
Improved Access Point Selection

Anthony J. Nicholson†,∗

tonynich@eecs.umich.edu
Yatin Chawathe∗

yatin.research@chawathe.com
Mike Y. Chen∗

mike.y.chen@intel.com

Brian D. Noble†

bnoble@eecs.umich.edu
David Wetherall∗,‡

djw@cs.washington.edu
†University of Michigan ∗Intel Research Seattle ‡University of Washington

ABSTRACT
This paper presents Virgil, an automatic access point discov-
ery and selection system. Unlike existing systems that se-
lect access points based entirely on received signal strength,
Virgil scans for all available APs at a location, quickly as-
sociates to each, and runs a battery of tests to estimate the
quality of each AP’s connection to the Internet. Virgil also
probes for blocked or redirected ports, to guide AP selection
in favor of preserving application services that are currently
in use. Results of our evaluation across five neighborhoods in
three cities show Virgil finds a usable connection from 22%
to 100% more often than selecting based on signal strength
alone. By caching AP test results, Virgil both improves per-
formance and success rate. Our overhead is acceptable and
is shown to be faster than manually selecting an AP with
Windows XP.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management, Public networks
; C.2.4 [Computer-Communication Networks]: Local
and Wide-Area Networks
; D.4.4 [Operating Systems]: Communications Manage-
ment—Network communication

General Terms
Experimentation, Management, Measurement

Keywords
802.11, access point selection, opportunistic connectivity,
public networks, wireless networking

1. INTRODUCTION
Mobile users have come to expect nearly constant con-

nectivity, provided in part by the ever-increasing density
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Figure 1: A sea of bandwidth. Users increasingly
must choose the “best” access point from many (cir-
cled in the illustration).

of wireless access points. 802.11 wireless LAN access points
(APs) are increasingly widespread in urban areas, with users
commonly finding multiple APs on each scan.

Access point selection is still a critical problem, however.
Consider the scenario illustrated in Figure 1. Customers at
a sidewalk cafe encounter four access points—one from the
coffee house, two from residents on the floors above (who
may not even allow strangers to use their access points), and
another next door, part of the city’s free WiFi deployment.
Which AP will provide the best quality of service?

Unfortunately, these APs are under decentralized control,
and are managed by a varied set of residents and businesses.
Consequently, many APs reject or restrict foreign users in
a variety of ways. Since there is no common administra-
tive control, there is also no centralized database to guide
users’ selection policies in favor of the APs providing the best
service. While many searchable databases of “wardriving”
maps exist [16, 30], these maps become outdated quickly
and provide no information about access points apart from
the basic information broadcast in the beacon signal.

Worse, AP selection is driven by the physical layer. The
selection policy currently used by all common operating
systems for automatically selecting an access point simply

233



scans for APs and then chooses the unencrypted one with
the highest signal strength. However, this policy, which we
call strongest signal strength, or SSS, ignores other factors
that matter to the end user. For example, the AP with the
strongest signal might belong to a pay service, to which the
user does not subscribe. APs that appear open may use
MAC address filtering to block traffic from foreign users.
The bandwidth and latency of an AP’s Internet connection
depends on the type of ISP to which its owner subscribes—a
cable modem, DSL, or dial-up. The signal strength of the
access point is orthogonal to such considerations.

Currently this problem can be solved by hand-tuning con-
nection preference tables, to enumerate the APs and net-
works to which one’s device should connect. This is only
feasible for the most common locations a user visits. At
other locations, users might have to try several available net-
works before finding a usable connection. This is an onerous
task at best that should be automatic.

Furthermore, in the future, users’ computing devices will
increasingly be always-on, pervasive devices with wireless
radios. Such devices will continually need to find the best
wireless connection at new locations without any user input
as their owners move through their daily routine. For such
a utopian wireless future to be possible, we need to reduce
the friction mobile devices currently encounter when trying
to easily find the best available wireless connection.

To determine the scope of the problem, we conducted a
small field study, examining the efficacy of strongest-signal
selection. The results showed that the SSS algorithm often
chose an unusable AP when a usable AP existed, and in
fact performed no better than choosing an AP at random.
Usable in this case means an AP which both grants an IP
address to unknown clients via DHCP, and allows Internet
traffic through at least one port. This suggested that signal
strength is an insufficient predictor of AP quality.

Ideally, we would want our wireless clients to quickly ex-
amine all available connection points, and automatically se-
lect the one appropriate for our current needs that provides
the best quality of service. In this paper, we present Virgil1,
an improved access point selection system. Virgil quickly
associates to each new AP found in a scan set and runs a
battery of simple tests, designed to probe the AP’s suit-
ability for use. We use a small set of reference servers
spread throughout the Internet to let Virgil estimate ex-
pected bandwidth and round-trip-time to remote servers.
Users also want seamless mobility from an application-level
perspective, but different access points may allow or deny
traffic on different network ports. Virgil therefore connects
to reference servers on a wide range of TCP and UDP ports
to check for port traffic blocked or redirected by each pros-
pective AP. Based on the test results, Virgil chooses the best
access point available, rather than guessing based on metrics
like signal strength.

Our evaluation results from five neighborhoods in three
different cities show Virgil found a usable access point from
22% to 100% more often than selecting based on signal
strength. We also showed that maintaining a database of
AP test results boosts these success rates even higher for
neighborhoods a user visits often. Finally, analysis showed
that Virgil’s overhead, while not negligible, is still reasonable
enough as to be useful to users. Compared with selecting

1In The Divine Comedy, Virgil was Dante’s guide through
the underworld.

access points manually, Virgil is faster and fully automatic,
removing an unnecessary burden from users. Furthermore,
overheads in revisited neighborhoods are indistinguishable
from that required by SSS policies.

In the course of our field study and subsequent evaluation
of our prototype implementation of Virgil, we encountered
and tested nearly 4000 access points. Our trace logs and AP
databases are freely available to the community through the
CRAWDAD2 archive.

1.1 Legal and Security Issues
Previous “war-driving” studies passively scanned the air

for beacon signals that access points willingly broadcast.
What we are proposing—actively connecting to each open
access point and transmitting a small amount of data to
estimate that AP’s connectivity to the Internet—arguably
raises the question of whether it is legal to connect to any
open (but possibly private) wireless network. While most ju-
risdictions worldwide prohibit unauthorized access to com-
puter systems, it is not clear how these laws apply to using
someone’s wireless connection [18].

Such concerns are not trivial. However, it is also true that
many individuals (and enterprises) are completely willing to
allow strangers to connect to the Internet via their wireless
networks. Many coffee shops offer free wireless connectivity.
Most major cities have one or more “grassroots” wireless
collectives, such as the Bay Area Wireless Users Group [2],
Seattle Wireless [28], and NYCWireless [23]. Many local
governments are deploying free APs in public spaces as well.
For example, in our field study, we could often detect APs
belonging to the city’s infrastructure and to a grassroots
organization in the same location. In the presence of such
truly open networks, we argue that our technique is still
useful. If it were possible to modify the 802.11 broadcast
beacons to include an “open” flag, we could leverage it to
restrict our search to only open networks.

A second problem with scanning and using relatively un-
known wireless networks is caused by the rise of “evil twin”
or “pharming” attacks on public access points [3]. In such
attacks, a criminal uses his laptop to masquerade as a wire-
less AP. When other users connect to his “AP”, he interposes
on all their data traffic before forwarding it on to a valid AP
(or simply dropping it altogether). Thus, even if users nego-
tiate encryption keys—by using HTTPS, for example—the
attacker can interfere with key establishment and steal all
subsequent credit card numbers, bank data, or passwords
protected by such session keys.

We argue that if users cannot trust their network access
points, end-to-end encryption is the only reliable way to pro-
tect sensitive data. Recent work of ours [21, 22] focused on
solving this problem of establishing end-to-end trust when
neither party trusts any of the intervening network hops
completely—not even their network access points. This and
other related work [7, 20, 25] are complementary to the main
focus of this paper—improving the wireless access point dis-
covery process.

1.2 Contributions
We make the following contributions in this work. First,

we show that the AP selection algorithm most frequently
in current use (strongest-signal-strength) often performs no
better than selecting access points at random. Second, we

2http://crawdad.cs.dartmouth.edu/
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scan for all available APs
log AP beacon information for all APs
for each unencrypted AP do

try to get IP address by DHCP
if DHCP successful then

(1) estimate round-trip-time to reference server
(2) test open ports
(3) estimate bandwidth to reference server

Figure 2: Field study script.

are the first to illustrate the benefit of quickly associating
to each available AP and testing the suitability of each for
use. Third, we collected detailed data on the properties of
over 4000 real-world access points, including not just beacon
frame information but also application-level test results.

2. FIELD STUDY
Many popular operating systems (such as Windows XP,

Mac OS, and Linux) use essentially the same policy to guide
wireless access point selection when more than one AP is
available. If the system finds one of the APs in a list of
“preferred networks” explicitly saved by the user, it chooses
that AP. Otherwise, it simply scans for all available APs
and chooses the unencrypted AP with the strongest sig-
nal strength. We will call this algorithm strongest-signal-
strength or SSS.

The problem of AP selection first drew our interest be-
cause we believed selecting APs based on signal strength is
often the wrong thing to do. Specifically, we designed a field
study to answer the following questions:

1. Do users commonly see multiple access points each
time they scan for a new AP?

2. Does strongest-signal-strength selection often choose
an unusable access point when a different, usable AP
was available?

3. Do usable access points vary significantly with regard
to the quality of Internet connection they provide?

By “usable”, we mean an unencrypted access point that
both grants a DHCP address to anonymous clients and al-
lows Internet traffic through at least one port. For example,
a public hotspot that blocks all TCP traffic except port 80
(HTTP) would still be considered “usable”.

2.1 Methodology
For our field study setting, we chose Chicago, the third-

largest city in the United States (population: 2.8 million [5]).
Since all cities have different neighborhoods of varying den-
sity, we studied three representative neighborhoods:

• The Loop (Downtown): Chicago’s central business dis-
trict. Workday population density: 235,000/km2 [5].

• Wicker Park (Residential): A middle-class, high-den-
sity urban neighborhood. Residential population den-
sity: 7400/km2 [5].

• Evanston (Suburban): An upper-middle-class suburb
and college town, north of the city limits. Residential
population density: 3700/km2 [5].

Downtown Residential Suburban
APs found 797 464 256

APs per scan 2.4 2.0 1.8
APs granted 78 81 43
IP address (9.8%) (17.5%) (16.8%)
APs using 445 287 148
encryption (55.8%) (61.9%) (57.8%)

(a) All Encountered Access Points

Downtown Residential Suburban
APs granted 78 81 43
IP address

Usable 42 81 42
APs (53.9%) (100%) (97.7%)

APs redirect 38 1 1
port 80 (48.7%) (1.2%) (2.3%)

APs with open 37 75 39
port 80 (47.4%) (92.6%) (90.7%)

(b) Open Access Points

Table 1: Field Study: AP Statistics. We walked
an approximately 1.3 km2 area in each of three
Chicago neighborhoods. “Usable APs” were APs
that granted an IP address to our handheld device
and allowed port traffic through at least one TCP
port.

In all three neighborhoods, we walked a 1/2 mi2 (1.3 km2)
grid of city streets with a PDA containing an 802.11 wireless
card. We chose to “warwalk” rather than “wardrive” so our
script would have time to associate with found APs and
run tests, rather than just log 802.11 beacon information.
The PDA ran Familiar Linux, a distribution targeted for
handheld devices [13].

Note that these results are not intended to represent any
realistic mobility model. We quite literally walked up and
down streets in these neighborhoods in a grid fashion. The
results in aggregate, however, are useful for drawing conclu-
sions about the quantity, quality and frequency of wireless
connectivity available in the target neighborhoods.

We used a Compaq iPAQ handheld with an 802.11b wire-
less LAN card to collect data on the density and properties
of different access points in an urban environment. Figure 2
summarizes the field study script in pseudocode.

The reference server (RS) was a dedicated machine at the
University of Michigan, directly connected to the Internet.
To estimate round-trip-time, the script simply pinged the
RS twice, and used the second result. The RS also ran a
simple daemon which listened on 37 common TCP ports, in-
cluding ssh (22), SMTP (25), HTTP (80), Windows DCOM
(135) and Samba (445). To test for open ports, the field
study script sent a random integer nonce to the RS on each
TCP port number and the RS returned (nonce + 1). We
performed this nonce exchange rather than simply testing
for establishment of TCP connections in order to verify that
the access point was not redirecting traffic on that port to
its own server.3 If the script received anything other than

3Many commercial access points redirect all traffic to a spe-
cial sign-on page (a splash screen).
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Figure 3: Field Study: Histogram, APs encountered
per scan. Percentage of scans for each neighborhood
that found a given number of APs.

the expected nonce + 1 value, the port was marked “redi-
rected”. If the connect to the reference server failed, the
port was marked “closed”. To estimate bandwidth to the
RS, the script connected to a special reserved port on the
RS. The RS then transmitted random data at full speed over
the TCP connection. The script received data for one sec-
ond and then broke the connection. To avoid the effects of
TCP slow start, we discarded the first 500 ms of data and
calculated the bandwidth estimate from the remainder.

2.2 Access Point Statistics
We encountered a total of 1517 unique access points in all

three neighborhoods. However, as Table 1(a) shows, few of
these granted a DHCP address to our iPAQ handheld. It
is interesting to observe that well over half of all APs had
WEP or WPA encryption enabled. This suggests that a
majority of users proactive enough about their security to
manually enable a feature that typically defaults to off on
most consumer-grade APs.

Figure 3 shows the histogram of APs found per scan in
each neighborhood. Note that, for a substantial percentage
of scans, multiple APs were available. This is encouraging
since, when foraging for bandwidth, only one access point
out of many need be usable at a given location for a user to
be satisfied.

Table 1(b) gives statistics for the subset of access points
that granted a DHCP address to our client. Around half
of the open APs in the central business district block all
TCP port traffic, and redirect port 80. This corresponds
to the expected use of “splash-screen” logins for commercial
hotspots. As we will see, such APs are a major source of
error for the strongest-signal-strength AP selection policy,
since what appears to be an open AP with a strong signal
is in fact useless unless the user has an account with the
service provider.

2.3 Missed Connectivity Opportunities
For each of the three neighborhoods studied, we took a

60-minute trace segment and applied a sliding window to
generate several 30-minute “walks”. Each walk represents a
sequence of scans with a different set of seen APs.

Downtown Residential Suburban
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Figure 4: Field Study: Simulated percentage of
scans that found a usable AP. “Random” algorithm
chooses an unencrypted AP at random. “SSS”
chooses the unencrypted AP with the strongest sig-
nal strength. “Omniscient” simulates an algorithm
which uses the results of AP probes to choose the
AP with the best bandwidth.

For each walk, we first simulated a “random” algorithm,
which simply chooses a random unencrypted AP. Next, we
simulated the strongest-signal-strength selection algorithm.
This generated a sequence consisting of the strongest signal
strength APs from each scan in the walk. Lastly, we applied
an omniscient algorithm, which used the results of our tests
to choose the “best” AP from each scan set. For this ex-
periment, the best AP was the one that granted a DHCP
address and had at least one port open. If more than one
AP qualified, we picked the one that had the best bandwidth
estimate to the reference server.

For each generated AP sequence, we used as our metric
the percentage of scans that would have found a usable AP.
The difference between the performance of the omniscient
algorithm and the SSS algorithm represents the time dur-
ing which a client using SSS would have been disconnected
even though there was a usable AP within range. We aver-
aged the results of all the different 30 minute walks for each
algorithm (random, SSS and omniscient), and graphed the
results above.

As Figure 4 shows, in comparison to SSS, the omniscient
algorithm found a usable AP 56%, 11%, and 16% more often
in the downtown, residential and suburban neighborhoods,
respectively. This represents significant missed connectivity
opportunities for users. As we noted above, this is partly
due to hotspots with “splash screen” logins. But since such
hotspots were almost entirely confined to downtown, the
connectivity gap in the residential neighborhoods cannot be
accounted for solely by SSS choosing commercial hotspot
APs. This suggests SSS is often passing on usable APs be-
cause of their signal strength, when the APs with stronger
signals are in fact unusable.

Most strikingly, our simulations show that simply choos-
ing an AP at random outperforms SSS for downtown, and is
roughly the same in the other two neighborhoods. We inter-
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Figure 5: Field Study: RTT and bandwidth. Cumulative distribution functions. Note the variance in RTT
and bandwidth per AP within each neighborhood.

Downtown Residential Suburban
port # service open redirected closed open redirected closed open redirected closed

135 DCOM 36 8 34 30 1 50 0 3 40
445 SMB 29 8 41 27 1 53 0 4 39
25 SMTP 28 9 41 31 0 18 36 0 7
21 FTP 29 16 33 63 1 17 37 0 6
22 SSH 37 8 33 69 2 10 37 0 6
23 telnet 39 10 29 73 1 7 37 0 6
79 finger 40 9 29 70 2 9 40 0 3
80 HTTP 37 38 3 75 1 5 39 1 3

Table 2: Field Study: Ports of interest. DCOM (Microsoft’s RPC) and Samba (Windows file sharing) were
the most-targeted services.

preted this result as yet another validation of our belief that
an AP’s signal strength is a poor predictor of its suitability
for use.

Furthermore, across all three neighborhoods, only 10.8%
of access points were usable, but 22.6% of scan sets had a
usable AP. This further reinforced our belief that choosing
the best access point out of all the ones that can be seen at
any given point is critical.

2.4 All APs Are Not Created Equal
Lastly, the field study sought to examine how access points

vary in the quality of service they provide. If different APs
all provide basically the same quality connection, then when
multiple usable APs were present at one spot an AP selec-
tion algorithm might as well just choose one at random.

However, our results showed access points are heteroge-
neous. Figure 5 shows the cumulative distribution functions
for both the round-trip-time and bandwidth estimates, for
all APs encountered during the field study. None of the
CDFs converge rapidly to 100%, indicating a large variance
in the results. This further bolstered our belief that, when
multiple usable APs are present at one location, an AP se-
lection algorithm should use the results of tests like those
conducted for this field study to guide its choice.

We also found that access points vary widely with regard
to what TCP port traffic they allow, block, or redirect. Ta-
ble 2 illustrates the results of port scans for the eight most-

blocked services. While most APs allowed the majority of
port traffic, these were some notable exceptions. Ports 135
(DCOM) and 445 (Samba) are used by Microsoft Windows
for remote procedure calls and file sharing. These are com-
mon points of entry for hackers, and are often blocked at the
ISP for that reason. Port 25 handles the Simple Mail Trans-
fer Protocol (SMTP). ISPs often block this port to prevent
spammers from using the AP as a broadcast point. Finally,
note that in downtown, HTTP traffic is often redirected (for
splash-screen logins), but such hotspots are rarely seen in
the residential neighborhoods.

These port results suggest it is useful for AP selection al-
gorithms to know what port traffic a given AP allows. For
example, suppose a user has configured her e-mail program
to send e-mail by connecting to her own ISP’s SMTP server
over port 25. When she moves to a new location and opens
her laptop, several usable networks are available. All things
being equal, she would prefer that her computer uses an ac-
cess point that allows her to connect directly to her ISP’s
SMTP server without blocking or redirecting port 25 traf-
fic. Otherwise, she must close Thunderbird and switch to a
webmail interface which may or may not be available from
her mail server.
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3. VIRGIL
The results of the field study motivated our belief that

selecting access points based on signal strength results in a
significant waste of potential network connectivity. Given
that SSS performed no better than random selection in our
field study simulations, we concluded that signal strength is
an insufficient criterion to consistently predict if a given AP
will be usable.

Armed with these lessons, we designed a new AP selection
system, which we named Virgil. Virgil scans for available
APs, then quickly and cheaply probes each for suitability of
use.

Virgil’s algorithm for selecting a new access point is as
follows:

1. Scan for all available APs

2. Test each unencrypted AP in the scan set

• Get AP properties
(SSID, MAC address, signal strength, etc.)

• Try to get DHCP address from AP

• If successful, probe the AP

• Store test results in a local database

3. Select the “best” AP, based on test results

In addition to open access points, the user may have au-
thorization to use certain non-public APs. For example, she
may encrypt her home wireless AP, and/or buy service from
a hotspot provider such as T-Mobile. Virgil therefore allows
users to manually enumerate “closed” APs that should be
considered for use when seen. The user must obviously enter
either the WEP/WPA encryption key for encrypted access
points, or her username/password credentials for APs with
“splash-screen” logins.

Since Virgil stores tests results in a local database, it im-
proves performance by not rescanning often-seen APs. Our
design consists of a user-level AP selection daemon running
with root-level privileges. This process scans for new APs
in the background, building this history database. Virgil
chooses a new access point when (1) the device first boots,
or returns from hibernation or suspend, and (2) the current
AP is no longer usable. The selection daemon uses a sim-
ple heartbeat to a reference server to determine when the
current AP is no longer usable.

3.1 Probing an AP
The goal of our AP selection daemon is to always choose

the “best quality” access point out of all the APs available
at a given physical location. “Quality” is highly subjective,
but we consider the following to be important criteria:

• Bandwidth from the Internet to our client via this AP

• Port traffic that this AP blocks or redirects

• Round-trip-time from our client to remote servers

Since AP selection must be quick to be beneficial to users,
Virgil performs all of these tests in parallel by spawning a
thread to handle each port test and the RTT and bandwidth
tests.

To aid in AP testing, we use a set of reference servers that
is diverse in terms of both geography and network topology.

Reference servers simply listen for TCP and UDP connec-
tions on a wide range of port numbers (e.g., 1–65535) and
respond to port and bandwidth probe requests. At the start
of each scan set, Virgil randomly chooses a reference server
to use for that round of testing. This mitigates false nega-
tives in the case where an AP is fine but the Internet route
to a certain reference server is broken.

As in our field study, Virgil tests the status of a hand-
compiled list of 45 common port numbers. Additionally,
however, this base set is augmented at runtime by other
TCP and UDP ports that are currently in use by the client,
or have recently been used. For example, suppose the user
is currently connected to her office through a virtual private
network (VPN), on a port number not in our base set. When
migrating to a new access point, she would obviously prefer
an AP which permits traffic on that port number, so her
VPN services remain available.

For UDP ports, Virgil simply sends the nonce (since there
is no concept of “connect” for UDP). If it receives (nonce+1),
the port is “open”. If it receives something different, the
port is “redirected”. If it receives nothing before a timeout
expires, the port is “closed”.

Round-trip-time and downstream bandwidth from the ref-
erence server were calculated in the same fashion as for
the field study above. We focus on estimating downstream
bandwidth rather than upstream bandwidth because appli-
cations such as web traffic, streaming media, email, and
newsgroup reading are overwhelmingly unidirectional. A
recent study of wireless traffic on a campus WLAN [14],
however, showed that upstream traffic comprised a signifi-
cant portion of not just peer-to-peer but also web traffic. It
is unclear if such workloads comprise as large a fraction of
network traffic for the general population (as opposed to col-
lege students). If so, it would be useful to revise our design
to estimate bandwidth in both directions.

3.2 Leveraging History
Each time Virgil scans an AP, it saves the AP’s infor-

mation in a local database. Each database record includes
information shown in Figure 6.

Virgil keeps this database to improve performance, by not
repeatedly rescanning access points that the user frequently
encounters. Therefore, when Virgil examines the APs seen
in a scan set, it only tests APs that do not already have a
database record.

Näıvely, this would forever “blacklist” any APs which per-
formed poorly the first time they were seen. The quality of
service provided by an access point can change over time
(as network conditions change, customers switch to differ-
ent ISPs, or the access point load fluctuates).

We therefore force periodic re-scans of access points. Each
time Virgil sees an access point that is already in the data-
base, it doesn’t re-scan it but updates its timestamp field,
and increments the number of times it has been seen since it
was last scanned. The user configures two thresholds—the
maximum time that should pass between forced rescans, and
the maximum number of times seen. Once either threshold
has been exceeded, the next time the AP is seen in a scan
set, Virgil forces a rescan and resets the “times seen” counter
to zero.

To ensure freshness, Virgil periodically re-scans the AP
currently being used by the user. Since her device is already
associated with that AP, there is no interruption of service

238



Basic AP information

• ESSID, MAC address, and channel number

• Encryption (on or off)

• Signal strength, noise level, transmit power

• DHCP success (did AP grant IP address?)

• Timestamp last scanned

• Number of times seen since last scanned

For APs which granted an IP address via DHCP

• Round-trip-time estimate (ms)

• Bandwidth estimate (bytes/second)

• Port status for each scanned port (open, closed,
or redirected)

Figure 6: AP Database Entries.

apart from the minimal network load imposed by the AP
tests. By default, Virgil freshens the current AP’s database
record every 30 minutes, but this is a configurable value.

3.3 Choosing the “best” AP
Once Virgil is finished with a scan set, each AP in the set

has a record in the database. Based on these “test results”,
Virgil chooses an AP, associates with it, and retreats into
the background until needed to choose an AP again.

As the obvious first step, Virgil creates a candidate set
consisting of only those APs which were open. By “open”,
we mean that both (1) the AP granted a DHCP address to
the client, and (2) at least one port was found to be open. To
this set we add APs the user has manually configured, such
as pay hotspots to which she subscribes and/or encrypted
APs for which she holds a key. This eliminates other pay
hotspots (which block and/or redirect all traffic until users
subscribe) and APs that selectively block traffic based on
(for example) MAC addresses.

This may often leave more than one candidate. The user
specifies how they would like such ties to be broken. If
the user is primarily browsing the web or transferring large
amounts of data, an obvious choice is to use bandwidth as
a tie-breaker. On the other hand, if the user is dealing with
latency-sensitive applications (for example, ssh), they may
choose RTT. Finally, if a certain critical application needs
an open port, the user may prefer APs which allow such traf-
fic. Automatically negotiating the optimal tradeoff between
these considerations is a focus of future work.

3.4 User Feedback
Most of the AP selection mechanism described thus far

happens automatically without any intervention or attention
from the user. Once Virgil settles on a new AP, it notifies
the user by raising an alert (similar to the alert balloons
used by Windows XP) in the corner of the screen.

Some users may want more information about the ramifi-
cations of this choice. Such users click on the notice, loading

a status screen. This status screen summarizes the test re-
sults of the AP that was just chosen. Most importantly, this
summary indicates which applications currently in use may
stop working as a result of using this new AP. Recall our ear-
lier example of a user who uses SMTP mail. If she moved
to an access point that blocks port 25, this summary screen
would inform her that her email program will not be able to
send email at this location. Virgil infers that Thunderbird is
an email program from the well-known port number of the
connections it has established in the past. The user is not
merely told that port 25 is blocked, since that information
is meaningless to the vast majority of users.

If the user decides that using her mail reader is critically
important, she indicates this, causing Virgil to review the
most recent scan set and see if another open AP is available
that doesn’t block the port in question. If so, it associates
to this new access point and informs the user. If no other
AP is available, the user is informed so she can decide to
walk to another location, for instance.

4. PROTOTYPE
We implemented our prototype on Linux, and have cross-

compiled it for both x86 laptops and ARM-based handhelds
(specifically, the Compaq iPAQ). The prototype implements
all aspects of the design outlined above, with three excep-
tions. First, we do not constantly scan for new access points
in the background. Ideally, Virgil would leverage systems
such as MultiNet [8] or SyncScan [24] to continuously scan
for new access points, without having to disassociate from its
current AP, but we have not implemented this. AP scanning
happens when the current AP becomes unusable. Second,
we have not implemented the user feedback component de-
scribed in Section 3.4. Third, rather than using multiple
reference servers, we use the same, single reference server as
for our field study.

When multiple usable APs were available, our prototype
used bandwidth to the reference server as the tiebreaker.

4.1 Active Scanning
When scanning for new access points, the primary chal-

lenge is the tension between delay and false negatives. If we
cut off testing too early, Virgil may not find all usable ac-
cess points. On the other hand, if the delay Virgil imposes
is burdensome to users, they will abandon our system.

As a result, the prototype has some built-in timeouts.
Specifically, DHCP address acquisition times out and fails
after 5 seconds. Similarly, port scans fail and return “closed”
if the TCP connect takes longer than 5 seconds, or if Vir-
gil has not received a response to the nonce in 5 seconds.
We experimentally chose the value of 5 seconds by succes-
sively lowering the timeout value until we started to notice
false negatives. That is, DHCP attempts and port scans
were failing simply because there was not enough time for
the process to complete. This also caps the average time to
scan an unusable AP at around 5 seconds.

The prototype makes extensive use of the Linux wireless
extensions toolkit. It uses the output of iwlist scan to gen-
erate a scan set at the start of AP discovery, and uses iw-
config to record each AP’s MAC address, channel number,
et cetera, in the local database.

All of the tests on a given AP (port probes, RTT, and
bandwidth estimates) occur in parallel for maximum effi-
ciency. We use pthreads to spawn a thread for each of the
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Figure 7: Evaluation: Histogram, APs per scan. Percentage of scans for each neighborhood that found a
given number of APs.

Downtown Chicago Residential Chicago Suburban Chicago Seattle Ann Arbor
APs seen 559 438 273 870 225
Scan sets 91 103 114 142 29

APs per scan set 6.1 4.3 2.4 6.1 7.8
APs granted IP address 23 (4.1%) 61 (13.9%) 41 (15.0%) 54 (6.2%) 25 (11.1%)
APs using encryption 292 (52.2%) 261 (59.6%) 128 (46.9%) 475 (54.6%) 151 (67.1)

Table 3: Evaluation: AP statistics.

tests, and the main thread performs a pthread join on each
thread to wait until all tests have finished before proceeding.

4.2 Tracking open connections
Our prototype uses the Linux utility netstat to track open

TCP and UDP connections. A thread wakes every 60 sec-
onds, runs netstat, and updates an in-memory database.
Since the report generated by netstat buffers all used ports
for the last 60 seconds, this lets Virgil capture even the
briefest port activity.

Each record in this database corresponds to one port num-
ber and type (UDP or TCP). For TCP connections, it notes
if the connection was inbound (listening), or outbound. Fi-
nally, a timestamp notes the last time that the port was seen
to be in use. By sorting this database in order by timestamp,
Virgil easily determines which ports have been in most re-
cent use, and are therefore most important to ensure remain
open when migrating to a new AP.

5. EVALUATION
In evaluating our prototype implementation, we sought

answers to the following questions:

• How much more often does Virgil let users be con-
nected, than simply selecting on signal strength?

• How much better are the connections that Virgil finds?

• How beneficial is tracking AP history?

• Is Virgil’s overhead reasonable such that it is useful to
users?

We used a similar methodology to that of our earlier field
study. Along with the three neighborhoods in Chicago pre-
viously studied, we also tested Virgil in Seattle, Washington
(city population: 573,000, metropolitan area: 3.8 million)
and Ann Arbor, Michigan (population: 114,000) [5]. These
two cities gave us data points for medium- and small-sized
cities, respectively.

Figure 7 charts the histogram of APs encountered per
scan, for each of the five neighborhoods. One notices that
we found more APs per scan on average, when evaluating
Virgil than we did during our field study. This may partly
result from the fact that, while we re-walked the same three
Chicago neighborhoods, we did not retrace our steps exactly.
We also used different hardware (a different iPAQ) for the
evaluation runs than for the field study, due to equipment

240



Chicago 
Downtown

Chicago 
Residential

Chicago 
Suburban

Seattle Ann Arbor
0%

10%

20%

30%

40%

50%

60%

random

SSS

Virgil

%
 s

ca
ns

 s
uc

ce
ss

fu
lly

 f
ou

nd
 A

P

(a) Percentage of Scans Successful

Chicago 
Downtown

Chicago 
Residential

Chicago 
Suburban

Seattle Ann Arbor
0

50

100

150

200

250

300

random

SSS

Virgil

A
ve

ra
ge

 b
an

dw
ith

 / 
A

P 
(K

b/
s)

(b) Average Bandwidth of Open APs (KB/s)

Figure 8: Evaluation: Improvement of Virgil over SSS. Virgil finds usable APs more frequently than selecting
based on signal strength—from 22% to 100% more often. The quality of the APs Virgil finds is also better
(based on bandwidth to the network).

failure. As Table 3 shows, we encountered 2365 different
APs. As stated above, our evaluation log data and the logs
from our field study are freely available via the CRAWDAD
archive.

5.1 Connection Time and Quality
We returned to Chicago with the completed Virgil proto-

type on the same iPAQ handheld. Although we re-walked
the same neighborhoods in the same street-by-street grid
fashion as for our field study, we by no means made an ef-
fort to re-trace our exact steps. In Seattle and Ann Arbor,
we walked a similarly-sized portion (∼1.3 km2) of each city’s
downtown area.

As we walked each neighborhood, Virgil ran in the back-
ground, handling AP selection for the Linux operating sys-
tem on the iPAQ. We configured Virgil to log information
on all APs seen on each scan, the test results of all APs
which were probed, and the final choice of AP for each scan
set.

This log data let us reconstruct, after the fact, the se-
quence of access points which the strongest-signal-strength
algorithm would have chosen. Based on the test results of
probed APs, we calculated two metrics. First, we calculated
the percentage of scans which would have found a usable
AP, given the selection algorithm (random, SSS or Virgil).
Second, we calculated the estimated average bandwidth, in
KB/s, of the APs that each algorithm selected. The results
are shown in Figure 8.

For all five neighborhoods, Virgil found a usable AP sig-
nificantly more often than did SSS or random selection. The
improvement over SSS ranged from 22% (in Seattle) to 100%
(in downtown Chicago). While Virgil’s connectivity percent-
ages (ranging from 19.7% to 58.6%) are still insufficient for
applications requiring seamless connectivity, it represents a
significant improvement over the current state of the art.

Figure 8(b) illustrates the average bandwidth estimates
of the open APs chosen by each algorithm. Virgil still out-

performs SSS, but by a much smaller margin than for con-
nectivity. The reason for this is that SSS may only find a
handful of APs in a neighborhood, but the ones it finds may
happen to have high bandwidth to the reference server. On
the other hand, Virgil finds more APs and therefore must
average across a wide range of bandwidth connections.

5.2 History
Next, we sought to quantify the benefit of storing AP test

results in our local database. A rough estimate of the space
overhead imposed by this database can be derived from our
test results above. Roughly two hours of constant scanning
and walking in each neighborhood generated databases on
the order of 20-30 KB in size. These are unoptimized, text-
file databases. Clearly, though, if our results showed storing
this history leads to little performance benefit, then they
could be discarded.

We walked a 1.5 km loop from downtown Ann Arbor to
campus and back five times, logging Virgil’s output as be-
fore. The walk was meant to simulate the daily mobility of
a hypothetical student who lives downtown, attends class on
central campus, and walks roughly the same route between
the two each day.

Figure 9 shows the percentage of scans, for each algorithm,
that a usable AP was selected on each “lap” around Ann
Arbor. As expected, Virgil outperforms SSS on the first
lap, finding a usable AP twice as often. On the subsequent
laps, however, Virgil maintains its steady success rate while
the random and SSS algorithms fluctuate wildly. This is
partly a consequence of unreliable AP scanning algorithms.
Running a utility such as Linux’s iwlist scan several times in
succession, from the same location, can return varied sets
of access points. This happens because APs broadcast their
beacon signals at unpredictable times, and do not always
respond to beacon requests in a timely fashion [24].

On subsequent laps, all three algorithms (Virgil, SSS and
random) may find new access points. In the case of Virgil, if

241



Lap 1 Lap 2 Lap 3 Lap 4 Lap 5
0%

5%

10%

15%

20%

25%

random

SSS

Virgil

%
 s

ca
ns

 f
ou

nd
 u

sa
bl

e 
A

P

Figure 9: History: Percentage of successful scans.
Five walks along the same 1.5 km length path from
downtown, to campus, and back. The AP history
database helps Virgil consistently find better access
points more often.

it sees an AP that it happens to “remember” from a previous
lap, Virgil will continue to use it unless the new AP proves
to be of even higher quality. On the other hand, SSS does
not have the benefit of such history information and has to
make a spot decision based on instantaneous measurements.
Thus, SSS may pick “correctly” one lap and incorrectly the
next, but once Virgil finds a good AP it will stick with it.

One of the biggest advantages of maintaining history in-
formation for Virgil is the ability to reduce the average time
to complete a scan cycle. We measured the difference be-
tween laps in the average time to complete an entire scan
cycle. This includes the time to discover all available access
points, test each new, unencrypted AP, and finally acquire
an IP address from the chosen AP. Figure 10 shows the aver-
age time to complete one scan cycle, for each lap. Addition-
ally, the rightmost bar shows the mean time to only perform
the scan for new APs. After the first two laps, mean time
per scan cycle is nearly indistinguishable from the mean time
to simply scan for APs. This is due to the effects of history.
Once Virgil has “mapped-out” all the APs on a given path,
it need not re-probe them. It simply scans for all available
APs and chooses the best one from the list, based on its past
history. This confirms our belief that history will mitigate
the overhead Virgil incurs in the AP probing process. Users
who run Virgil every day will soon map out the routes they
most commonly traverse, and per-scan overhead would be
no more than current schemes such as SSS.

5.3 Overhead

5.3.1 Client Overhead
We collected a diverse set of data on the time overhead

inherent to our prototype implementation.
Across all five neighborhoods, for all 204 APs that granted

an IP address, we calculated the time spent in each phase
of the AP probing process. As Figure 11 shows, probing an
AP took just over 11 seconds on average. This time was
split fairly evenly between first acquiring an IP address via
DHCP, and then running the port, RTT, and bandwidth
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Figure 10: History: Mean time to complete one AP
selection cycle. Time to scan for available APs, and
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Figure 11: Overhead: Time to scan one AP, by
phase. The time to run AP tests and to associate
with the AP are comparable.

tests. Since our timeout was 5 seconds for both of those
operations, it is unsurprising that few AP tests or DHCP
attempts exceeded that value.

As discussed above, we chose to “cast a wider net” by
setting these timeouts to the relatively high value of 5 sec-
onds. Thus, we discovered more APs than we would have
with a lower timeout, at the cost of increased time per scan.
We argue that this overhead, while clearly not negligible,
is acceptable. As we showed above, Virgil will quickly map
the neighborhoods users spend most of their time in, erasing
such overhead for subsequent visits.

Virgil would ideally be integrated with a system such as
MultiNet [8], which allows one device to simultaneously as-
sociate with multiple access points. This hides most of this
per-AP scan overhead, since Virgil could associate to the
first candidate AP it finds, and keep scanning other APs in
the background while the user is connected.
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(a) Windows XP’s manual AP discovery
notice.
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(b) Statistics for manual AP selection in
Windows XP.
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(c) Breakdown of manual AP selection in
Windows XP.

Figure 12: Overhead: Cost of manual AP selection. Many operating systems require users manually intervene
to choose an AP.

Most importantly, we argue that using Virgil to automat-
ically select an access point, even with the overhead shown
above, is still faster than the current practice of forcing users
to choose manually. To reinforce this point, we measured the
time required for a user to select an AP using Windows XP’s
integrated selection tool.

When Windows XP first boots or wakes from hibernation,
it scans for all available APs. If it finds an AP which the user
has previously selected as a “preferred” AP, it automatically
associates to it. Otherwise, it raises the alert balloon shown
in Figure 12(a). The user must see the alert, move the mouse
to the corner of the screen and click on it. This raises a
screen which lists all available APs. The only information
users are given is SSID, encrypted status and signal strength
(0-5 bars). Based on this information, the user chooses an
AP from the list. XP then attempts to associate with the
AP and receive an IP address via DHCP.

A user performed this task 10 times, and we recorded the
time required for three operations: (1) time between the
balloon’s appearance and when the user clicked on it, (2)
time between the AP selection window’s appearance and
the user clicking “Connect” to choose an AP, and, (3) time
Windows XP required to associate with the AP, acquire an
IP address, update whatever internal state it keeps, and
update the AP selection window to indicate success.

This is clearly not an exhaustive study of user behavior.
However, it does provide us with some evidence of the time
required to associate a Windows laptop with an AP using
existing techniques. Figures 12(b) and 12(c) show it takes a
user roughly 20 seconds to manually select an AP in Win-
dows XP. We argue this is a hard bottom limit, since the
user knew exactly which SSID he was looking for a priori,
and wasted no time deciding on the selection screen, as a
real user would in an unfamiliar environment.

It is curious that the time to associate with the AP dom-
inates, since in our tests the AP was nearby and signal
strength remained excellent throughout. Regardless, the
time spent in active user work is significant. Furthermore,

after choosing an AP, the user would need to try to load a
web page, or otherwise check that the connection is usable
before proceeding with her work. All of this incurs signifi-
cant overhead and is burdensome to users.

5.3.2 Reference Server Overhead
Finally, we sought to quantify the load our suite of AP

tests would impose on the reference servers.
First, we wrote a script that ran a full set of AP tests

(bandwidth, round-trip-time, and 35 TCP port status tests).
This script ran the test set 25 times in a row. This attempted
to simulate a worst-case scenario, where a Virgil client found
a large number of new, open APs at one location, and tested
them all in rapid sequence.

Since multiple clients may be connecting to one reference
server at the same time, we ran 20 trials, each time running
the script described above on one additional machine.

The reference server was 2.40 GHz Intel CPU with a 512
KB L1 cache and 768 MB of system RAM. It was connected
to a 10-Mbps wired Ethernet LAN. All 20 machines used to
launch test clients have a 3.40 GHz Intel CPU with a 2048
KB L1 cache and 2 GB of system RAM.

To launch multiple tests as simultaneously as possible,
we first pre-positioned our test script on each. To start k
instances of the test script, then, from a separate machine we
forked k copies of a Python script that used ssh to remotely
launch the test script on a given machine.

Because not all copies were in fact started at the same
time, we measured the peak CPU utilization during each
run. This is presumably the point at which all k copies of
the script are finally hammering the reference server.

Figure 13 shows that CPU utilization rises more or less lin-
early with the number of clients actively using the reference
server. At the maximum load, with 20 different machines
each running the AP test suite 25 times in quick succession,
the CPU of the reference server was only 10.5% utilized.
During none of the tests was memory a consideration.
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Figure 13: Reference server load testing results.

These results suggest that a reference server with mod-
est hardware resources can easily support dozens of client
connections per second. It is unclear how many APs a typ-
ical user would need to test per day. Understanding this
demand for reference server resources is crucial to ongoing
work that seeks to determine how many reference servers
would be needed to deploy Virgil on a large scale.

6. RELATED WORK
Several previous “wardriving” studies collected 802.11 AP

beacon information [1, 9], which contributed to the many
Internet databases of wardriving maps [15, 16, 30]. Users
must manually scour these maps to find access points, how-
ever, while our system is fully automatic. None of these
systems associate with APs to run performance tests as we
do. As our results showed, the information gleaned from
these tests allows Virgil to outperform selection schemes
driven solely by the signal-strength data in such datasets.
Furthermore, these static maps become unreliable and out-
dated over time [6], while Virgil continuously rediscovers and
probes the user’s environment.

The increasing popularity of real-time, stateful applica-
tions, in particular, voice-over-IP, has sparked a great deal
of research into making 802.11 handoffs as seamless as mo-
bile phone handoffs. MultiNet [8] virtualizes a device’s wire-
less interface, fooling applications into believing the device is
connected simultaneously to different APs on different chan-
nels. Integrating MultiNet with Virgil would let us continu-
ously search for and test new access points, without having
to disassociate with our current access point.

SyncScan [24] modifies access points as well as clients,
forcing APs to synchronize their beacon frame broadcast
schedules. Since clients know in advance what channels will
be broadcasting at which times, they can quickly collect
all beacons and return to their original channel before any
user-perceivable service disruption is noticeable. Shin [29]
similarly optimizes the scan process, since AP discovery has
been shown to dominate the 802.11 handoff process. Neither
technique associates with the scanned APs. Therefore, such
techniques only speed up the selection process, but neither
makes the choice any more accurate than existing strongest-
signal-strength algorithms.

Lee and Miller [19] propose adding information to the ac-
cess point beacon signal, to help guide clients’ AP selec-
tion. While their focus was on facilitating roaming between
commercial wireless access networks, the concept could be
generalized. One could envision access points broadcasting
their current load, current estimated latency to reference
servers in the Internet, etc. We argue it is preferable for
clients to discover this information for themselves. As we
showed, testing one AP takes at most a matter of seconds, a
reasonable overhead. Furthermore, when clients are roam-
ing in public, they have no reason to trust the stranger who
administers an access point. In fact, it is likely in the AP
administrator’s self-interest to falsely advertise his AP as
low-quality, to prevent anonymous traffic from overloading
it.

Judd and Steenkiste [17] recognized that basing AP selec-
tion policy solely on signal strength results in uneven load-
ing of multiple access points. They suggested AP load as a
beneficial metric, since their work was more focuses on bal-
ancing load between access points than directly focusing on
client performance as the primary goal.

It has become accepted that the push toward ubiquitous
computing makes automatic service discovery in new envi-
ronments more important than ever [27]. Existing work,
however, has focused on application-level services [10, 12],
but is silent on how the client chooses an appropriate net-
work connection in the first place. Our work seeks to fill
this gap.

Several systems seek to allow clients of one wireless service
provider to access foreign wireless hotspots when roaming [4,
11, 20, 26]. Our work is complementary, since users must
find and associate to an access point before negotiating such
roaming agreements. The service discovery Virgil provides
is similarly critical for grassroots wireless collective initia-
tives [2, 23, 28].

7. CONCLUSION
802.11 access point density has exploded in urban areas,

to the point where users commonly have multiple APs to
choose from on each scan. Since these access points are
managed by a variety of individuals, businesses, and govern-
ments, a small percentage are open and usable. The quality
of Internet connection APs provide often varies widely due
to choice of service provider, AP load, and wireless network
conditions.

Current selection algorithms focus on AP signal strength
as an important metric. We conducted an extensive field
study of three neighborhoods in Chicago, which showed that
choosing an AP based on signal strength misses significant
opportunities for Internet connectivity.

We presented the design and implementation of Virgil, an
automatic AP discovery and selection system. Virgil quickly
associates to each AP found during a scan, and runs a bat-
tery of tests designed to discover the AP’s suitability for use
by estimating the bandwidth and round-trip-time to a set of
reference servers. Virgil also probes for blocked or redirected
ports, to guide selection in favor of preserving application
services currently in use.

We evaluated Virgil in five different neighborhoods across
three different cities. Our results show Virgil finds a usable
connection from 22% to 100% more often than simply se-
lecting based on signal strength alone. By caching AP test
results, Virgil improves both performance and accuracy for
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neighborhoods the user commonly travels. We showed our
overhead to be acceptable and less burdensome than current
selection techniques which require user intervention.
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