
Wireless Wakeups Revisited: Energy Management for
VoIP over Wi-Fi Smartphones

Yuvraj Agarwal‡, Ranveer Chandra†, Alec Wolman†, Paramvir Bahl†, Kevin Chin¶, Rajesh Gupta‡
† Microsoft Research, ¶ Microsoft Corporation, ‡ University of California San Diego

ABSTRACT
IP based telephony is rapidly gaining acceptance over traditional
means of voice communication. Wireless LANs are also becoming
ubiquitous due to their inherent ease of deployment and decreas-
ing costs. In enterprise Wi-Fi environments, VoIP is a compelling
application for devices such as smartphones with multiple wire-
less interfaces. However, the high energy consumption of Wi-Fi
interfaces, especially when a device is idle, presents a significant
barrier to the widespread adoption of VoIP over Wi-Fi. To address
this issue, we present Cell2Notify, a practical and deployable en-
ergy management architecture that leverages the cellular radio on
a smartphone to implement wakeup for the high-energy consump-
tion Wi-Fi radio. We present detailed measurements of energy con-
sumption on smartphone devices, and we show that Cell2Notify
can extend the battery lifetime of VoIP over Wi-Fi enabled smart-
phones by a factor of 1.7 to 6.4.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication

General Terms
Algorithms, Management, Performance

Keywords
VoIP, cellular networks, Wi-Fi, smartphones, power management

1. INTRODUCTION
Voice-over-IP (VoIP) services are rapidly gaining acceptance over

traditional circuit-switched voice communication networks such as
the public switched telephone network (PSTN). Although there are
many reasons behind this transformation, the two most compelling
reasons are lower costs, and new functionality that is difficult to
achieve with traditional voice networks. In homes, providers such
as Vonage and SunRocket provide very low cost long-distance and
international calling services. Skype provides free calling to other
Skype users and only charges for calls to users outside the Skype

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’07, June 11-14, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-614-1/07/0006 ...$5.00.

network. In enterprises, VoIP also offers new functionality, espe-
cially when integrated with Wi-Fi networks: VoIP over Wi-Fi al-
lows incoming phone calls to be automatically routed to a user’s
VoIP phone, regardless of where that user connects to the network.
Other functionality benefits include integration with network ser-
vices such as address books, file exchange in parallel with voice
conversations, presence notification, video conversations, and call
logging.

Simultaneously, a new class of mobile devices called Smart-
phones are gaining popularity. Smartphones integrate the func-
tionality of PDAs and mobile phones into one device. They typ-
ically run a full-featured operating system, such as Windows CE
or Linux, and most recent smartphones are equipped with multiple
wireless network interfaces, such as Wi-Fi and cellular interfaces
(GSM or CDMA). As smartphones become ubiquitous, users will
demand the ability to use a single device for all their telephony
needs. They will use their smartphone as a cellular phone primar-
ily when on the road, and they will use it primarily as a VoIP phone
when at work or at home. Therefore, VoIP over Wi-Fi has emerged
as a critical application for smartphones. Vendors such as T-Mobile
have recognized this trend and are in the process of rolling out new
functionality that enables the handoff of calls between their GSM
networks and their Wi-Fi networks [29].

One critical issue that presents a barrier to the widespread adop-
tion of VoIP on smartphones is that of high energy consumption. In
order for smartphones to receive VoIP calls over the Wi-Fi network
interface, that interface needs to be on continuously. Unfortunately,
the energy consumption of Wi-Fi interfaces when there is no data
transfer taking place is comparable to that of when the interface
is active [20, 23]. Furthermore, as we demonstrate in Section 3,
the energy consumption of the idle Wi-Fi network interface, even
with 802.11 power save mode enabled, vastly exceeds the energy
consumption of the smartphone’s GSM radio in its idle state. The
better energy consumption of the GSM interface is achieved by
rapid duty cycling of the GSM radio with predictable timing due
to the TDMA MAC protocol, in addition to tight integration with
cellular base stations. In contrast, Wi-Fi uses a distributed MAC
(CSMA/CA) where devices always contend for access to the wire-
less medium thus leading to increased energy consumption due to
excessive listening for traffic from other nodes.

In this paper, we present Cell2Notify, an energy management
architecture that leverages the presence of multiple radios on the
smartphone to reduce the idle energy consumption of the Wi-Fi
radio. Cell2Notify attempts to minimize energy consumption by
powering off the Wi-Fi interface when there is no VoIP call in
progress, and powering it on only on the reception of an incoming
VoIP call. To provide the wakeup mechanism for the Wi-Fi inter-
face, we utilize the voice services of the GSM radio. An incom-

179

ing ring over the GSM channel, combined with a unique caller-ID
of that incoming call, serves as a unique identifier such that the
smartphone can distinguish between a wakeup ring and a regular
incoming phone call over the GSM interface. Upon reception of
a wakeup ring, the smartphone powers on the Wi-Fi interface and
then receives the actual incoming VoIP call.

Previous research efforts [20,23] on energy management for multi-
radio devices have also investigated the idea of wireless wakeups:
switching between radios on multi-radio devices to reduce the over-
all energy consumption. Since different radios usually have dif-
ferent performance and energy characteristics, these systems se-
lect the best radio for the current workload and keep other radios
powered off. Cell2Notify is a continuation along this line of re-
search, with two important distinctions. Previous approaches have
faced significant barriers to deployment due to the substantial in-
frastructure modifications needed, whereas Cell2Notify simply re-
quires software changes on the smartphone devices and on the VoIP
proxy. There are no changes needed to the VoIP protocol (in our
case SIP [21]), and no additional hardware infrastructure to deploy.
Moreover, Cell2Notify is targeted at a specific compelling applica-
tion of VoIP over Wi-Fi.

We present the design and implementation of Cell2Notify. We
have implemented Cell2Notify on Asterisk, a commonly available
open-source SIP proxy, and on Windows XP clients. Our mea-
surements show that the additional latency imposed by our wakeup
mechanism is less than two rings. Based on call logs from cell
phones and office phones, we estimate that Cell2Notify can extend
battery lifetime of a typical smartphone device by a factor of 1.7
to 6.4. We show the ease of Cell2Notify deployment by demon-
strating a working prototype using the Cingular cellular network
and Microsoft’s corporate Wi-Fi network – we did not require any
infrastructure changes to these networks, nor any cooperation from
network administrators.

2. OVERVIEW OF A VOIP DEPLOYMENT
VoIP enables voice communication over IP-based networks, such

as enterprise LANs or WANs as well as the Internet. VoIP proto-
cols digitize voice into packets, and then send them using standard
IP routing. Since VoIP does not require a dedicated and complex
switching infrastructure as the PSTN does, it is much cheaper. It
can also provide enhanced data services, such as video conferenc-
ing and fax at a much lower cost. In the rest of this paper, we
mainly consider VoIP in enterprise LANs, although our protocols
can be easily extended to work over the Internet.

We illustrate a typical enterprise VoIP deployment in Figure 1.
The primary components of any VoIP deployment are a VoIP proxy
server, VoIP enabled soft phones, and a VoIP gateway. The soft
phones are PCs, PDAs or smartphones that are running software
codecs and digitize voice packets. The VoIP proxy server acts as
a rendezvous point for VoIP connections. It uses standardized sig-
naling protocols, such as SIP [21] or H.323 [22], to establish a
VoIP call between the calling parties. Once the call is connected, it
is completed in a peer-to-peer fashion between the calling parties,
without routing via the VoIP proxy. A typical VoIP deployment also
integrates with the PSTN using a VoIP gateway. The gateway usu-
ally has an Analog Telephony Adapter (ATA) that bridges the calls
between the IP-based LAN and the PSTN. In scenarios where one
calling party is on the PSTN, the VoIP gateway server also plays
the role of a VoIP endpoint. The VoIP proxy and the VoIP gateway
services are often implemented by the same machine.

One of the most popular standards used in VoIP deployments is
the Session Initiation Protocol (SIP). SIP [21] is a transport inde-
pendent application-layer protocol that provides a framework for

Internet

IP Phone Soft Phone

LAN

Access

Point

SIP Server

Smart Phone

Wi-Fi interface

GSM/CDMA

interface
Base Station

ATA

Cellular

Network

PSTN

Enterprise Network

Figure 1: A typical enterprise VoIP deployment. Outside callers
can either make VoIP calls over the Internet or over the PSTN line.
The SIP server uses an Analog Telephony Adapter (ATA) to trans-
late the call from PSTN to IP and vice-versa.

inviting end-hosts into a conversation. Similar to HTTP, SIP is a
text-based protocol which makes it extremely simple, efficient and
extensible. Soft phones use SIP to register with the VoIP proxy
server. When the proxy receives a call for the soft phone, it sends
a SIP invite message to the soft phone. In response, the soft
phone may send a ringing message back to the server. When
the user picks up the phone, it sends a SIP 200 OK message that
indicates that call setup is complete.

The widespread deployment of enterprise Wi-Fi networks adds
an interesting dimension to VoIP in terms of support for mobil-
ity. An employee with a Wi-Fi VoIP phone can receive calls when
working in a conference room or a colleague’s office without rely-
ing on explicit call forwarding.

3. WIRELESS INTERFACE
CHARACTERISTICS

In this section, we look at energy consumption and data transfer
characteristics of different wireless interfaces. We investigate how
these characteristics impact the selection of the best wireless inter-
face to use for VoIP. In particular, we study the characteristics of
two cellular data networks (GPRS/EDGE and 1xEVDO), as well
as the Wi-Fi interface. We then profile the energy consumption
of the entire smartphone device while performing various tasks to
motivate the need for our Cell2Notify system.

3.1 Cellular Data vs. Wi-Fi
Since cellular radios are typically highly optimized to save en-

ergy, one possibility for making VoIP calls can be to use a smart-
phone’s cellular data connection. We performed a set of measure-
ments to investigate this alternative, and found that the cellular ra-
dio consumes significantly more power when used for data trans-
missions, even more so than the Wi-Fi interface. In this section,
we present experimental results to show the energy consumption of
two popular cellular data connections: GPRS/EDGE and 1xEVDO,
and compare these numbers with the energy consumed over Wi-
Fi. To the best of our knowledge, ours is the first paper that com-
pares energy consumption of these wireless interfaces when used
for VoIP communication.

We measured the energy consumption when accessing two dif-

180

ferent cellular data network technologies prevalent in the US, namely
GSM and CDMA. The GPRS/EDGE data service is based on the
GSM technology, and is offered by providers such as Cingular and
T-Mobile. The 1xEVDO data service is based on CDMA and is
offered by Verizon and Sprint. Since it is difficult to obtain ac-
curate power measurements from a smartphone as we demonstrate
in the next section, we used PC cards from Verizon and Cingular
inserted in a laptop to obtain power measurements. For Cingular,
we used the Sony Ericsson GC83 card to access their GPRS/EDGE
network, and for Verizon we used the Verizon V620 card to access
the 1xEVDO network. For both networks, we obtained good sig-
nal strength in the lab where we performed the experiments. For
our Wi-Fi measurements, we used the commonly available Netgear
WAG511 802.11a/b/g cardbus adapter.

To measure the power consumption of our PC cards, we plugged
them into our laptop using a PC card extender device. The ex-
tender exposes various pins that help us in measuring the power
used by the the PC card. Our setup is similar to the system used
in [20,23]. We attached a 20 m-ohm sense resistance in series with
the wireless card, and measured the current through the resistor us-
ing a data acquisition system. The current multiplied by the supply
voltage yields the power consumed by the PC card. We performed
power measurements for three different states of each wireless card.
The first is the “not connected” state, in which the cards were not
connected to the data network. This corresponds to the “not associ-
ated” state for a Wi-Fi card. The second is the “connected and idle”
state, in which the cards are connected to the data network but not
sending any traffic. The third state is the “connected and active”
state, where the card is connected to the network and is sending
and receiving VoIP traffic over UDP. In our experiments, we used
the popular g729 VoIP codec, which generates 50 byte VoIP pack-
ets at a data rate of 31.2 Kbps. We report the power measurements
for various states of the cards in Figure 2.

As shown in the Figure, the power consumption of the V620
(1xEVDO) card is quite substantial in both the “not connected”
and the “connected and idle” states. The SE-GC83 (GPRS/EDGE)
interface consumes much less power in those states. The V620
utility actively tries to search for the data network, and shows the
signal strength of the network even in the “not connected” state.
Furthermore, it sends periodic keep-alive messages in the “con-
nected and idle” state, and consumes significant power. On the
other hand, the SE-GC83 utility does not connect unless asked to
do so, and stays in a low power state when “connected and idle”.
Another interesting fact that is unique to the 1xEVDO radio is that
the energy consumption is not as much dependent on the number
of packets sent on the network as it is on the fact that the interface
is switched on. This can be seen from the similar power consumed
in the “not connected” and the “connected and idle” states for the
1xEVDO interface. Further, the 1xEVDO interface incurs a signif-
icant overhead in power, latency and network resources when the
radio is woken up from sleep mode. Consequently, the 1xEVDO
interface uses conservative policy to decide when to enter a deep
sleep mode. Note that the Wi-Fi card consumes the most energy
when it is not connected, as it keeps scanning for available wireless
networks. The energy consumption reduces significantly when the
card is connected (associated) as it enters IEEE 802.11 Power Save
Mode (PSM) [12].

Of all three interfaces, the Wi-Fi interface is the most power ef-
ficient radio during an active VoIP call. It consumes less than half
the energy of the V620, and less than 75% of the energy consumed
by the GPRS/EDGE radio. This can be explained by the high trans-
mit power used by the cellular radios to send data over much longer
distances (sometimes even miles) compared to Wi-Fi, where the

0

0.5

1

1.5

2

Not Connected Connected and

Idle

Connected and

Active

P
o
w
e
r
(W
a
tt
s
)

Verizon V620 (EVDO)

SE-GC83 (GPRS/EDGE)

Netgear WAG511

Figure 2: Power measurements of 1xEVDO, GPRS/EDGE and Wi-
Fi interfaces for different scenarios. The “Connected and Active”
measurements show the power when transmitting 32 Kbps of VoIP
traffic over UDP. Note that when active, VoIP over Wi-Fi consumes
the least amount of battery power.

Interfaces Jitter (ms) Packet Loss (%)
Verizon V620 25.25 7.6

Cingular SE-GC83 17.24 18.935
Netgear WAG511 0.9745 0

Table 1: VoIP Quality over different network interfaces.

AP is usually within a 100 meter distance. This is exacerbated by
the strict real time requirements for VoIP and a short inter packet
generation time, as a result of which the cellular radios have no
opportunities to sleep and conserve energy.

Most of the power numbers we present in Figure 2 are consistent
with a recent paper by Mahmud et. al. [18], which compares the
power consumption of Wi-Fi and GPRS interfaces. However, in our
measurements, we found that the Wi-Fi interface in the “Connected
and Idle” state consumes significantly more power than what was
reported in [18]. We believe our measurements are accurate as it is
consistent with numbers presented in a number of related papers [2,
23]. Although it might be possible to further reduce the power
consumption of the Wi-Fi interface, we note that our Cell2Notify
scheme would still be beneficial as it completely disables the Wi-Fi
interface when it is not in use in an active VoIP call.

In addition to high power consumption, the performance of cellu-
lar data interfaces is also not well suited for real-time applications,
such as VoIP. We measured two metrics, jitter and loss rate, which
are usually associated with the quality of a VoIP connection, and
we present those results in Table 1. All three interfaces had a rea-
sonably good connection to their respective networks. The results
show that the quality of VoIP calls is much better over the Wi-Fi
connection than over the cellular data networks. In fact, the high
latency over the cellular data interface makes voice traffic intolera-
ble.

There are several other reasons why the cellular data network is
not ideal for VoIP traffic in an enterprise. The costs are greater,
because all employees (or the enterprise) needs to purchase a cel-
lular data plan, and these tend to be expensive. In most cases, this
needs to be an unlimited data connection since VoIP calling gen-
erates a significant amount of traffic. The enterprise also has no
control over calls using this approach, since the first hop from the
smartphone is the cellphone carrier. Consequently, it is extremely

181

Figure 3: Our experimental setup to measure the battery power
consumption of a smartphone when different network interfaces are
turned on and used.

difficult to implement and manage any call handling system. Given
the above factors, we conclude that it is preferable to use Wi-Fi for
VoIP instead than a cellular data network.

3.2 Smartphone Power Measurements
We now measure the power consumption of a popular smart-

phone, the HTC Tornado (Cingular 2125). This device has an ARM
TI 195 MHz processor, runs Windows Mobile 5.0 and has a TI-
1100 802.11g Wi-Fi chipset. We subscribed to the Cingular voice
plan for our experiments. We measured the power consumption
of the smartphone for various states of its network interfaces, i.e.
GSM and Wi-Fi, and we show that Wi-Fi is a major power drain if
it is in the ON state at all times. We also use these numbers later to
evaluate our Cell2Notify protocol.

Our experimental setup to measure the energy consumption of a
smartphone is based on the technique described in [10]. We fully
charged the battery of the smartphone and then removed the battery
from the device for an hour. We then connected a 0.5 ohm sense
resistor in series with the battery of the device, and measured the
instantaneous current across the resistor at 50,000 samples per sec-
ond using a data acquisition system. We illustrate our setup in Fig-
ure 3. We repeated this procedure for each of our experiments. All
our experiments lasted five minutes each. To compute the power
consumed by the smartphone, we multiplied the current with the
average supply voltage of 3.7 Volts. The talk time for the Cingular
2125 is rated at 4 hours. With its 1150 mAH battery, this corre-
sponds to a power consumption in an active cellular voice call of
1150*3.7/4 = 1063.75 mW.

We present the measured results in Table 2. In each of our ex-
periments, we measure the total power consumption of the smart-
phone, not just the power consumption of the interface. We set
beaming to off, the backlight timeout to five seconds which is the
minimum possible, the display timeout to 1 minute (also the mini-
mum possible), the light sensor to off, and the earpiece volume to
the minimum value.

As we see from this table, the smartphone expends very little
battery power to keep its GSM interface on when it is connected.
However, it consumes much more battery power when its Wi-Fi
interface is on. Note that the Wi-Fi card was using IEEE 802.11
power save mode. Even when the Wi-Fi radio is idle, the device
consumes more than 15 times the battery power than in GSM idle
mode. These numbers indicate that the total lifetime of a smart-

Scenario Power
All Radios off (Flight Mode) 15.688 mW

GSM Idle 27.38 mW
Wi-Fi (searching) 1042.44 mW
Wi-Fi (connected) 441.82 mW
Wi-Fi (send/recv) 1113.811 mW

Table 2: Power consumption of the Cingular 2125 smartphone for
different states of its network interfaces.

phone can be significantly increased if the Wi-Fi radio is turned off
most of the time. This forms the primary motivation for our work
on Cell2Notify, where we turn on the Wi-Fi device only when it is
needed.

4. CELL2NOTIFY ARCHITECTURE
Cell2Notify increases the battery lifetime of smartphones by dis-

abling the Wi-Fi radio when the user is not making a VoIP call. It
enables the Wi-Fi interface only when either the user wants to initi-
ate a VoIP call, or when the user is receiving an incoming VoIP call.
In the latter case, Cell2Notify sends a wake up signal to the smart-
phone as a ring on the cellular interface (either GSM or CDMA).
As noted in Section 3.2, the cellular interface consumes signifi-
cantly less energy than the Wi-Fi interface when not in use, and
users rarely disable it. Consequently, Cell2Notify results in signif-
icant energy savings when using smartphones for VoIP over Wi-Fi.

The design of Cell2Notify poses two primary challenges. First,
the system needs to be easily deployable. Therefore, it should not
require changes to the standardized protocols used by VoIP phones.
Furthermore, Cell2Notify cannot require wholesale changes to net-
work infrastructures it relies upon – neither the Wi-Fi infrastruc-
ture nor the cellular infrastructure. Second, disabling the Wi-Fi
interface should not result in dropped calls nor significant delays.
Cell2Notify must enable the Wi-Fi interface and complete the VoIP
call within a reasonable amount of time. Finally it must handle
scenarios where the user is an area that lacks either Wi-Fi or GSM
coverage.

The Cell2Notify architecture addresses these challenges by re-
quiring minimal modifications to the VoIP architecture illustrated
in Figure 1. Cell2Notify only requires software changes at the VoIP
proxy server and on the smartphone devices. Furthermore, all the
software changes are implemented at user-level, and hence are eas-
ily deployable. Our prototype system works with the Session Initia-
tion Protocol (SIP) [21], which is the most commonly used protocol
to set up VoIP sessions. All our changes at the proxy server are to
the SIP proxy’s configuration files, which allows Cell2Notify to be
deployed incrementally. Our system is also backwards compatible
in that it supports users with phones that do not have a cellular in-
terface, though those users will not obtain any of the energy saving
benefits. Our system incurs acceptable call setup latencies, and we
devise simple protocols to handle scenarios where the user is out of
range of either the cellular or Wi-Fi network.

As shown in Figure 4, our system introduces two new compo-
nents to an existing VoIP system. We enhance the VoIP proxy
server of a traditional deployment with additional call handling
rules, and call it the Cell2Notify Server. The Cell2Notify Server
also maintains a table that contains the mapping of users (VoIP
extensions) to their corresponding cell phone numbers. The other
new component in the Cell2Notify system is the Cell2Notify Client,
which is a traditional smartphone running our user-level service.
Our service handles notifications sent by the Cell2Notify server.
We describe our architecture in detail in the rest of this section.

182

Figure 4: Steps of the Cell2Notify protocol.

4.1 Cell2Notify Protocol
The main steps of the Cell2Notify protocol are illustrated in Fig-

ure 4. Registration, which is not shown in the figure, is required
before a device can utilize this architecture. In the Registration step
the network administrator adds a new smartphone to use the VoIP
system. During registration, the Cell2Notify server adds a map-
ping of the smartphone’s VoIP extension to its cell phone number.
The server also generates a unique Caller-ID (UID) that it will use
as the Caller-ID when calling the smartphone to initiate a wakeup.
The UID is 10 digits long, and its first digit is set to 0 to prevent
collisions with existing phone numbers. This scheme provides ba-
sic security against Caller-ID spoofing. Since this UID is randomly
generated and is different for different extensions, it is not trivial
for attackers to send spurious wakeup calls. We also present a se-
curity enhancement to this basic scheme in Section 7.2. Finally,
the smartphone is updated to set the VoIP extension and to store the
UID that will be used by the server to contact it.

The Cell2Notify client disables its Wi-Fi interface whenever it
receives a good signal from a cellular base station. When an in-
coming VoIP call arrives at the Cell2Notify server (Step 1 of Fig-
ure 4), the server looks up the client’s extension in its table and
retrieves the corresponding cell phone entry. The server then initi-
ates a call to the client’s cell phone number over the PSTN using
an ATA (Step 2). When the Cell2Notify client receives this call,
our user-level service traps the Caller-ID, and checks to see if the
Caller-ID matches the Cell2Notify server’s UID. If the Caller-ID
does not match the service allows the call to ring on the device as a
regular call. However, if the Caller-ID does match the server’s UID
then the service enables the Wi-Fi interface (Step 3). The client as-
sociates with a Wi-Fi Access Point (AP) and registers its IP address
with the Cell2Notify server. The server can subsequently set up the
VoIP call (Step 4), by sending the Cell2Notify client’s credentials
to the caller. The call is finally carried out end-to-end between the
two devices without going through the server (Step 5). After the
VoIP call ends, the Cell2Notify client disables the Wi-Fi interface.

We note that after Step 1, if the Cell2Notify server does not find a
cell phone number corresponding to the client’s extension, it simply
proceeds to handle it as a regular SIP server. In other words, it
attempts to set up the call if the client has previously registered,
and otherwise it will send back a busy tone. Similarly, if after Step
1 the Cell2Notify server finds that the client has already registered,

it attempts to setup the call as a regular SIP server, i.e. it directly
calls the client’s VoIP number.

4.2 Connectivity Scenarios
Cell2Notify needs to robustly handle situations where either the

cellular network or the Wi-Fi network becomes unavailable. In
these situations, our goal is to perform at least as well as a legacy
VoIP deployment that does not use Cell2Notify. In this section,
we enumerate the connectivity possibilities and describe the sys-
tem behavior in each of those situations.

4.2.1 Registered Client, in Wi-Fi, Cellular Range
This is the ideal case for our protocol. The smartphone is in

range of a known Wi-Fi network and has good cellular coverage.
It has also previously registered with the Cell2Notify server, and
its DHCP lease has not expired. Moreover, it has not moved re-
cently, so it has cached state of the nearby APs. When someone
calls the client, the Cell2Notify server sends a wake-up call on the
cellular interface. The smartphone then enables its Wi-Fi interface,
connects to the AP whose information it has cached, and sends a
SIP register message to the Cell2Notify server. The server then
connects the VoIP call over the smartphone’s Wi-Fi interface.

4.2.2 Unregistered Client, in Wi-Fi, Cellular Range
In this scenario the client is in a Wi-Fi zone but has not yet con-

nected and registered. In comparison to the previously described
case, there is an extra step involved. Upon receiving the wakeup
call over the cellular interface from the Cell2Notify server, the de-
vice enables its Wi-Fi interface and performs a scan to look for
available APs. The rest of the steps are similar to the previous sce-
nario. To address this case, the Cell2Notify server attempts calls to
the client’s SIP extension multiple times to allow enough time for
the mobile device to look for available Wi-Fi APs.

4.2.3 Client in Cellular Range, out of Wi-Fi Range
We now consider the case where a client is not in a Wi-Fi zone.

When the Cell2Notify server sends a wake-up call over the cellu-
lar interface, the device enables the Wi-Fi interface and scans for
wireless networks. Since there is no wireless network available in
this case, the Cell2Notify client never sends a SIP register back to
the Cell2Notify server and eventually turns its Wi-Fi interface off
to save power. To handle this scenario, we use a relatively long
timeout value at the proxy. If the proxy cannot connect the call to
the mobile device it has several options. Based on user preference,
it can either forward the call on the regular cellular line after reset-
ting the Caller-ID to the correct Caller-ID (not the UID), or it can
request that the caller leave a voicemail. The first option will com-
plete the call, although the call setup will incur extra latency equal
to the timeout value of the SIP server. These options can be con-
figured as part of the call handling rules (described in Section 4.3)
for the VoIP extension of the smartphone, and can be customized
based on user preference.

4.2.4 Client out of Cellular Range
Cell2Notify is based on two key properties of the cellular net-

works: low power consumption of the cellular radio and near ubiq-
uitous connectivity. However in the rare case that there is no cel-
lular coverage, our user-level service on the smartphone automat-
ically enables the Wi-Fi interface and registers with SIP on the
Cell2Notify server. At this point, the Wi-Fi interface only uses
IEEE 802.11 power-save mode [12] to save energy. As soon as
the Cell2Notify client detects cellular coverage, it sends a SIP de-
register message and turns off its Wi-Fi interface. At this point

183

it reverts to using Cell2Notify wakeups on its cellular interface to
enable its Wi-Fi interface.

4.2.5 Client Mobility
Mobility can cause a client to move in or out of cellular or Wi-

Fi coverage. This can lead to a window of vulnerability where the
state of the client may be different from what is known at the SIP
server. For example, when a client moves into cellular coverage,
it disables its Wi-Fi interface, although the SIP server might have
initiated the signaling of an incoming call on the client’s Wi-Fi in-
terface. To handle these mobile scenarios, Cell2Notify requires the
SIP server to simultaneously ring the cellular interface of the device
while sending a SIP invitation on the client’s Wi-Fi interface. So,
even in the above scenario, when a client moves into cellular cov-
erage, and disables its Wi-Fi interface, the call setup is successful.
In the other scenario where a client moves out of cellular coverage,
it immediately enables its Wi-Fi interface, and sends a SIP register
message to the SIP server. Therefore, in this case, the latency is
better than if the device was in cellular coverage. Finally, we note
that the problem of handoff across Wi-Fi APs when a VoIP call is
in progress, is out of scope for Cell2Notify, which is a signaling
protocol for VoIP call setup.

4.3 Modifications to the VoIP Server
The above steps can be implemented over SIP, without signif-

icant modifications to a standard VoIP proxy server. To imple-
ment Cell2Notify, we only need to add call handling rules for each
VoIP extension or user name that is registered with the Cell2Notify
server, and no source code modifications to the VoIP proxy are
needed. This rule-based call handling is implemented by many
commercial SIP/VoIP proxies [31]. The set of SIP rules at the
Cell2Notify server are as follows:

1. Send ring tone to caller.

2. Make call to callee’s registered cell phone.

3. Dial the VoIP extension of callee. Retry after timeout.

4. Wait a few seconds for callee’s response.

5. Send invalid tone to the caller if no response from callee.

6. Hang up if no response from callee is forthcoming.

In Section 5, we present the specific call rules we used in our pro-
totype for the Asterisk SIP server. Step 1 informs the caller that
the call is being handled. Step 2 tells the callee to enable its Wi-Fi
interface and complete the call. Step 3 attempts to connect to the
caller. The server retries this step a few times to account for vari-
ation in the time taken by the callee to associate and authenticate
with the AP, and obtain an IP address using DHCP. Step 4 waits a
little longer for a response. If there is no response from the callee,
the server sends back an invalid tone to the caller (or voice mailbox
of the callee) in Step 5 and hangs up the call in Step 6.

Since these changes are just rules added to the configuration
file of the SIP server, Cell2Notify can be easily added to an exist-
ing VoIP deployment without adding any new servers or changing
the infrastructure. Furthermore, Cell2Notify works within deploy-
ments that have VoIP phones without a cellular interface, or where
some users prefer not to use Cell2Notify. Therefore, our system is
incrementally deployable as well as backwards compatible.

4.4 Modifications to the Smartphone
We require a few changes to the smartphone devices, yet all these

changes can be implemented relatively easily. We need the follow-
ing additional features: (i) The ability to distinguish a wake-up call
from a regular call over the cellular interface. (ii) The ability to
power on the Wi-Fi interface. (iii) The ability to control associa-
tion and authentication with a Wi-Fi network. (iv) The ability to
monitor traffic over the Wi-Fi interface to power it off automati-
cally at the end of a VoIP call.

As described in Section 4.1, the Cell2Notify server sends a unique
ID (UID) to the mobile device as part of the registration process.
The component of the smartphone that handles incoming calls needs
to be modified to check the Caller-ID of all incoming calls against
this UID. In case of a Windows Mobile based smartphone this can
be done by modifying the connection manager. When the incoming
Caller-ID does not match the UID, the incoming call is treated as
a regular call. When the incoming Caller-ID does match the UID,
the connection manager takes the following steps:

1. Do not send the call notification to the user.

2. Power on the Wi-Fi interface.

3. Authenticate and associate to the Wi-Fi network and request
an IP address from the DHCP server.

4. Start up the SIP softphone user interface.

5. Send a SIP register message to SIP proxy with the destination
address as the IP address acquired from the Wi-Fi network.

When the Cell2Notify server receives the SIP register message
from the smartphone device, it can complete the SIP call. An im-
portant point to note is that the Cell2Notify server is not required
to keep any state, since the SIP call is completed over the Wi-Fi
interface of the mobile device and the voice session (using RTP) is
established end-to-end. This makes our system highly scalable.

Once the VoIP call ends, the smartphone must detect this event
and turn off the Wi-Fi interface to save energy. This may be com-
plicated given the presence of other traffic on the Wi-Fi interface,
in which case it may not be clear that the call has ended. To detect
the end of a VoIP call, we have implemented an activity detector
that monitors the wireless interface for data sent and received. Al-
though VoIP sessions generate an almost constant quantity of data
traffic during the lifetime of a session, the actual quantity of traffic
is dependent on the codec used. Therefore, automatically distin-
guishing VoIP from other traffic is very difficult. Instead, our de-
tector simply uses a conservative approach, powering off the Wi-Fi
interface after a full ten seconds of network inactivity (although the
interval length is configurable).

4.5 Other Applications
Until now we have focused on using Cell2Notify solely for VoIP

calls. However, this architecture can be used to enable a number
of other services for smartphones. For example, the Cell2Notify
server can be configured to send e-mail notifications by using a
different Caller-ID. The Cell2Notify client can use the Caller-ID
to differentiate between VoIP and e-mail notifications. The smart-
phone can then connect to the mail server over Wi-Fi to download
the e-mail message contents. Because many people receive a much
larger number of incoming e-mails than phone calls, our notifica-
tion system may impose a much larger load on the cellular net-
work. To avoid this overload, we can tune the Cell2Notify server to
only send these notifications for high priority e-mails, or for e-mails
from a pre-specified group of people.

184

A similar application that can benefit from Cell2Notify is Fax
over Wi-Fi. Any existing scheme for sending Fax over IP, such as
T.38 [19], requires the Wi-Fi client to be enabled and hence drains
battery power. With Cell2Notify, the Wi-Fi client can be disabled
most of the time, and enabled only to receive the fax transmission.
Cell2Notify also has applications outside the enterprise setting. For
example, any VoIP provider, such as VoIP-User or Skype, can use
Cell2Notify to notify their users of incoming calls at home. They
would only additionally need the cell phone numbers of smart-
phones that would be used as receivers of the VoIP calls. In a sim-
ilar vein, cell phone providers such as T-Mobile, who are moving
towards UMA [29] could benefit from Cell2Notify. UMA allows
a cell phone to use a Wi-Fi connection if available. However, the
Wi-Fi device always needs to be enabled to receive incoming calls.
Using Cell2Notify, they can disable the client’s Wi-Fi device unless
the client is either receiving a call or making one.

4.6 Alternatives to Cell2Notify
There are several alternatives to Cell2Notify. In this subsection

we use three metrics to argue that notifications using a call over the
cellular network is a better approach. The three metrics are: cost,
deployability, and performance.

One alternative to Cell2Notify is Wake-On-Wireless [23]. This
scheme requires a custom low power radio to be added to each
smartphone, as well as to the enterprise wireless infrastructure.
When a user receives a call, Wake-On-Wireless(WoW) sends a sig-
nal to the smartphone using the low power radio to enable the Wi-Fi
interface. This scheme is more costly as this requires the deploy-
ment of other low power radios, and is also less deployable since
it requires hardware changes on all the smartphone devices. On-
demand paging [1] has the same goal. It requires Bluetooth hard-
ware to be added to each AP. On receiving a call, the AP sends
a signal via Bluetooth to the smartphone to enable the Wi-Fi de-
vice. Since smartphones mostly have a Bluetooth interface, this
scheme is more deployable than WoW. However, it too requires
changes to the infrastructure and is therefore costly. Furthermore,
both Wake-On-Wireless and On-Demand Paging suffer from the
range mismatch problem: the different wireless interfaces have dif-
ferent coverage ranges, and the low-power wireless interface typi-
cally covers a smaller region than the Wi-Fi interface. Therefore,
the additional wireless infrastructure must be deployed at a higher
density than the existing Wi-Fi deployment of access points.

Another approach to Cell2Notify would be to use an SMS (Short
Messaging System) based notification system. This scheme is sim-
ilar to ours except that it would send an SMS message to the smart-
phone over the cellular network. Although this scheme is as cheap
and deployable as Cell2Notify, it suffers from poor performance.
SMS usually incurs higher latency and is more unreliable than phone
calls. This reduces the usability of this system.

5. PROTOTYPE IMPLEMENTATION
We are currently implementing the Cell2Notify system on Win-

dows CE, a commonly used operating system on smartphones. In
the meantime, for evaluation purposes, we have built a prototype of
Cell2Notify using commonly available off-the-shelf components.
The components of our prototype are illustrated in Figure 5. We
implement the Cell2Notify server using a combination of the open-
source Asterisk SIP Server [3] and the VoIP gateway provided by
Junction Networks [13]. We emulate a smartphone using a combi-
nation of a cell phone and a laptop running Windows XP. We use
a Sony Ericsson W810i cell phone with a built-in Bluetooth inter-
face. The laptop also has built-in Bluetooth, and we use a Netgear
WAG511 Cardbus card as the Wi-Fi interface. Finally, we use a

Figure 5: Our prototype implementation of Cell2Notify. We imple-
ment the Cell2Notify server as a combination of a commonly avail-
able SIP Proxy and an Internet- based VoIP gateway. We emulate a
smartphone using a combination of a cellphone that communicates
with a Wi-Fi equipped laptop using Bluetooth.

popular SIP client for Windows XP called X-Lite [7] as the VoIP
softphone.

Our prototype requires minimal modifications to the above com-
ponents. We made changes to the call handling configuration files
of the SIP server, and we built a user-level call-manager service
that runs on the Windows XP laptop. Our prototype demonstrates
the ease with which Cell2Notify can be incrementally deployed in
an existing VoIP system. Although our prototype is not the ideal
implementation of the Cell2Notify architecture, it serves to demon-
strate a working system and it is useful for evaluation of our archi-
tecture.

The steps of the Cell2Notify protocol for our prototype are shown
in Figure 5. When someone makes a incoming call to a Cell2Notify
client, the Asterisk SIP Proxy looks up the corresponding cellular
number for the client, and makes a call to the client over PSTN us-
ing the Junction Networks gateway. When our cellphone receives
the call, it notifies the laptop of the incoming call via Bluetooth.
The call-manager service on the laptop then turns on the Wi-Fi in-
terface and uses it to connect the call. When the call is complete,
the call-manager turns off the Wi-Fi interface. In the rest of this
section, we describe the implementation details of the Cell2Notify
server and client components.

5.1 Prototype Cell2Notify Server
The Cell2Notify server only requires minimal modifications to

the Asterisk SIP Server. We have added a mapping from SIP ex-
tensions to the corresponding cell phone number, and a set of call
handling rules for each registered Cell2Notify client. Asterisk sup-
ports integration with a back-end database, thus allowing the cell
phone mapping table and call handling rules to be implemented
as separate tables in the database, and be linked to the Asterisk
server. Presently we have manually added these mappings for each
Cell2Notify client to the Asterisk configuration files. However, this
task can be easily automated using the supported database function-
ality.

We implement the steps described in Section 4.3 as call handling
rules in the Asterisk server. We define these rules for every regis-
tered extension or user name. To define the call handling rules, we
use generic functions that are supported by most SIP proxies, such

185

as Ringing, Playback, Dial, Wait and Set(CALLERID). The Ringing
function sends back a ring notification to the caller. Playback plays
a default welcome message and Dial dials a SIP extension. The
Wait function waits for a specified duration before executing the
next rule. Set(CALLERID) is interesting as it allows the Caller-ID
of the outbound call to be set to an arbitrary number. In the fol-
lowing example, we present the call handling rules for a particular
extension, say extension 7676:

1. exten => 7676,1,Ringing

2. exten => 7676,2,Set(CALLERID(number)= UID)

3. exten => 7676,3,Dial(SIP/Cell-Number
@jnctn,5)

4. exten => 7575,4,Wait(2)

5. exten => 7676,5,RetryDial(waiting|1|8|
SIP/7676|30|Ttm)

6. exten => 7676,6,Playback(Invalid)

7. exten => 7676,7,Hangup

These rules define the steps executed by the Cell2Notify server
when there is an incoming call for extension 7676. The first ar-
gument denotes the destination extension (7676) for the incoming
call, the second argument is the rule order(1,2,..,7), and the third de-
notes the function (Dial, Ringing, etc.). Rule 1 executes the Ringing
function and sends back a ring tone to the caller. The server then
looks at Rule 2 and executes the Set(CALLERID) function with the
UID as a parameter, essentially setting the Caller-ID to the UID for
the next outbound call. As explained earlier the UID is different for
each smartphone client using Cell2Notify and is negotiated during
registration. Rule 3 places a call to the particular cellular number
associated with extension 7676 using the Junction Networks gate-
way. Rule 3 is essentially needed to send a signal to the Cell2Notify
client to turn on its Wi-Fi interface. In rule 4 the server executes
Wait for 2 seconds to insert some delay before trying to contact
the extension. On encountering rule 5 the server executes Dial to
contact the SIP extension 7676 repeatedly 8 times with a 1 second
interval between subsequent retries. These retries are needed be-
cause of the latency to turn on the Wi-Fi interface on the laptop
device, and the latency to associate and authenticate over the Wi-Fi
network. In the case where call is not connected or remains unan-
swered the server executes the Playback function as specified in
rule 6, to send the caller an invalid extension or unreachable mes-
sage. According to Rule 7, the server executes a Hangup to end the
call. Rule 6 could be modified to playback another message, record
a voice mail, forward the call to another extension, or even forward
the call to the cellular number of the user.

When a call handling rule (such as Rule 3) requires the server to
place a call on the regular telephone network, it uses an ATA or an
external third party VoIP provider to bridge the IP based network
with the PSTN. We have implemented both these options. In the
first option, we used the Sipura ATA [24] and a privately leased
PSTN line. For the second option, we used the Junction Networks
VoIP gateway. Using an ATA may be preferable for an enterprise,
because the call leaves the IP network within the enterprise itself.
However, using a third party VoIP provider may be cheaper.

An architectural requirement for the Cell2Notify server is the
ability to place a call over the PSTN using an arbitrary Caller-ID.
We implement this using the Set(CALLERID) function of Aster-
isk in conjunction with the VoIP gateway of Junction Networks.
The SIP server sets the desired Caller-ID as a parameter to the

Set(CALLERID) function. Junction Networks allows users to pro-
vide their own Caller-IDs for outgoing calls, as long as it is any
10 digit number, and then places a call to the destination PSTN
number with this Caller-ID using an ATA located in the Junction
Networks data center. We are currently working on implementing
this functionality on the Sipura ATAs. We discuss the implications
of Caller-ID spoofing in Section 7.

5.2 Prototype Cell2Notify Client
We now describe the implementation of the Cell2Notify client,

focusing on three main challenges. First, we need a way to sig-
nal an incoming call on the Sony Ericsson cell phone to the call
manager service on the Windows XP laptop, and we need to send
the Caller-ID of the incoming call to the call manager. Second, we
need minimize the delay in completing the call by reducing the de-
lay imposed by the Wi-Fi authentication and association process.
Finally, the call manager service needs to determine when the call
ends and disable the Wi-Fi interface.

We address the first challenge without requiring modifications to
the Sony Ericsson handset by configuring the Bluetooth interface
on the laptop to appear as a Bluetooth headset to the cell phone.
Consequently, an incoming call on the cellphone notifies the Blue-
tooth headset, which is in fact our laptop. We use Float Mobile
Agent (FMA) [9] to configure the laptop Bluetooth interface to ap-
pear as a headset device. FMA is powerful phone editing software
which has extensive support for Sony Ericsson handsets, including
a rich set of APIs to control the handset. One feature of these APIs
handles a Call-Notify event which our call manager service uses
to trap an incoming call. We built a separate call handler on the
FMA framework that checks the Caller-ID of each incoming call
to see if it is from the Cell2Notify server, based on the unique ID
that was exchanged as part of the registration process. FMA also
provides a way to disconnect a call. If the Caller-ID matches that
of the Cell2Notify server, the call handler disconnects the call and
wakes up the Wi-Fi interface. If the Caller-ID does not match, the
call handler lets the call through and ring on the handset.

To address the second challenge, our service uses caching to
quickly associate with an Access Point and complete the call over
Wi-Fi. When a wireless card is enabled, it usually goes through a
series of steps before it obtains a valid IP address. For example, it
scans the network looking for the best available AP, after which it
performs the entire association procedure. Associating with an AP
using the standard Windows XP Zero Configuration Service takes
multiple seconds [6]. We optimize this step by caching the fre-
quency channels of the most commonly used APs. We also turn
off the Zero Configuration Service and implement tools to control
the wireless interface from our own Cell2Notify service. When the
Wi-Fi interface is turned on, we instruct the card to go to specific
channels and attempt association to the wireless network. We have
measured the total time to associate on a given channel to be less
than 20 ms for the Netgear WAG511. Using this optimization, we
are able to complete the association within a few hundred millisec-
onds, as shown in Section 6. Once the Wi-Fi card is enabled and
has an IP address, we start the X-Lite SIP client. The SIP client
sends a register message to the Cell2Notify server with its acquired
IP address and completes the call over Wi-Fi.

Finally, we need a way to automatically detect the end of a VoIP
call and turn off the Wi-Fi interface. After the Wi-Fi interface is en-
abled, our call manager service enters an activity monitoring mode.
In this mode, it checks the number of packets sent and received on
the Wi-Fi interface. It does not immediately disable the Wi-Fi inter-
face when the number of packets is zero, as this might disconnect
the call during a period of silence. Instead, the service uses some

186

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

Hour of the Day

D
u
ra
ti
o
n
 o
f
C
a
ll
s
(M
in
u
te
s)

(a) James’s Office Phone

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

Hour of the Day

D
u
ra
ti
o
n
 o
f
C
a
ll
s
(M
in
u
te
s)

(b) John’s Cell Phone

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

Hour of the Day

D
u
ra
ti
o
n
 o
f
C
a
ll
s
(M
in
u
te
s)

(c) Beth’s Cell Phone

Figure 6: Call logs of three users. James is an employee in an enterprise, and the heaviest office phone user among five employees we
studied. John is a moderate cell phone user, and Beth is an extremely heavy cell phone user. She makes calls at 3 AM, and receives a call at
8 AM.

hysteresis and only disables the Wi-Fi interface if there are no pack-
ets sent over it for a certain number of seconds. We experimented
with various values and found that a delay of ten seconds was ad-
equate. To avoid modifications to the SIP client application code,
we terminate the SIP client process at the end of a call and restart
it when a new call is initiated or received.

5.3 Is the Prototype Real?
We have built and demonstrated a working Cell2Notify proto-

type. One obvious concern is the practicality of our system, given
that we have emulated the Cell2Notify client rather than imple-
menting it on a real smartphone. We argue that all our changes
can be easily migrated to a smartphone. The Bluetooth notifica-
tion from the cell phone to the laptop will not be required when the
GSM and Wi-Fi interface are on the same device. Our call handling
routines would also be simpler on a smartphone, and we would not
need the APIs provided by FMA. For example, on a smartphone
running Windows CE the only modification required is to the Con-
nection Manager on the smartphone device to implement the call
handling functionality. Changes to enable and disable the Wi-Fi
interface can also be easily migrated to the smartphone. In fact, we
expect even better performance on smartphones since the SIP client
will always be running on it, as compared to our prototype where
we have to terminate and restart the X-Lite SIP client process.

6. SYSTEM EVALUATION
The utility of a mobile device is directly related to the useful

operating lifetime before its battery needs to be recharged. Thus,
the primary metric we use to evaluate our Cell2Notify system is
the reduction in energy consumption, which directly translates to
increased battery lifetime. We also evaluate the increase in end-
to-end latency that a caller experiences when making a call to a
Cell2Notify client. Our results show that using Cell2Notify, users
can greatly increase the total usage lifetime of their Wi-Fi enabled
smartphones when using VoIP, while experiencing only a nominal
increase in initial call-setup latency.

6.1 Reduction in Energy Consumption
To quantify the energy savings enabled by Cell2Notify, we first

measured the power consumption of various commonly used wire-
less cards. The 802.11 standard [12] specifies various modes of op-
eration for the interface but not the specific implementation details.
Table 3 below illustrates the power consumption of several Wi-
Fi interfaces in the normal mode of operation, Awake Mode(AM),
and the low power mode called Power Save Mode (PSM), achieved
by duty cycling the wireless interface. The Cisco PCM-350 is

sometimes referred to in research literature for the sake of com-
parison, although it is known to be quite power inefficient. The
Netgear MA701 and Linksys WCF12 cards are the most power ef-
ficient among the cards that we have measured and thus we use the
Linksys WCF12 as a baseline for comparison. Once enabled, a Wi-
Fi interface usually takes some time to stabilize, before reaching a
state where it can perform active data transfer. Similarly, when dis-
abling a Wi-Fi interface it takes some time before the power drawn
by it becomes negligible. In addition to measuring the power con-
sumption of these wireless cards, we have also measured the power
consumption of a Windows Mobile based smartphone. The power
consumption for the Cingular 2125 was reported in Section 3.2 ear-
lier.

Vendor Average Power
Idle(AM) Idle (PSM) Active

Cisco PCM 350 1300mW 390mW 1600mW
Linksys WCF12 690mW 256mW 890mW
Netgear MA701 780mW 264mW 990mW

Table 3: Measured power consumption for 802.11b cards

The effective energy savings for a particular user are somewhat
dependent on their usage patterns. As stated earlier, our Cell2Notify
scheme keeps the Wi-Fi interface of a smartphone switched off at
all times, except during an active VoIP call. Thus, a user who uses
their phone for sporadic conversations will end up saving more
energy, in contrast to a heavy user who communicates more fre-
quently. Energy saved by our low power architecture is thus di-
rectly dependent on the amount of idle time experienced by a mo-
bile device.

In order to study typical usage patterns, we gathered detailed
cellular phone call-logs of different users. Using these call logs we
construct a similar trace of periods of communication activity and
inactivity, that would be experienced if the users were using VoIP
over Wi-Fi instead. Using these call traces we accurately estimate
the level of energy savings enabled by the Cell2Notify architecture.
We then compare this to the energy consumption of these devices,
if they were using the standard 802.11 operating modes, AM and
PSM respectively. This technique of using call-logs is similar to
the one used in Wake-on-Wireless [23].

Figures 6(a), 6(b) and 6(c) show the calling patterns of users
James, John and Beth respectively. James is a real employee in an
enterprise and is the heaviest user among five of his colleagues in
our study group. John is a light user with an average talk time of
about 5 minutes per hour. Beth on the other end is a hypothetical

187

0

10

20

30

40

50

Netgear
MA701(PSM)

Linksys
WCF12 (PSM)

Cell2Notify

E
n

er
g

y
(i

n
 K

Jo
u

le
s)

Beth John James

Figure 7: Energy consumption using two cards, with and without
Cell2Notify for three different users. Cell2Notify saves more energy
for lighter usage patterns.

0

10

20

30

40

50

60

70

Beth John James

L
if
e
ti
m
e
 (
H
o
u
rs
 o
f
U
s
a
g
e
)

Using WiFi Using Cell2Notify

Figure 8: Energy consumption of a Cingular 2125 with and with-
out Cell2Notify for three users. We assume that the user does not
use the smartphone for any other purpose, but only for making and
receiving VoIP calls.

person with a relatively heavy usage pattern, with an average talk
time of 15 minutes per hour. On the horizontal axis, the hour of the
day is shown ranging from 0 hours to 23 hours. The total number of
minutes that a user was actively communicating over the phone are
marked on the vertical axis. The different shaded subsections for
each vertical column depict the number of calls made in that hour
and the duration of each call. These call logs are illustrative traces
that help evaluate the estimated energy savings for these three usage
patterns.

Figure 7 plots the total communication energy consumption for
the various users calling patterns in a 24 hour period. The graphs
shows the energy consumed in the wireless interface when two low
power Wi-Fi cards (MA701, WCF12) are used, compared to the
energy consumption when utilizing the Cell2Notify architecture.
As can be seen even Beth, with a heavy usage pattern, can save
up to 47% of the energy consumption compared to using the Wi-Fi
cards in the Power Save Mode (PSM). John and James, who have
lighter usage patterns end up saving 70% and 87% respectively of
the energy consumed compared to using the Netgear MA701 in
PSM mode.

In essence, lowering the energy consumption leads to longer bat-
tery lifetime of a smartphone. To quantify the effects of our scheme
in terms of increased lifetime we measured the power consumption

0

2

4

6

8

10

12

Prototype Latency Expected Latency

L
a
t
e
n
c
y

(
in

s
e
c
s
)

SIP Register+Subcribe+Notify

Enable VoIP Client & Obtain IP

Connect to AP

Enable Wi-Fi interface

Call on Cellular Interface

Figure 9: Breakdown of various steps of the Cell2Notify protocol
in call-setup latency. The right bar shows the expected latency with
our proposed optimizations. Even without optimizations, the extra
delay is around ten seconds, which is less than two rings.

of a Wi-Fi enabled Smartphone (Cingular 2125) in various modes
of operation. Using our detailed power measurements reported
in Section 3.2 and the rated capacity of the phone battery (1150
mAH), we determine battery lifetime. Figure 8 shows the increase
in battery lifetime for the three usage scenarios. Our base compar-
ison is using the Wi-Fi in always on mode for the smartphone. As
can be seen Beth experiences a 70% increase in battery lifetime by
using Cell2Notify. John and James on the other hand experience
a 230% and 540% increase in lifetime, primarily because of their
light usage patterns.

6.2 End-to-End Latency
The reduction in energy consumption when using the Cell2Notify

architecture has an associated tradeoff with respect to the added la-
tency in connecting a VoIP call. Since the mobile device that is the
end recipient of the VoIP call has its wireless interface switched
off, there are multiple steps that have to be taken before the device
can actually accept the call over Wi-Fi. Each of these steps has an
associated latency overhead. In this section we evaluate these la-
tencies for our prototype implementation. We also provide detailed
measurements of these latencies for other platforms. Some of the
latencies are fixed costs which are beyond our control, for example
the time taken to connect a call over the cellular network, while
some of the other latency components can be optimized. Using
these measurements we can provide a reasonably accurate estimate
of the lower bound on the total end-to-end latency that a device
using our architecture experiences.

Cell2Notify Protocol Step Latency (in seconds)
Standard Dev. Max Value

Call on GSM 0.098 3.7
Enable Wi-Fi 0.265 1.7

Connect to AP 0.073 0.36
Enable VoIP Client 0.105 4.8
Obtain IP Address 1.08 4.44

SIP Operations 0.025 0.488

Table 4: Standard deviation and maximum values for various steps
of the Cell2Notify protocol. Note that the steps “Enable VoIP
Client” and “Obtain IP Address” occur in parallel.

188

Figure 9 shows the breakdown of the call-setup latency intro-
duced by various steps of the Cell2Notify system. The bar on the
left in the figure shows the latencies measured on our prototype im-
plementation using the combination of a Windows XP laptop and
an SE-810i cellular phone. The column on the right shows the ex-
pected latency for the case of a final product implementation on a
smartphone. Each latency value presented in the Figure is an aver-
age over a minimum of ten runs. We present the standard deviation
and maximum values for each of these steps in Table 4.

Our measurements show that the average added latency for our
prototype implementation is around ten seconds. This extra wait is
equivalent to two rings received by the caller. We believe this over-
head is minimal and acceptable in most scenarios. Furthermore, we
expect a real smartphone and enterprise deployment of Cell2Notify
to incur an overhead of around seven seconds, which will provide
a more seamless experience to users of Cell2Notify.

A big chunk of the overhead is the time taken by the SIP server
to call the GSM interface of the Sony Ericsson cell phone. It is dif-
ficult to accurately quantify this overhead, since the caller (server)
and callee (Sony Ericsson handset) are on two different machines.
We used a stopwatch to measure this time for over 20 runs, but
we are aware of possible inaccuracies due to human reaction times.
However, we note that our reaction times will likely result in an
overestimate of the latency. As we see in Figure 9, the time taken
for the Cell2Notify server to call the GSM interface of the Sony
Ericsson phone is around 3.7 seconds in our prototype. A large
portion of this overhead seems to be the time taken to call Junc-
tion Networks, and for Junction Networks to make a long distance
call to our cell phone. To estimate the time it would take in a real
prototype, we tested calling a local cell phone number using the
Sipura [24] ATA that we have set up in our lab. We note that this
time was only 2.5 seconds. Since most enterprises will have their
private VoIP gateway, this seems to be a reasonable estimate in a
real prototype.

We further explored the lower bound of this delay when the VoIP
gateway is on the enterprise LAN. We placed calls from the SIP
server to the client phone through the Junction Networks VoIP gate-
way, and for different types of client phone connections. We placed
10 calls for each connection type, and present the distribution of the
time taken to place these calls in Table 5. We note that it takes an
extra second to place a call to the GSM phone, and the connection
quality of the phone does not add a significant latency. Further-
more, it takes much lesser time to place a call on the CDMA phone.
This latency is comparable to the time taken for placing a call to the
land line phone, which is around 2.4 seconds.

Client Phone (Signal) Latency (in seconds)
Avg. Std Dev. Max.

GSM Cingular (Excellent) 3.6 0.074 3.6
GSM Cingular (Poor) 3.78 0.092 3.9
CDMA Verizon (Fair) 2.44 0.117 2.6

Landline Phone 2.41 0.074 2.5

Table 5: Distribution of time taken by the SIP server to “ring” a
phone for various connection types. We present the latency to ring
a land line number as a reference.

Our optimization of using cached Access Point BSSIDs gives
good results. Our Cell2Notify client is able to associate with the
AP in less than 200 ms. We used three different APs on three dif-
ferent frequency channels in our experiments. We disabled the card
and randomly picked an AP to associate with in each run. We also
measured the default time to connect to an AP without our opti-

mization of caching the AP information resulting in a much higher
overhead, between 3 and 4 seconds in each run. This latency is ex-
pected since without our optimization, the wireless card goes into
scan mode. It stays for over 100 ms in each channel (all 802.11 a
and g channels), and only then associate with the best AP.

Another significant latency in Cell2Notify is the time to obtain
an IP address and bring up the softphone. As shown in Figure 9
this overhead is around 5 seconds in our prototype. Although it
only takes about 2.5 seconds to obtain the DHCP address, the total
time to start the X-Lite SIP client process takes around 5 seconds.
As mentioned earlier, we had to restart the SIP client process to
avoid modifications to the SIP client code. In an actual implemen-
tation over smartphone, we do not expect this artificial overhead of
restarting the SIP client to be present. Instead, the only overhead
should be the time required to obtain a valid IP address.

After the softphone has initialized and obtained a valid IP ad-
dress it sends a SIP Register message, and a Subscribe message to
the Cell2Notify server, which together take less than 0.5 seconds.
Once the server receives the SIP register from the Windows XP SIP
client, it connects the call. These steps have very low overhead.

Finally, we note that since most users are willing to tolerate up to
five rings (25 seconds) after call connection to reach the voice mail,
the less than ten seconds (2 rings) delay introduced by Cell2Notify
is acceptable in most scenarios. Ideally a user study would be use-
ful to estimate the actual impact of this increase in latency. We plan
to investigate this as part of our future work.

7. DISCUSSION
We now discuss various issues in the design of Cell2Notify. We

first discuss the legality of our approach, and show how our sys-
tem can be secured against spoofed Caller-IDs. We then discuss
the concerns that cellular operators may have to the deployment of
Cell2Notify.

7.1 Is Caller-ID Spoofing Legal?
There is no law in the US against Caller-ID spoofing [30]. Caller-

ID over PSTN is sent using the SS7 signaling protocol. Before
the days of VoIP, expensive equipment was required to spoof a
Caller-ID. With VoIP, one can introduce fake Caller-ID informa-
tion when passing the call from IP to PSTN. There are a number
of commercial services [26,27] that allow users to make calls from
a spoofed Caller-ID. This has led to a few abuse cases of “pretext
calls”, where people pretend to be someone else to extract private
information [30]. Therefore, in a recent development, the FCC is
investigating the use of Caller-ID spoofing for fraudulent purposes.
However, since Cell2Notify does not attempt any fraudulent activ-
ity, we do not expect it to be affected in the near future.

7.2 Handling Spoofed Caller-IDs
Given that Caller-ID spoofing is legal in some countries such

as the US, we need to protect against attackers who might spoof
the Caller-ID of the Cell2Notify proxy causing the smartphone to
enable the Wi-Fi card and waste battery power. We can thwart
this attack by authenticating the Cell2Notify proxy at the client us-
ing standard cryptographic techniques. One way to achieve this is
to use the S/KEY system [11], which originated from Lamport’s
scheme [17] as follows. The Cell2Notify proxy shares a different
secret key with each VoIP user, which is set up during secure regis-
tration. The first Caller-ID used by the proxy is the last nine digits
of a one-way hash applied n times over the secret key, where n is
a large number. The first digit of the Caller-ID is set to 0 to avoid
collisions with a PSTN phone number. The subsequent Caller-ID
is an n − 1 times one-way hash of the secret key, and so on. The

189

Cell2Notify client authenticates the proxy by applying the one-way
hash on the Caller-ID to see if it matches the previous Caller-ID.
Given a strong hash function, this scheme can provide reasonable
protection against a spoofed Caller-ID attack.

7.3 Concerns of Cellular Operators
Cellular operators have a valid reason for blocking the Caller-

ID of the Cell2Notify server. After all, Cell2Notify only uses their
network as a signaling channel. Consequently, cellular operators
do not stand to gain by allowing Cell2Notify. We have several
reasons to believe that cellular operators might be willing to allow
Cell2Notify to make signaling calls over their network. Cell2Notify
imposes little load on their network as for every incoming call to
the VoIP phone, we make one signaling call over the cellular net-
work which does not last more than a few seconds. Even assuming
that the VoIP phone has similar usage characteristics as the cellu-
lar phone (in Section 6 we show in fact that an enterprise phone
is used quite infrequently), a ring for every incoming call imposes
little extra overhead. Furthermore, users might be willing to pay
an extra “connection charge” to achieve longer battery lifetime. In
some cases, the enterprise may be willing to pay a flat fee to cellular
operators to support this service. We also believe this work is ex-
tremely timely given the launch of T-Mobile’s UMA service [29].
Cellular operator’s supporting UMA [14] can provide Cell2Notify
service as an additional selling point. Finally, we note that it might
be technically infeasible for cellular operators to block calls from
the Cell2Notify server, since the proxy uses a different Caller-ID
each time it sends a signal using the mechanism described in Sec-
tion 7.2.

8. RELATED WORK
Several projects have investigated techniques to optimize the en-

ergy consumption of the Wi-Fi interface in battery powered mobile
devices. These techniques range from protocol optimizations in
various layers of the networking protocol stack for single Wi-Fi ra-
dio based systems, to techniques that leverage multiple radios on
the same device. In the case of systems based on a single Wi-Fi
radio, researchers have explored various optimizations at the appli-
cation layer [8, 16], transport layer [5] and MAC Layer [15, 32].
However, as we have shown earlier, the power consumption for Wi-
Fi in the lowest power mode (PSM) is still quite substantial even
when the device is idle. Cell2Notify, in contrast proposes the use
of a long range cellular radio, which has an order of magnitude less
power consumption than Wi-Fi PSM, to notify a Wi-Fi smartphone
of an incoming call.

Taking into account the high idle power of Wi-Fi, the idea of us-
ing a second lower power radio to wake-up a higher power radio,
has been proposed [1,23]. Wake-on-Wireless [23] proposes the use
of a second special-purpose radio that serves as a wake-up channel
for a Wi-Fi radio. The authors have proposed a PDA based phone
usage scenario for their system, similar to Cell2Notify. However
the choice of the short range custom radio necessitates multiple in-
termediate proxies and presence servers in order to notify the PDA-
phone of an incoming call. On-Demand-Paging [1], builds on the
idea of [23], to use a commodity Bluetooth radio present on mobile
devices to serve as a low power paging channel for Wi-Fi. The pri-
mary difference between our scheme and both Wake-On-Wireless
and On-Demand-Paging is our design choice to leverage the much
longer range cellular radios compared to their choice of short range
radios. This has two important advantages. First, since Cell2Notify
uses cellular radios with almost ubiquitous coverage, the area of
operation is much larger. Second, the infrastructure support needed
for our scheme is minimal, with only minor software modifications

needed at both the client device and an existing VoIP proxy in terms
of call handling rules. Comparatively both the above schemes need
substantial additional infrastructure support, while still limiting the
area of operation to their region of deployment.

Another set of related work looks at using multiple radios for
active data transfer, rather than just wake-up [4, 20, 25]. Tur-
ducken [25] investigates the application scheduling problem across
heterogeneous subsystems to maximize the battery lifetime of a
mobile device. Cell2Notify addresses a different problem of en-
abling the Wi-Fi interface only when required for a specific VoIP
over Wi-Fi scenario within the context of a smartphone. Another
related work, called CoolSpots [20], builds on the ideas first pre-
sented in [4], and presents algorithms to opportunistically use either
the Wi-Fi or Bluetooth interface to increase the battery lifetime of
a device. In areas where the device and the Wi-Fi Access Point
are within Bluetooth coverage, CoolSpots uses flow characteris-
tics to determine the best interface to use for the flow. In contrast,
Cell2Notify is geared towards a specific VoIP over Wi-Fi applica-
tion. It uses the second cellular radio purely for signaling. In fact,
Cell2Notify is complimentary to CoolSpots, and if the smartphone
also has a Bluetooth radio, we could use CoolSpots to determine
the best radio (Wi-Fi or Bluetooth) to route the VoIP traffic, after
Cell2Notify has signaled an incoming call over the cellular inter-
face.

A very recent industry trend is the convergence of Wi-Fi and cel-
lular services, using a technology called Universal Mobile Access
(UMA). For example, chipset vendor Kineto [14] and mobile ser-
vice provider T-Mobile [28] recently tested a service that allows a
subscriber to make unlimited phone calls from the home hotspot
or T-Mobile hotspots [29]. UMA increases coverage and reduces
the cost for mobile operators. Our approach is complimentary to
UMA. Devices using UMA could use our protocol to increase the
battery lifetime of dual radio devices.

9. CONCLUSION
In this paper we present a new system, called Cell2Notify, which

leverages the cellular interface on a smartphone to reduce energy
consumption of VoIP over Wi-Fi enabled smartphones. We quan-
tify the performance of cellular data networks when used for VoIP
and compare these results with Wi-Fi. We conclude that Wi-Fi con-
sumes less power and delivers better performance than cellular data
networks. To the best of our knowledge, ours is the first research
paper to present such measurements. We present the Cell2Notify
architecture that turns the Wi-Fi interface off when it is not in use.
The Cell2Notify Server places a call on the smartphone’s cellular
interface to notify the device of an incoming call. On receiving this
notification, Cell2Notify turns on the smartphone’s Wi-Fi interface
and completes the call over Wi-Fi. Our system works with existing
technologies and requires minimal changes to an enterprise’s VoIP
deployment. We have built a prototype of Cell2Notify and evalu-
ated it in detail. We have shown that in most cases, Cell2Notify
incurs less than two rings (10 seconds) of call setup latency while
more than doubling the average battery lifetime of a smartphone.

Acknowledgements
We thank our shepherd Mark Corner and the MobiSys anonymous
reviewers for their feedback on this paper. We also thank Jitu Pad-
hye for insightful discussions during the design of Cell2Notify,
and Patrick Verkaik and Sudipta Kundu for their feedback on the
Cell2Notify prototype. We thank David Campbell and Eric Put-
nam for helping us with the smartphone power measurements.

190

10. REFERENCES
[1] Y. Agarwal, C. Schurgers, and R. Gupta. Dynamic Power

Management Using On Demand Paging for Networked
Embedded Systems. In Proceedings of the 2005 Conference
on Asia South Pacific Design Automation, pages 755–759,
New York, NY, USA, 2005. ACM Press.

[2] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning
Wireless Network Power Management. In Proceedings of the
Annual ACM/IEEE International Conference on Mobile
Computing (MobiCom), pages 176–189, New York, NY,
USA, 2003. ACM Press.

[3] Asterisk. The Open Source PBX. http://www.asterisk.org/.
[4] P. Bahl, A. Adya, J. Padhye, and A. Wolman. Reconsidering

Wireless Systems with Multiple Radios. ACM Computer
Communication Review, Jul 2004.

[5] D. Bertozzi, A. Raghunathan, L. Benini, and S. Ravi.
Transport Protocol Optimization for Energy Efficient
Wireless Embedded Systems. In Proceedings of the
conference on Design, Automation and Test in Europe
(DATE’03), page 10706, Washington, DC, USA, 2003. IEEE
Computer Society.

[6] R. Chandra, V. Padmanabhan, and M. Zhang. WiFiProfiler:
Cooperative Fault Diagnosis in WLANs. In Proceedings of
the Annual ACM/USENIX International Conference on
Mobile Systems, Applications and Services (MobiSys), 2006.

[7] COUNTERPATH. X-Lite 3.0 telephony client.
http://www.xten.com/.

[8] J. Flinn and M. Satyanarayanan. Managing Battery Lifetime
with Energy-Aware Adaptation. ACM Transactions on
Computer Systems, 22(2):137–179, 2004.

[9] FMA. floAt’s Mobile Agent Online.
http://fma.sourceforge.net/.

[10] GSM World. TW 09 Battery Life Measurement Technique.
http://www.gsmworld.com/documentgs/index.shtml.

[11] N. Haller. The S/KEY One-Time Password System. RFC
1760, February 1995.

[12] IEEE802.11b/D3.0. Wireless LAN Medium Access
Control(MAC) and Physical (PHY) Layer Specification:
High Speed Physical Layer Extensions in the 2.4 GHz Band,
1999.

[13] Junction Networks. SIP, IAX, IAX2 and Asterisk VoIP
Service for Business. http://www.junctionetworks.com/.

[14] Kineto Wireless. The UMA Company.
http://www.kinetowireless.com/.

[15] R. Krashinsky and H. Balakrishnan. Minimizing Energy for
Wireless Web Access with Bounded Slowdown. In
Proceedings of the Annual ACM/IEEE International
Conference on Mobile Computing (MobiCom), pages
119–130, New York, NY, USA, 2002. ACM Press.

[16] R. Kravets and P. Krishnan. Application-driven Power
Management for Mobile Communication. Wireless
Networks, 6(4):263–277, 2000.

[17] L. Lamport. Password Authentication with Insecure
Communication. Communications of the ACM, November
1981.

[18] K. Mahmud, M. Inoue, H. Murakami, and M. Hasegawa.
Energy Consumption Measurement of Wireless Interfaces in
Multi-Service User Terminals for Heterogeneous Networks.
In ICICE Transactions on Communications, 2005.

[19] G. Parsons. Real-time Facsimile (T.38) - image/t38 MIME
Sub-type Registration. RFC 3362, August 2002.

[20] T. Pering, Y. Agarwal, R. Gupta, and R. Want. CoolSpots:
Reducing the Power Consumption of Wireless Mobile
Devices with Multiple Radio Interfaces. In Proceedings of
the Annual ACM/USENIX International Conference on
Mobile Systems, Applications and Services (MobiSys), 2006.

[21] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
Session Initiation Protocol. RFC 3261, June 2002.

[22] H. Schulzrinne and J. Rosenberg. A Comparison of SIP and
H.323 for Internet Telephony. Proceedings of Network and
Operating System Support for Digital Audio and Video
(NOSSDAV), 1998.

[23] E. Shih, P. Bahl, and M. J. Sinclair. Wake on Wireless: An
Event Driven Energy Saving Strategy for Battery Operated
Devices. In Proceedings of the Annual ACM/IEEE
International Conference on Mobile Computing (MobiCom),
2002.

[24] Sipura. SPA-3000 Analog Telephony Adapter.
http://www.sipura.com/products/spa3000.htm.

[25] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins.
Turducken: Hierarchical Power Management for Mobile
Devices. In Proceedings of the Annual ACM/USENIX
International Conference on Mobile Systems, Applications
and Services (MobiSys), 2005.

[26] SpoofCard. Be Who You Want To Be.
http://www.spoofcard.com/.

[27] Spooftel. The Worlds Leader In Caller ID Spoofing.
http://www.spooftel.com/.

[28] T-Mobile. Stick Together with T-Mobile.
http://www.t-mobile.com/.

[29] The New York Times. T-Mobile Tests Dual Wi-Fi and Cell
Service, October 2006. http://www.nytimes.com/.

[30] Thomas J. Navin, Chief, Wireline Competition Bureau, FCC.
H.R. 5126, the Truth in Caller ID Act of 2006, May 2006.
http://www.fcc.gov/ola/docs/navin051906.pdf.

[31] voip-info.org. The VoIP Wiki.
http://www.voip-info.org/wiki/.

[32] H. Woesner, J.-P. Ebert, M. Schlager, and A. Wolisz. Power
Saving Mechanisms in Emerging Standards for Wireless
LANs: The MAC Level Perspective. IEEE Personal
Communications, 5(3):40–48, June 1998.

191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

