪C2∪ . . .∪Cm = R∪{u}; and every member of
Ci trusts every other member of Ci. We assume that trust between
social relations is always symmetric.

One very simple cover is the maximum clique cover in which
n = m and Ci = {ri, u}. Computing the maximum cover is triv-
ial and provides the greatest flexibility for designing access con-
trol policies. Unfortunately, it greatly increases the communication
costs of signaling other users. For example, Westerners typically
have between 10 and 30 social relations [22], which, even for sig-

nals such as a 20-byte cryptographic hash [32], on average leads
to a 300-byte broadcast. Typical users of online social network-
ing sites such as Facebook often have social networks of over one
hundred users [16]. In practice using a signal for each user would
be too large for a BlueTooth device name, which is limited to 256
bytes.

Thus, rather than using the maximum clique cover, we compute
a minimum clique cover: the smallest m such that C1 ∪C2 ∪ . . .∪
Cm = R ∪ {u}. Figure 1 shows an example minimum clique
cover. This minimizes the communication overhead of each broad-
cast. For example, if each ri were a social relation of every other
rj , then the minimum cover would be C1 = R ∪ {u} and a single
signal could be broadcast.

Another possible complication is churn. If the composition of
cliques changes too quickly, then signals may become inconsistent.
One option is to recompute the clique cover at a well-known time
(say four in the morning) and then assume its consistency until the
following synchronization point. The drawback of this scheme is
that there will be delays until updates to the graph are reflected
among mobile users. However, if clique churn is slow as, is the
case in most online social networks, then inconsistency should be
rare.

Finally, how users represent their social relations to a software
package that can compute the minimum clique cover is beyond the
scope of this paper. However, many users will be able to take ad-
vantage of existing on-line social networking sites such as Friend-
ster and MySpace. As of February of 2006, MySpace was the 13th
most visited site on the web and generated two and half times the
traffic of Google [4]. MySpace alone had 54 million users and
Friendster had 24 million [4]. We are currently looking into using
these graphs to automatically generate clique signals.

4.1.2 Computing Clique Signals
Once a user has computed its minimum clique cover, it needs

to compute each cliques’ unique signal. For example, say that the
sequence of members of clique C is c1, c2, . . . cn. Initially, the
members negotiate a shared secret key, Kc. The clique signal is
computed by applying a cryptographic hash [36, 32], H , to the
secret key: Sc = H(Kc). The cryptographic hash keeps signals
small, deterministic, and secure.

Broadcasting signal Sc notifies fellow clique members, but does
not uniquely identify the broadcaster. Thus, for each active clique,
users broadcast pairs of values, 〈Sc, {i, t}Kc 〉, where the broad-
caster is the ith member of the clique and t is a timestamp to prevent
replay attacks. An appealing feature of this construction is that it
does not require expensive asymmetric cryptography. Furthermore,
these pairs ensure the goals of disclosure and control. Only clique
members can identify the broadcaster of its signal, and activating
and deactivating signals allows users to exclude clique members
when appropriate.

Unfortunately, we may still be in violation of the goal of iso-
lation. Consider a scenario in which user a broadcasts signals,
〈Si, m〉, 〈Sj , n〉 and that user b is in clique I but not J . B still
knows that A is a member of clique J even though it may not know
the other members. Now say that A deactivates clique I and only
broadcasts signal 〈Sj , n

′〉, where n �= n′ because of a new times-
tamp. If b has other knowledge about clique J , such as that it is
only composed of two members, it can probabilistically infer a’s
presence.

To remove this possibility, users must deterministically and inde-
pendently update their clique secret keys. For example, clique C’s
secret key at time t might be defined as Kt

c := H ′(Kt−1
c ), where

H ′ is a different cryptographic hash from the function used to com-
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Figure 2: Clique key and signal generation

pute the signal, H . For example, we currently use md5 to compute
signals and sha1 to update the secret key. This ensures that signals
deterministically change with t, but prevents non-members from
computing future signals using previous ones. Figure 2 shows this
use of hashes.

Users must be synchronized to independently update t, but if
t only increments each hour or even every minute, users can be
loosely synchronized without missing many signals. If synchro-
nization is a problem, users could pre-compute a sequence of sig-
nals and compare incoming messages to the pre-computed values.

In fact, a user could conserve the power consumed by broadcast-
time cryptography by pre-computing signals. If we assume that sig-
nals are 16 bytes (the size of an md5 hash) and updated each hour,
and that the encrypted index and timestamp are also 16 bytes (us-
ing a 128-bit AES [5] symmetric key) and updated every minute,
then pre-computing 48 hours worth of signals would require just
under 45KB of storage per clique. To pre-compute 20 cliques, the
total storage requirement would only be 900KB. In addition to con-
serving energy, this allows users to trade storage space for more
frequently updated signals. With mobile phones now commonly
providing tens of MB of flash storage, many can use their excess
storage capacity to gain better privacy and avoid consuming battery
power.

4.1.3 Interpreting Clique Signals
The main data structure used to interpret signals is a dictionary

that maps signals to the secret key used to compute the signal and
a list of clique members. Note that the list of members must be
ordered deterministically for indexing to identify the correct user.
To improve the space efficiency of the dictionary, the list of clique
members only needs to be stored once and can be looked up indi-
rectly through the main dictionary.

When a user receives a signal-index pair, 〈Sc, {i, t}Kc〉, it first
looks up the key and list associated with Sc. If the lookup fails, the
user moves on to the next pair. If the lookup returns key Kc and
list c1, c2, . . . cn, the user first decrypts {i, t}Kc using Kc, verifies
that the timestamp, t, is fresh, and assuming it is, concludes that
user ci is present.

4.1.4 Alternative Constructions
SmokeScreen’s clique signal construction allows users to safely

share their presence with social relations, but before arriving at it,
we considered several alternative constructions. One particularly
attractive approach was to try applying a private matching proto-
col [12] as in the RE email system [14].

Very briefly, one could imagine such a scheme working as fol-
lows. Each user could have distributed a different secret key, Ki,
to each of its n social relations. At time t, both the user and her
relations could compute a new key Kt

i using cryptographic hash
functions as before. The user would then use each of these keys
to define a cryptographically encoded polynomial, Pt, such that
Pt(K

t
i ) = 0, and broadcast it. If another user received Pt, it

would then check each of the Kt
j it computed for its social rela-

Figure 3: Brokered exchange architecture

tions. If Pt(K
t
j) = 0, then its jth social relation broadcast the

message. Importantly, the private matching protocol’s construction
of Pt protects information about its roots, hiding the broadcaster’s
secret keys from untrusted users. Only social relations could find
the roots of Pt.

The primary reason why we did not take this approach is that the
cryptographic overhead seemed too great for a mobile environment.
First, the private matching protocols we found required asymmetric
cryptography between the sender and receiver. Not only would this
have been expensive, but because the identity of the broadcaster
cannot be revealed in plain text, message receivers would have had
to try decrypting any incoming messages with the public key of
every social relation.

Second, even if the asymmetric cryptography issue could be re-
solved, private matching protocols would require SmokeScreen users
to perform on-line cryptographic work on the order of the size of
their social network. For each message received, users would have
had to determine whether or not a social relation of theirs was en-
coded in the broadcaster’s message. Adversaries could have ex-
ploited this fact to mount denial of service attacks by forcing users
to consume extra battery power (again on the order of the size of
the victim’s social network) through spurious messages. In con-
trast, SmokeScreen’s clique signals require no cryptographic work
if the initial lookup fails.

4.2 Sharing Between Strangers
If users only want to share with known users, then they only need

to broadcast clique signals. However, many presence-sharing appli-
cations would be crippled without interactions between strangers.
To enable safe sharing within these applications, users can broad-
cast opaque identifiers (OIDs) in addition to clique signals. OIDs
reveal no information to their recipient and must be resolved through
exchanges coordinated by a trusted broker. Our brokered exchange
architecture has three components: a mobile device with short-
range wireless broadcast capability, an Internet-accessible client
process acting on the user’s behalf, and the trusted broker. Figure 3
depicts each component.

Users interact with the broker through the client program. The
client will most likely run on a PC or workstation that intermittently
communicates with the mobile device. However, there is no reason
why the client could not run on the mobile device itself to improve
resolution latency and provide continuous communication with the
broker.

237



Figure 4: Example cycle

4.2.1 Opaque Identifiers
The goal of control requires that OIDs only be useful once re-

solved by the broker. Similarly, isolation requires that the resolu-
tion of a single OID not allow a user to resolve any past or future
OIDs. Thus, we define the OID broadcast by user a at time ti and
place pj to be

OID = {a, n, sig(a, n), {ti, pj}Ka}pub(Br)

where n is a nonce, sig(a, n) is a digital signature computed over
“a, n” with a’s private key (pr(a)), Ka is a secret symmetric key
known only to a, and pub(Br) is the broker’s public key.

Because the OID plaintext is encrypted using the broker’s pub-
lic key, only the broker can know the identity of the broadcaster.
Furthermore, because n, ti, and pj change over time, resolving one
OID will not help a user resolve any others. This ensures isolation.

a, n, and sig(a, n) ensure that a created the OID to prevent
false identity attacks. The nonce, n, prevents signatures from being
reused. For example, if a signs a message to b with sig(a,m), then
b must not be able to use this signature to generate a false OID. It is
possible to replay another user’s OID, but the attacker would gain
no information as a result since the broker would not include the
replaying node in any exchange.

The portion of OID plaintext that is encrypted with Ka is called
the hint. Hints can contain arbitrary information and are returned
to users by the broker as part of the terms of an exchange. Their
only purpose is to provide users with information about the context
in which an OID was broadcast. Hints also enforce dispersion; all
location information within the OID is concealed from the broker
since only a can decrypt {ti, pj}Ka . The broker only knows who
originally broadcast an OID and who is interested in resolving it.

The power consumed by asymmetric cryptography can be con-
served by pre-computing OIDs using timestamp-only hints. In such
a scheme all OIDs are pre-computed, but whenever an OID is broad-
cast, the device records pj in a position log. If a timestamp-only
hint were later returned by the broker, the client would use the time
to find pj in the log. Assuming a 128-byte OID and broadcast
rate of once per minute, pre-computing 48 hours of OIDs would
consume only 360KB of storage, not including the position log.
Though we have not implemented this optimization yet, we intend
to in future versions of our prototype.

We currently use 1024-bit RSA [31] keys for all asymmetric
cryptography. For a BlueTooth device with 256-byte device name,
the name must be partitioned into a 128-byte OID (assuming an
OID is broadcast) and four 32-byte signal-index pairs. Because
more than four cliques may be active at any moment, users must

OID interest
recipient OID bcaster state cycleID vote

pending trades
username terms retries

pending votes
cycleID result

user info
username hostname pubkey

Table 1: Tables maintained by the broker

make scheduling decisions about when to broadcast their active
clique signals and OIDs. For example, a user might always broad-
cast an OID and schedule active signals round-robin.

4.2.2 The Broker
The broker is fully trusted by all users to coordinate exchanges.

It does this in three phases. First, it maintains a graph based on
OID interest, in which vertices represent users. Edges are directed
from a user who is interested in an OID to the OID’s broadcaster
and are labeled with the OID. The broker identifies potential n-way
exchanges by searching for cycles in the graph. Figure 4 shows
an example. If the broker finds a cycle, it initiates a two phase
commit [15] by bringing the exchange to a vote. Once all the votes
have been collected, the broker commits the trade and distributes
the result.

Although our broker implementation attempts to identify pair-
wise exchanges first, we have generalized our approach to support
n-way exchanges to preserve flexibility. For example, n-way ex-
changes do not require exchanges of co-located OIDs. One user
may be interested in resolving an OID it received during a sum-
mer vacation in California, another may be interested in resolving
an OID from a winter conference in the UK, and a third may be
interested in resolving an OID from her brother’s graduation party
in New York. As long as the broker can identify demand between
users, the OIDs involved could have been collected at any place
and any time.

It is also important to note that demand for OID resolutions is
entirely application driven. Only if a particular time and place is of
interest to an application will the OIDs logged during that period
be registered with the broker.

4.2.3 Coordinating an Exchange
Because nodes may fail or be unreachable during coordination,

the broker maintains its state in four persistent tables: OID interest,
pending trades, pending votes, and user info. Table 1 shows each
table’s fields. user info is the least interesting of the four; it only
stores the location of each user’s client process and its public key.

OID interest stores the edges of the interest graph. As users reg-
ister interest in OIDs, the broker inserts new entries into OID interest
using the recipient, OID, and bcaster fields. Edges exist in one of
three states: free, locked, or committed. When an edge is first
inserted, its state is free, making it available for cycle searches.

After a user registers its interest in an OID (or set of OIDs), the
broker reads the edges marked free in the transitive closure rooted
at the user into memory. It then performs a breadth-first cycle
search on the in-memory copy. If the broker finds a cycle, it as-
signs a unique cycleID by computing the cryptographic hash, such
as sha1, over the concatenation of sorted OIDs.
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presence
time place OID bcaster

trades
cycleID terms state

Table 2: Tables maintained by the client

Once the cycleID has been computed, the broker locks each edge
by marking its state in OID interest as locked and setting the cy-
cleID. If any attempt to lock an edge in the cycle fails, each edge
locked up to that point must be unlocked by resetting its state to
free and the search abandoned.

With the edges locked, the broker initiates the two phase com-
mit by proposing the terms of the trade to each member of the cy-
cle. Consider the cycle in Figure 4. For user A, the terms of the
trade contain the cycleID (e.g. sha1({OIDA, OIDB, OIDC})), the
hint embedded in OIDA, the OID that A is interested in resolving
(OIDC), and, if possible, for whom A is resolving OIDA (user B).
It may not always be possible to provide this final piece of infor-
mation, as when exchanges only involve two users. We will return
to this issue in Section 4.2.6.

Before users can vote on an exchange, the broker must ensure
that its vote state remains consistent, even in the face of failure.
It does this through the pending trades and pending votes tables.
Once the broker has computed the terms for each user, it inserts
them into pending trades. When a client has acknowledged re-
ceiving the terms, its corresponding entry in pending trades can
be removed. If the broker tries to send a user its trade terms more
than some pre-defined number of times, the user’s vote is set to
“no.”

Voting enforces the goal of control. If, after considering the
terms of an exchange, a user decides against revealing its presence,
the broker will try to find a new cycle.

pending votes contains the current state of all exchanges, where
the result field of any entry is initially set to pending. It remains
pending until one of two events occur: if all members of the ex-
change vote in favor, then the vote’s result changes to yes; if any
member votes against the exchange, then the vote’s result changes
to no.

If a vote’s result is yes, then for each user that has been notified of
the result, the broker sets its edge’s state to committed. Similarly,
if the result is no, then for each user that has been notified of the
result, the broker resets its edge’s state to free. Once all voters have
acknowledged the result, the cycle’s entry in pending votes can be
removed.

4.2.4 The Client
Clients maintain information about the OIDs they have resolved

in a presence table and state related to any pending votes in a trades
table. Table 2 describes both.

When the client receives an OID or set of OIDs from the mobile
device it adds them to the presence table, along with the time and
place where the device logged them. Because OID broadcasters
are unknown, the bcaster field is initially empty. After inserting
new OIDs, the client registers its interest in them and waits for the
broker to return any trade terms.

Before acknowledging having received an exchange’s terms, the
client stores them in the trades table with their state set to free.
After reaching a decision about the trade, the client updates its state
to yes or no, sends the broker its vote, and waits for the broker to

commit or abort the exchange. Before acknowledging an exchange
decision, the client updates the identity of the OID broadcaster in
presence (if the exchange was committed) and deletes the terms
from trades.

4.2.5 Example Two-Way Exchange
Figure 5 shows the messages involved in a two-way exchange

between Alice and Bob. For clarity, we have removed all authenti-
cation between users and the broker and combined the functionality
of the client and mobile device into a single entity.

Initially, Alice broadcasts OID1, which is received by Bob (mes-
sage 1). Note that Bob remembers when and where he was when
he received this message, denoted t′i and p′

j . In message 2, Bob
registers his interest in resolving OID1 with the broker.

Once decrypted, the broker knows that Alice broadcast OID1
and creates an edge from Bob to Alice labeled OID1. Note that if
Bob registers an interest in OID1 shortly after it has been broad-
cast, the broker could infer with reasonable accuracy when Alice
broadcast OID1, but not where. Next, Alice receives OID2 from
Bob and registers her interest in it with the broker (messages 3 and
4).

After the broker has identified a potential exchange between Al-
ice and Bob, it notifies them both (messages 5 and 6). Notification
messages include Alice’s and Bob’s hints, which allow users to rea-
son about their resolutions’ sensitivity. Assuming that Alice and
Bob agree to the exchange (messages 7 and 8), the broker replies
with the users’ identities (messages 9 and 10).

4.2.6 Client Cost-Benefit Analysis
How users will evaluate the trades proposed to them is an im-

portant unknown. Unless the broker can identify appealing trades,
there will be no sharing between strangers. To avoid this, we want
to provide users with as much context about the trade as is safe.

Unfortunately, users cannot be told who will receive their loca-
tion when there are only two traders. This is fundamental to pair-
wise trades because identifying a trading partner is equivalent to
executing the trade. Of course, once an exchange has occurred,
users can be told to whom their information has gone. This satis-
fies the goal of disclosure.

Depending on the application and the exchange, the broker may
still be able to give users extra information beforehand. For exam-
ple, if a is interested in b, b is interested in c, and c is interested in
a, a could be given some information about c without disclosing
the identity of b. In an image meta-data service, users might want a
thumbnail of the image they are to be associated with. For mobile
social networks, an avatar or picture of the interested user may be
an acceptable blurring of actual identity.

In some situations, support for n-way trades may also make it
safe to reveal more information about partners in two-way trades.
If users are given information about their trading partner, but not
told now many edges are involved, a proposed pair-wise exchange
would look exactly like an n-way exchange.

Nonetheless, the broker must give any information with care. In
the above example, we cannot give a so much information about c
that it identifies c. Because of the OID hint, a knows where c was
when it received a’s OID. Revealing c’s identity to a would violate
control.

Other possible sources of information include using OID hints
or information about a trading partner to link to other data sources,
such as the web or histories of previous transactions, emails, and
appointments. Human-subject studies are likely needed to under-
stand how users will reason about exchanges and what information
will allow them to make informed decisions. Previous studies sug-
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Figure 5: Example exchange

gest that the identity of the requester is by far the most important
piece of information. [6]. We intend to explore these issues further
in our future work.

Finally, though hints provide dispersion, the lack of trusted au-
thority also imposes limitations on the guarantees provided by Smoke-
Screen. One limitation is that while hints remind a user when they
first broadcast an OID, this is not necessarily the same time and
place when the OID was actually received by their exchange part-
ner. This distinction can be exploited by an attacker to convince
two people that they were in the same place when if they were not.

To see why, consider a scenario involving an attacker, E, and two
geographically separated users, A and B. E can snoop on A and
B as well as broadcast messages to them. If A broadcasts OIDa

and B broadcasts OIDb, A will not receive OIDb from B and B
will not receive OIDa from A. However, since E can snoop on
and broadcast to A and B, it can receive both OIDa and OIDb

and then replay those messages such that A receives OIDb and B
receives OIDa. If A and B then exchange resolutions, they will
be under the false impression that they were co-located.

This attack can be detected if A and B are able to compare their
respective OID hints; the location in A’s would be different than
the location in B’s. Thus, to remove some of the uncertainty over
where an interested party received an OID, the broker could act as
a communication channel through which users are able to negoti-
ate secret keys with one another without revealing their identities
to each other. Under the protection of such a key, users could then
exchange information about when and where they broadcast a par-
ticular OID without divulging location information to the broker.

5. IMPLEMENTATION
Our prototype system consists of three components: the mobile

device, the broker, and the client.

5.1 Mobile Device
We have implemented our privacy controls on two devices: a

BlueTooth-enabled Nokia 6670 mobile phone running Symbian OS
and a Sharp Zaurus SL-5600 PDA with a Pretec CompactFlash type
II 802.11b WiFi card running Linux 2.4.18.

For the 6670, our implementation mostly consists of 300 lines
of Python run under Nokia’s Python for Series60. Although writ-
ing applications in Python does not provide optimal performance it
allowed us to quickly create a working prototype. The only non-
Python code is a small addition to HIIT’s Miso library [35] that
allows Python code to set the BlueTooth device name. All RSA
and AES primitives were implemented in pure Python via the Py-
Crypto library.

A primary concern for our mobile device was the power con-
sumed by communication and cryptography. For the 6670, a dae-
mon periodically wakes up to set the BlueTooth device name to an
OID and four signals. Because the 6670 does not contain a GPS
receiver, we do not currently include the device’s location in OID
hints. To reduce the amount of cryptography involved with com-
puting an OID, user signatures are pre-computed. We also allow up
to 48 hours of clique signals to be pre-computed.

To stay within the maximum BlueTooth device name size of 256-
bytes, we used 128-bit AES symmetric and 1024-bit RSA asym-
metric keys. After setting the BlueTooth name, the daemon ex-
ecutes BlueTooth “device-discovery” and logs the time and any
devices it finds during the scan to flash storage. Importantly, the
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phone can respond to discovery inquiries from other BlueTooth de-
vices while the daemon sleeps.

To compare presence-sharing using BlueTooth and WiFi, we also
implemented our controls on the Zaurus PDA using the 802.11 card
in “ad-hoc” mode to broadcast and receive OIDs. This code is writ-
ten in C++ and uses the openssl library’s RSA and AES primitives.

The daemon running on the Zaurus consists of two threads. A
broadcasting thread wakes up periodically to compute and broad-
cast signals and OIDs. If the signals have been pre-computed and
stored, the system uses them, otherwise it computes signals on the
fly. It broadcasts all signals and the OID through the wireless card
and goes back to sleep.

A receiving thread uses blocking I/O to scan for and receive
clique signals and OIDs. The receiver distinguishes between the
two using a 1 byte header. In the absence of transmission errors,
it is easy to distinguish the two because OIDs are 128 bytes long
while signal-index pairs are 32 bytes. The thread then checks to see
if any of the clique signals are known. If it finds a matching clique
signal, the broadcaster can be identified by decrypting the rest of
the broadcast with the proper secret key.

5.2 Broker and Client
The broker and client are written in Java with a combined source

tree of approximately 30 files and 4,000 lines of code. Both the bro-
ker and client are composed of a single long-lived server daemon,
many small utility programs, and a PostgreSQL 7.4.7 database stor-
ing any persistent state. The daemons only receive network mes-
sages: the broker daemon registers interest in OIDs and receives
votes; the client daemon receives trade terms and vote results. Mes-
sages are sent by several small utility programs: adduser, check-
pending, finalizevotes, retrypending, searchgraph, and updateuser
for the broker; setinterest and votetrades for the client.

These utility programs are triggered by the daemons via the dno-
tify utility, which runs event handler programs whenever specified
file system events occur. For example, once trade terms have been
safely inserted into the client’s trades table, the client daemon reads
from a file that has been registered with dnotify to run votetrades
whenever it is read. Similarly, after the broker daemon registers in-
terest in an OID it appends the identity of the interested user to a file
registered with dnotify to run searchgraph whenever it is written.

As with our Python implementation of the mobile device, this
is likely not the most performant way to implement the client and
broker. For example, it would be more efficient to combine all
functionality into a single long-lived process. However, distribut-
ing functionality between many programs accessing a common per-
sistent store allowed us to quickly build and evaluate our prototype.

6. EVALUATION
In evaluating SmokeScreen’s privacy controls, we set out to an-

swer the following questions:
• Is there evidence of anonymous snooping in practice?
• How often can mobile devices broadcast signals and OIDs?
• Is the time to resolve an OID reasonable?

6.1 Reality Mining Analysis
To look for evidence of anonymous snooping, we analyzed four

months of mobility traces from the Reality Mining [9] project, from
January 2005 through April 2005. The Reality Mining study logged
co-presence information of 100 students and researchers from MIT
over six months. Study participants were given Nokia 6600 mobile
phones that ran BlueTooth device discovery and logging software
after startup in the background. After each scan, the devices logged
the time, discovered BlueTooth MAC addresses and device names,
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Figure 6: Known devices

and cell tower information. Due to power constraints, the phones
ran device discovery every five minutes.

We were most interested in two aspects of these traces: the set
Li of devices that participant i logged and the set Mi of devices
that logged participant i over the course of four months. Because
not all of the devices in the trace were known, we initially pruned
trace entries to only include the 100 participants.

For our figures, identifiers were assigned by sorting participants
in ascending order based on the size of L. Thus, participant 100
logged the most unique known devices and participant 1 the fewest.
Figure 6(a) shows the size of L for each participant and Figure 6(b)
shows the size of M . There appears to be little correlation between
the two.

Figure 6(c) shows the intersection of L and M for each partici-
pant. This gives us a sense of how symmetric the presence-sharing
network was, i.e. whether when a logged b, b also logged a. In
a perfectly symmetric network with no anonymous snooping, all
three figures would be the same, but this is clearly not the case.

These figures show that many participants logged more devices
than logged them and that others logged far fewer devices than
logged them. For example, the participant with the largest L was
not logged by anyone else. Furthermore, 43 participants never
logged anybody at all, though they were often logged by others.

241



0

20

40

60

80

100

1 57

Participant ID

U
n

iq
u

e 
D

ev
ic

es

(a) |L|

0

20

40

60

80

100

1 57

Participant ID

U
n

iq
u

e 
D

ev
ic

es

(b) |M |

0

20

40

60

80

100

1 57

Participant ID

U
n

iq
u

e 
D

ev
ic

es

(c) |L ∩ M |

Figure 7: Known loggers

We considered three possible sources of this asymmetry. First,
participants may have stopped logging in an attempt to conserve
power. This would explain the 43 users who never logged any-
thing, but were often logged by others. Figure 7(a), Figure 7(b),
and Figure 7(c) show L, M , and L ∩ M as before, but with all
non-logging users removed. Despite the removal of these users,
asymmetry remains.

The asymmetry may also arise from users scanning every five
minutes. Pairs of devices that are “out of phase” and near each
other only long enough for one to log the other will lead to asym-
metry. While this likely happened in individual interactions, over
four months users would, on average, be the “logged device” half
the time and the “hidden device” half the time. Thus, we would
expect the aggregate effect of phase differences to be near zero.

To see if this was the case, we could not rely on the intersec-
tion of L and M , since many interactions may have been one-time
events. However, the number of times a participant was logged ver-
sus hidden does not distinguish between multiple interactions with
the same user and several interactions with different users. Fig-
ure 8 shows the difference between the size of L and the size of
M for known loggers, sorted from greatest to least. Note that the
participant identifiers in Figure 8 are different from earlier figures.
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Figure 8: Known loggers: |L| − |M |

A negative value indicates that a participant was logged by more
devices than it logged.

Again, we see that many of the busiest loggers were nearly hid-
den from other participants. This suggests another explanation:
some users may have set their device to be non-discoverable. This
behavior constitutes a form of anonymous snooping and violates
our goal of disclosure. This is also quite surprising since study par-
ticipants were members of a small community of mutually trusting,
presumably altruistic researchers.

Importantly, while these findings are interesting, they do not al-
low us to make any definitive claims about users’ intent; the asym-
metry we observe is not necessarily a result of anonymous snoop-
ing. However, even if the asymmetry is due to out of phase de-
vices or communication interference, at the very least our analysis
demonstrates that anonymous snooping is feasible.

6.2 Power Consumption
The next question we wanted to answer was whether the power

demands running SmokeScreen on mobile devices are reasonable.
To answer this, we ran experiments on both prototype devices. In
each set of experiments, pairs of devices—either two Nokia 6670
mobile phones or two Sharp Zaurus PDAs—were fully charged,
placed near each other in a sparse network environment, and then
broadcast and logged signals and OIDs until their batteries ran out.
For each experiment, we set the discovery period to 15, 30, or 60
seconds. In the mobile phone experiments, all signals were pre-
computed. In both cases, OIDs were computed at broadcast-time
and discovery periods were set lower than one might expect in prac-
tice. Because of this, these results are overly conservative.

The results of the mobile phone experiments are in Figure 9(a)
and of the PDA experiments in Figure 9 (b). The numbers are an
average of four lifetimes with standard deviations less than one per-
cent of the total.

These figures show why BlueTooth is such an attractive platform
for presence-sharing. The mobile phone scanned every minute and
lasted over 36 hours on a single charge. The PDA performed signif-
icantly worse, lasting close to four hours regardless of the discovery
period. The discovery period’s lack of impact on the PDA’s lifetime
is due to never powering off the network card. We had to keep the
network card on continuously so that devices were ready to receive
messages when they were broadcast. BlueTooth handles this much
more elegantly, dropping into a low power mode to wait for dis-
covery requests. These results show that running our controls on a
mobile phone is feasible.

6.3 Resolution Performance
The final issue we wanted to address is how long it takes to re-

solve an OID. To do this, we measured how long it took to re-
solve an OID from the moment it was first inserted into the client’s
presence table to the moment the broadcaster’s identity was added.
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We did this for several cycle sizes. For these experiments, exchange
participants were the only users involved and we assumed that users
voted favorably and immediately.

The broker and each client ran in a separate Xen virtual ma-
chine [2] with 256MB of memory on top of IBM x335 servers in-
terconnected by 1GBps Ethernet. Each experiment ran 10 times.
The results exhibited standard deviations of less than one percent
and are in Figure 10.

These figures show that OIDs involved in large exchanges take
much longer than those in small exchanges. Resolving an OID as
part of a two-user exchange took 10 seconds while resolving an
OID as part of a 31-user exchange took nearly 100 seconds.

We present these numbers merely as a lower bound on resolution
performance. They do not include communication between the mo-
bile device and client or the time users might need to decide how
to vote. All of these factors will undoubtedly add to the expected
time to resolve an OID. However, for applications such as mobile
social networks and missed connection messaging, a delay of tens
of seconds per resolution is reasonable.

7. RELATED WORK
One of the most interesting uses of presence information is the

MMM [38] project, which associates environmental information
with images. A later incarnation, called MMM2 [8, 30], uses co-
presence to suggest other users with whom to share an image. Lo-
cation privacy was not addressed by either project.

In addition to photo sharing, researchers have begun using presence-
sharing to build other applications such as mobile social networks.
One such system is Social Serendipity [10], which is part of the
Reality Mining [9] project. Serendipity shares some architectural
features with our mechanisms, but there are two key differences.

First, because Serendipity assigns static identifiers to users, ob-
taining a profile once allows users to resolve the profile owner’s
identity forward and backward in time in violation of isolation.
OIDs and clique signals prevents this through timestamps and rotat-
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Figure 10: Time to resolve OIDs

ing secret keys. Second, Serendipity requires a trusted “BlueDar”
server to be co-located with users. While reasonable for some so-
cial settings, we have tried to preserve the openness of our mech-
anisms. Thus, clique members can exchange presence information
without a trusted intermediary. Also, though our broker is central-
ized and trusted, it serves without being co-located with users.

Privacy in ubiquitous computing is well-studied [19] [20] and
much of this work guided the design goals in Section 4.

Gruteser and Grunwald [17] show a way to anonymize location
data by means of a central server to prevent an untrusted server
from from leaking sensitive information. This work assumes that
the server is interposed between all user interactions, but presence-
sharing presents a more challenging environment where users com-
municate with one another directly.

Another interesting paper from Gruteser and Grunwald [18] deals
with the location privacy of WiFi users. To prevent surreptitious
tracking of MAC addresses, they suggest “disposable” interface
identifiers. This work is complementary to our own and as previ-
ously mentioned, we look forward to applying their ideas to Blue-
Tooth.

Another important concern in location privacy is the manage-
ment burden placed on users[29]. We believe that by grouping
users into cliques, activation and deactivation of cliques will be
easy to manage. Users could automate activation and deactivation
depending on the time of day and their position. For example, the
co-worker clique might automatically be activated at nine in the
morning each week day and deactivated promptly at five the fol-
lowing afternoon.

Finally, Anagnostakis and Greenwald [1] have utilized cyclic de-
mand in the context of file-sharing. Besides differences in target
resource, the main difference between this work and ours is the lo-
cation of the demand graph. While the broker is responsible for our
demand graph, individual file sharers maintain their own graphs so
that they can prioritize file request queues. This approach is in-
appropriate for presence-sharing, where identities must be hidden
until resources are consumed.

8. CONCLUSIONS
We have designed and evaluated SmokeScreen’s flexible, power-

efficient controls for location privacy in presence-sharing networks
based on the goals of control, disclosure, isolation, and dispersion.
Sharing presence requires two complementary mechanisms: be-
tween social relations, such as a friend or a family member, privacy
can be regulated using low-cost clique signals; between strangers,
sharing requires opaque identifiers (OIDs), which can only be re-
solved to an actual identity by a trusted broker.

243



9. REFERENCES
[1] K. G. Anagnostakis and M. B. Greenwald. Exchange-based

incentive mechanisms for peer-to-peer file sharing. In
Proceedings of the 24th International Conference on
Distributed Computing Systems, Tokyo, Japan, March 2004.

[2] P. Barham, B. Dragovic, K. Faser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, October 2003.

[3] J. Begole, J. Tang, R. Smith, and N. Yankelovich. Work
rhythms: Analyzing visualizations of awareness histories of
distributed groups. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work, New Orleans,
LA, November 2002.

[4] Cnn.com - MySpace’s the place online, February 2006.
[5] P. Chown. Advanced encryption standard (MD5) ciphersuites

for transport layer security (TLS). Internet RFC 3268, June
2002.

[6] S. Consolvo, Ian Smith, T. Matthews, A. Lamarca, J. Tabert,
and P. Powledge. Location disclosure to social relations:
Why, when, and what people want to share. In CHI ’05,
Portland, OR, April 2005.

[7] L. Cox, V. Marupadi, and A. Dalton. Presence-exchanges:
Toward sustainable presence-sharing. In Proceedings of the
7th IEEE Workshop on Mobile Computing Systems and
Applications, Semiahmoo Resort, WA, April 2006.

[8] M. Davis, N. Van House, J. Towle, S. King, S. Ahern,
C. Burgener, D. Perkel, M. Finn, V. Viswanathan, and
M. Rothenberg. MMM2: Mobile media metadata for media
sharing. In Extended Abstracts of the Conference on Human
Factors in Computing Systems, Portland, OR, April 2005.

[9] N. Eagle and A. Pentland. Reality Mining: Sensing complex
social systems. Journal of Personal and Ubiquitous
Computing, 2005.

[10] N. Eagle and A. Pentland. Social serendipity: Mobilizing
social software. IEEE Pervasive Computing, pages 28–34,
April–June 2005.

[11] facebook.
http://www.facebook.com/.

[12] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In Proceedings of the 23rd
Annual Eurocrypt Conference, Zurich, Switzerland, May
2004.

[13] Google Desktop.
http://desktop.google.com.

[14] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp,
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