
Pegboard: A Framework for Developing Mobile
Applications

 Danny Soroker1, Ramón Cáceres1, Danny Dig2, Andreas Schade3, Susan Spraragen1, Alpana Tiwari1

 1 IBM T.J. Watson Research Center 2 Department of Computer Science 3 IBM Zurich Research Lab
 19 Skyline Drive University of Illinois Säumerstrasse 4 / Postfach
 Hawthorne, NY 10532, USA 201 N. Goodwin Ave CH-8803 Rüschlikon

 {soroker,caceres,sprara,alpana} Urbana, IL 61801, USA Switzerland
 @ us.ibm.com dig @ uiuc.edu san @ zurich.ibm.com

ABSTRACT
Tool support for mobile application development can significantly
improve programmer productivity and software quality. Pegboard is
a novel tooling framework that extends the Eclipse integrated
development environment to support the development of mobile
distributed applications. Its extensible design supports multiple
application models and the orchestration of external tooling
components throughout the development cycle. In this paper we
describe Pegboard’s architecture and implementation, and show
how it improves the development experience through organization,
visualization, simplification and guidance. We also discuss insights
gained from interviewing software developers, including early users
of Pegboard.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
graphical environments, integrated environments, interactive
environments, programmer workbench.

C.2.4 [Computer-Communication Networks]: Distributed
Systems – client/server, distributed applications.

General Terms: Design, Human Factors, Languages.

Keywords: Integrated Development Environments, Application
Development, Mobile Applications, Distributed Applications, User-
Centered Design.

1. INTRODUCTION
One vision of mobile computing is to deliver the power of network
computing through devices one can easily carry. To achieve this
vision, mobile computing applications require collaboration
between a mobile device and other networked computing nodes,
such as servers and other devices. These applications are therefore
distributed and often involve multiple components running on
multiple platforms. Such applications also need to address mobility-

specific issues, such as device heterogeneity and intermittent
connectivity.

Developing mobile applications is a complex task. Consider
Vindigo[4], an interactive city guide for handheld devices that
provides location-based information in categories such as dining,
shopping and entertainment. The Vindigo code base targets several
hardware and software platforms. The server software executes on
x86 machines running Linux, while client software executes on a
range of devices running Palm OS, Windows Mobile, Binary
Runtime Environment for Wireless (BREW), or Java 2 Micro
Edition (J2ME). Differences among platforms require specializing
large portions of code to individual platforms, for example code that
exploits the availability of a thumb wheel on one particular device.
On the other hand, many functions are common to the server and
some or all of the clients, for example computing walking
directions. To avoid implementing the same function multiple times
or fixing the same bug in multiple places, developers seek to share
as much code as possible between target platforms. Designing,
writing, testing, debugging and deploying a distributed mobile
application presents many challenges.

Integrated Development Environments (IDEs) – such as Eclipse
[10] and Visual Studio [23] – are the tools of choice for complex
software development. These environments strive to support the full
development cycle by combining a rich set of cooperating tools
such as visual user-interface builders, source-code editors, compilers
and debuggers. IDEs are instrumental in developing individual
components such as Java applications and Web services, but they
fall short in developing heterogeneous systems consisting of
multiple components.

IDEs organize software into projects, where a project typically
corresponds to a platform-specific software component, such as a
Web service or its corresponding client. A distributed application,
however, comprises many such components, spanning many
projects. Thus there is a need to augment IDEs to effectively
manage collections of projects as coherent entities. Such tool
support should organize the collection of projects comprising the
application in a manner that reflects its logical structure and
facilitates common operations across the entire collection. To
support development of mobile applications, the tool should also
address mobility concerns that cut across the collection of projects,
like disconnection and device heterogeneity.

In this paper we present Pegboard, a new tooling framework for
developing mobile distributed applications. Pegboard is built on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’06, June 19–22, 2006, Uppsala, Sweden.
Copyright 2006 ACM 1-59593-195-3/06/0006...$5.00.

138

Eclipse open-source platform [10], which provides an extensible
plug-in architecture that allows the integration of software
components from different providers. A wide variety of Eclipse-
based tools is already available, including the Java Development
Tools and the Plug-in Development Environment. Pegboard is
designed to leverage existing and future Eclipse-based tools that
have no knowledge of Pegboard. We chose the name to suggest a
physical pegboard on which workshop tools are hung.
Our key contribution is a new approach to managing the complexity
of distributed mobile application development in an IDE. The goal
of the methodology we present is to enable IDEs to treat these
applications as coherent entities. Our approach consists of the
following ingredients:

• Organization: We arrange the code artifacts into a nested
composition of projects that reflects the logical structure of the
application and better supports code sharing among different
platforms.

• Visualization: We provide centralized views of the entire
distributed application – a view showing its design as a set of
interconnected computational nodes, and a view showing its
implementation as a nested collection of projects.

• Simplification: We make it easier to perform common
operations in the development cycle, such as launching all
components of the distributed application as a single operation.

• Guidance: We provide architectural patterns to help “jump-
start” development, and we orchestrate the development process by
leveraging other tools as needed, supporting top-down, bottom-up
and mixed design paradigms.
It is important to consider the target users in any software endeavor.
An additional contribution of this paper is to show how user-
centered design has helped improve Pegboard’s usability and
relevance.
The rest of the paper is organized as follows. Section 2 illustrates
the experience of using the Pegboard methodology to develop a
sample application. The architecture of Pegboard and
implementation details of the current prototype are described in
Section 3. Section 4 presents the user studies and feedback. Section
5 provides a deeper discussion of some aspects of Pegboard,
including future directions. Section 6 discusses related work, and
Section 7 concludes the paper.

2. DEVELOPMENT METHODOLOGY
We start by briefly describing our abstractions and terminology.
Pegboard maintains both a design view and an implementation view
of the application. The design view is a graph, in which each node is
a sub-application. A sub-application represents a part of the
distributed application that runs on a single hardware platform. Sub-
applications are typed according to the kind of computational node
they represent (e.g., device, server, Web service). A sub-application
contains functional components, which represent software modules.
The edges of the design graph are connectors that represent
communication links between sub-applications. The implementation
view shows the code artifacts, also known as resources, and reflects
the project structure of the application, which is a tree. The root of
this tree is a Pegboard project, which contains a hierarchy of nested
projects. Composite Projects, developed as part of this work,
provide the mechanism for nesting projects.

To help explain our work in concrete terms, we present a sample
application called Order Entry, and show how Pegboard facilitates
its development. The elements of Pegboard are introduced in this
section, and elaborated upon in Section 3.
Order Entry is used by a sales person to submit purchase orders
through a mobile device to a central server. Orders specify a
customer, product, and quantity. When entered, the order is queued
locally on the device, and sent to the server as soon as connectivity
is available. As orders complete, the server confirms them to the
device. At any time the user can view the status and history of
orders. The Order Entry application comprises a Rich Client
Platform (RCP) [11] sub-application on the device, a Java sub-
application on the server, and Message Queue Everyplace (MQe)
 [19] as the connection mechanism between the two. RCP is a
technology for building Java applications from components called
bundles. The bundles are managed by a runtime system called OSGi
[26]. The device sub-application is structured as multiple OSGi
bundles. MQe is a messaging technology that is optimized for
mobile environments with intermittent connectivity.
The first step in developing an application is to create a new
Pegboard project via the new-project wizard. Apart from the project
name, the developer chooses an application pattern, possibly the
empty pattern. The pattern shown in Figure 1, a device-server with
data connector, best fits Order Entry.

Figure 1: Pegboard new-project wizard

The application pattern helps guide development by automating the
initial creation of design elements and associated code artifacts. The
design elements are shown in the graphical Design Editor. The code
artifacts and nested project structure are shown in the Composite
Explorer. Figure 2 shows the Design Editor and Composite Explorer
immediately after the Order Entry project has been created.

The design diagram contains two sub-applications and a connector
between them. The sub-application icons indicate their respective
types: “device” and “server”. The Composite Explorer shows the
actual projects that have been created -- for the device, the server,
and code shared between the device and server. The device and
server projects, as well as the Order Entry project itself, are
Composite Projects that act as containers for other projects.

139

Pegboard shows the association between design and implementation
elements by cross-selection. For example, Figure 2 shows that when
the “Device” sub-application is selected in the design editor, the
corresponding “Order Entry Device” project is highlighted in the
Composite Explorer.

The next step is to create functional components for the device and
server sub-applications in the design editor, as illustrated in Figure
3. Each functional component corresponds to an Eclipse project. In
our implementation of Order Entry, the device sub-application
contains three OSGi bundle projects, and the server contains a
single Java project. Pegboard provides two ways to associate a
project with a functional component: by creating a new project, or
by incorporating a project that already exists in the workspace.

Figure 3: Final design diagram for Order Entry

Figure 3 shows the final design diagram for Order Entry. Note that
the device-server connector now appears as a solid line, which
means that it has been mapped to implementation objects. Also note
the “MQe” annotation that helps document the design.

Connectors in the design view typically correspond to multiple
components in the implementation view. In Order Entry, for
example, part of the device-server connector code is specific to the
device, part to the server, and part is shared between the two (e.g.,

the message formats). Figure 4 shows the Composite Explorer view
of the completed Order Entry application. The figure highlights the
shared code component inside the Order Entry Shared Area, and the
references to it from the device and server subprojects.

To facilitate testing and debugging of mobile distributed
applications, Pegboard supports launching of multiple projects with
one click. These launched projects typically run locally on the
development machine, but may be hosted remotely. In the Order
Entry application, for example, all the projects in both the device
and the server sub-applications can be launched with a single click.
Debugging tools and console views are available for each of the
launched projects through standard Eclipse mechanisms.

Figure 4: Final project structure for Order Entry

Figure 2: Pegboard Design Editor and Composite Explorer just after Order Entry project creation

140

3. ARCHITECTURE & IMPLEMENTATION
In this section we describe Pegboard’s architecture and provide
details about the implementation of the current prototype.

3.1 Overview
Pegboard is implemented as a set of plug-ins for the Eclipse
platform [7]. Pegboard is designed as an extensible framework that
interacts with other tools through Eclipse-based extensibility
mechanisms. It is structured in three primary layers, as shown in
Figure 5.

Figure 5: Layered architecture of Pegboard

Eclipse layer: The base Eclipse IDE is our starting point. It includes
a graphical user-interface framework, project-based resources, and
extensibility mechanisms such as plug-ins and extension points.
Composite layer: Contains our new facility for grouping and
nesting Eclipse projects, sharing code between projects, and
aggregating common operations like launching. Composite Projects
are independently useful outside of Pegboard for organizing multi-
project development efforts.
Pegboard layer: Contains our new facility for mobile distributed
application development. It builds upon Composite Projects, and
adds higher-level notions including a design editor, application

patterns, design-to-implementation mappings, platform profiles, and
extensibility mechanisms for interoperating with other development
tools.

Figure 6 shows the main architectural components of Pegboard. The
primary artifacts used by Pegboard, shown as ovals, are: the Design
File (Order Entry.gph in Figure 2), which stores the design
diagram; the composite projects, which contain the code; and the
Mapping Data (.pegboard in Figure 2) that relates the two.
Application patterns are used to generate an initial version of these
artifacts. The Design Editor and Composite Explorer are used for
viewing and modifying these artifacts. The Selection Mapper is
responsible for displaying and maintaining the mappings between
the design and implementation spaces. The Composite Launcher is
responsible for running and debugging Pegboard applications.
Finally, the Extension Layer provides extension points for
connecting Pegboard to external Eclipse-based tools through Tool
Bridges, which serve as intermediaries.

3.2 Composite Layer

3.2.1 Grouping and Nesting
The base Eclipse platform partitions a developer’s workspace into a
flat space of projects. As a result, major user interface elements of
Eclipse, such as the Resource Navigator and the Package Explorer,
present the workspace as a simple list of projects. This organization
has severe limitations in the context of complex software
development efforts, in particular when developing distributed
mobile applications.
As mentioned earlier, mobile applications can be organized as a
collection of sub-applications, each of which is often complex
enough to warrant multiple projects. Consequently, workspaces

 Eclipse (base IDE, projects, plug-ins, …)

 Composite (nesting, sharing, launching…)

 Pegboard (design editor, mappings, patterns…)

Design
Editor

Composite
Explorer

Selection Mapper

Application Pattern
Selector/Generator

Design Composite Projects

generate

Composite
Launcher

Tool
Bridge

External
Tool

Extension Layer

Mapping Data

Figure 6: Pegboard architectural components

141

often grow to contain large numbers of projects whose relationships
to each other are not immediately apparent because of their flat
organization. There is a clear need for grouping and nesting
projects.
To address these limitations, we extended Eclipse with the notion of
Composite Projects (CPs). A CP is a project that can contain other
projects, including other CPs. For example, the Composite Explorer
view in Figure 2 shows how the “Order Entry” CP contains two
other CP projects, “Order Entry Device” and “Order Entry Server”,
as well as the Java project “Order Entry Shared Area”.
CPs thus allow developers to organize an Eclipse workspace into a
hierarchy of projects. Such an organization has the following
benefits.

• It reflects the logical structure of applications.

• It serves to document and communicate between developers
the relationship between projects.

• It enables the tooling to aggregate operations, such as building
and launching the various components of an application, into a
single composite operation.

Our user studies (see Section 4) have confirmed that Composite
Projects help developers manage the complexity of large software
development efforts.

3.2.2 Code Sharing
As mentioned in the introduction, the sub-applications of a
distributed mobile application often share code. In the Eclipse IDE,
code can be shared between projects by having one project depend
on another. This method is widely used but has two weaknesses:
One, dependencies are hidden in property sheets so that extra
interaction is necessary to access them. Two, sharing is at the coarse
granularity of a complete project.

With Composite Projects we introduce a new approach to sharing
code between projects. A CP can be created with a specially
designated Shared Area. This area is accessible by all the
subprojects of that composite project, and subprojects can link to
code components placed in that shared area. The effect is that a
single physical copy of shared code resides in the shared area but a
link to shared code components appears in each subproject that uses
that component. We based our implementation on Eclipse linked
resources, reminiscent of symbolic links in the Unix file system.

The code components in the shared area are organized as a set of
source folders. A shared component is accessed via a linked
resource to its source folder. A project may have linked resources to
any number of source folders in the shared area, depending on
which shared components it needs to access.

Composite Sharing addresses the two weaknesses described above.
First, shared code is always visible in each project that links to it
because linked resources are first-class resources. Second, sharing is
at the finer granularity of a source folder.

Composite Sharing is particularly relevant to mobile application
development because it enables the same source code component to
be compiled into different binaries, each tailored to a different target
platform. Such specialization is possible because shared code
appears in each project that links to it, and separate compilation
parameters are maintained per project. For example, in the Order

Entry application, shared MQe-related code (Figure 4) may be
compiled for Java 2 Enterprise Edition for the server and for Java 2
Micro Edition for the device.

3.2.3 User Interface
We created two major user-interface components, the Composite
Explorer and the Composite Viewer, to present to the developer the
grouping, nesting and sharing features of Composite Projects.
Figure 2 shows an example of the Composite Explorer, which
extends the standard Java Package Explorer. It provides a Java-
centric view of all resources as organized into Composite projects,
and gives access to the Composite operations. The Composite
Viewer is a simpler tool that offers an outline view of the workspace
down to the project level. It supports a subset of the functions of the
Explorer but is more generally applicable because it is not Java-
specific. They both provide expandable and collapsible tree views
of the CP hierarchy.

These user-interface components provide the following
functionality.

• They help developers to visualize the logical structure of
applications, including the relationships between projects, and
between projects and shared code.

• They allow a developer to hide portions of the workspace not of
immediate interest while leaving these portions within easy reach.

• They provide access via menu items to all structural CP
operations including: create a CP, add subprojects to a CP, remove
subprojects from a CP, recursively delete a CP, move a source
folder to a shared area, and link to a source folder in a shared area.
Drag-and-drop versions of these operations are planned.

3.2.4 Metadata
Composite Projects are compatible with base Eclipse – introducing
CPs does not break any existing plug-ins or workspaces. We
achieved this transparency by not modifying the basic resource
structure of Eclipse projects. Instead, the CP model is realized by
maintaining appropriate metadata. Each CP stores information
regarding itself and its immediate subprojects in a .composite file.
The CP model is an in-memory data structure built by aggregating
the information distributed across the .composite files. The model is
a forest that reflects the hierarchy of projects in the workspace.

The CP model drives operations such as adding and removing
projects from a hierarchy, visualizing the hierarchy, and managing
the development cycle by building and launching a hierarchy. The
decision to maintain a centralized model capturing the project
hierarchy, while keeping the metadata files distributed across
projects, is deliberate. It allows CPs to be self-contained, and
facilitates movement of a CP within the hierarchy. It also simplifies
the issue of location of metadata files by placing them within each
project, rather than in an arbitrary centralized location.

Composite metadata provides a general purpose mechanism for
storing attributes of a composite project. An attribute is stored as a
name-value pair. This generic mechanism is used, for example, to
support the code sharing facility described above by storing
information about a shared area in the .composite file, as shown in
Figure 7. This mechanism can also be used for future enhancements
to Composite Projects.

142

Figure 7: Sample .composite file

3.2.5 Launching
Part of the development cycle is to launch the developed application
for the purpose of testing and debugging. Since mobile distributed
applications contain multiple sub-applications, to fully “launch” the
application means to launch all of its constituents. For instance,
when testing the Order Entry application, the developer needs to
first launch the Java server, and then launch the rich-client
application that submits orders to the server.

Eclipse provides a graphical interface for specifying the settings to
be used when launching an application, for example program
arguments. These settings are saved in a launch configuration,
which can be reused for subsequent launches. Leveraging
Composite Projects, we have overcome the current Eclipse
limitation of launching only a single application at a time.

The basic idea of our current implementation is to define a
composite launch configuration, which mirrors the nested structure
of a composite project. Such a launch configuration acts by
delegation: its launch amounts to the sequential launch of the
subprojects contained in the composite project, each with its own
specified launch configuration

Our implementation offers several improvements beyond the basic
idea. One, the developer can select which sub-projects to launch. In
the context of Pegboard this enables testing of subsystems of the
distributed mobile application. Two, the developer can specify the
launch order of subprojects within the composite project, which
enables various test scenarios. The UI for specifying these aspects of
the launch configuration is shown in Figure 8.

A default composite configuration can be created on the fly and pre-
populated with launch configurations for each subproject in the
Composite Project. This saves the developer much work in initially
setting up the launch configuration.

Figure 8: Launch configuration for Order Entry

To help better visualize the launch configurations for nested
composite projects, our extension offers both a flat and a

hierarchical view of the composite launch configuration. In the
current implementation, checks are performed before and after
launching each subproject. If one check fails, the whole composite
launch configuration is terminated.

When we asked developers how launching projects in Eclipse could
be improved, they cited the desire to launch projects in a specified
order. In Pegboard we offer the option of specifying a custom order.
Another feature that would enhance the automation of launching is
to provide some means of synchronizing the launches. One
developer suggested: “launch this after the CPU load of the other
has dropped” (since that often indicates the other process is done
loading and is ready, as in the case of a server). Even better would
be if I could launch a project upon some output from another.”

Besides the idea of synchronizing launches, some other planned
enhancements, stimulated by discussions with developers, are to add
more launch parameters such as timing delays between subproject
launches and instance counts to facilitate stress testing (e.g.,
multiple clients for a single server), and to support “Composite
halt”, which would terminate all constituents of a Composite launch.

We can extend these ideas beyond composite projects, to create
confederated launch configurations that are independent of the
Eclipse project structure. Our implementation can be readily
reapplied to support this. Through this the developer can create
launch configurations for individual applications and can then mix
and match the individual configurations to create a wealth of test
scenarios that can be reused.

Aggregated launching and debugging of Pegboard applications is
supported by individual project launchers that allow local or remote
launching and debugging of sub-projects. For example, a web-
service project can be set up to launch on a web server running on a
remote machine. Additionally, Eclipse facilities for remote Java
debugging can also be leveraged.

In summary, our new Composite Projects facility helps organize,
visualize, and simplify the development of multi-project
applications by reflecting the logical structure of applications,
facilitating sharing of resources, and enabling aggregation of
common operations such as building, launching and version control.
Pegboard builds on this facility to further guide the development of
distributed mobile applications.

3.3 Pegboard Layer
3.3.1 Application Design & Implementation
A key feature of Pegboard’s development methodology is the ability
to work with both the design and implementation of a mobile
distributed application. The implementation view shows the actual
artifacts (called resources in Eclipse) that comprise the application;
it captures the code structure in terms of projects, packages, classes,
files and so on. This view leverages Composite Projects as the
mechanism for organizing the set of projects that constitute a
Pegboard application. The design view describes the architecture of
the application as a graph of communicating nodes. Our user studies
confirm that having such a view is useful when developing
distributed applications.

The Design Editor (Figure 2) provides a graphical view of the
application. Each node in the design view is a sub-application,
which corresponds to a program that interacts with other programs

<?xml version="1.0" encoding="ASCII"?>
<project name="Order Entry">
 <project name="Order Entry Device"/>
 <project name="Order Entry Server"/>

<project name="Order Entry Shared Area"/>
 <property name="shared"
 value="Order Entry Shared Area"/>
</project>

143

in a distributed application. Sub-applications are typed, to help
denote the kind of computational node they represent, such as a
device, a server or a Web service. A sub-application contains one or
more functional components, each of which is a programmatic unit
that is a meaningful part of the design. This definition is
intentionally vague, since Pegboard aims to support a wealth of
development approaches. For example, if the sub-application has a
Model-View-Controller structure, each of the three parts (model,
view, controller) may be a functional component. In another
example, if the sub-application is bundle-based [26], as is the Order
Entry client (Figure 3), each bundle may be a functional component.

The edges of the design graph are connectors, each of which
represents a communication channel between two sub-applications.
Connectors can represent many different communication
technologies, such as HyperText Transport Protocol (HTTP),
Simple Object Access Protocol (SOAP) and Message Queue (MQ).
Connectors may also support disconnected operation, which is an
important capability for mobile applications. Disconnection is
further discussed in Section 5.

To relate the two views, Pegboard maintains mappings between
design elements and implementation elements. These mappings
need not be 1-1. Mappings are generated whenever design elements
are created, and are used to help guide the developer. One form of
guidance we have implemented is cross-selection: when an element
is selected in the design editor, the corresponding elements are
highlighted in the composite explorer; similarly, selection in the
composite explorer triggers appropriate highlighting in the design
editor. Figure 2 shows cross-selection between the design object
“Device” and the implementation object “Order Entry Device”. In
the development scenarios we have pursued so far, sub-applications
are mapped to Composite projects, functional components are
mapped to non-Composite projects, and connectors are mapped to
multiple Java packages in several projects, as their implementation
is typically split between the projects implementing their endpoints.
It is important to note that Pegboard does not impose these mapping
patterns; other patterns may evolve in the future.

If a design object is not mapped, it is considered unrealized, and is
visually grayed out in the design editor (or dashed, in the case of a
connector). For example, a functional component can be created by
dragging a functional component icon from the design editor palette
into an existing sub-application on the canvas. The resulting
functional component is unrealized. At a later time, when the
developer maps this functional component, it becomes realized.
Mapping can be done through a context menu entry in the design
editor, either by associating the functional component to an existing
project or by triggering the creation of a new project.

Maintaining the mappings as the code evolves is an important
challenge further discussed in Section 5.

3.3.2 Application Patterns
Patterns are recurring solutions to problems that arise in a certain
context. They are an expert's choice when solving a certain type of
problem. The state-of-the-art in a given domain is documented in
pattern catalogs. The concept of reusing design insights became
widely popular in the software engineering community during the
last decade. Although the most well known catalog of patterns [10]
addresses design issues for object-oriented applications, patterns
can be identified in all parts of the development process – analysis,

architecture, design, coding – as well as across specific application
areas like real-time programming or user interface construction.

Complex distributed applications are often designed using recurring
configurations that represent the basic application components and
communication links between these components. We refer to these
recurring configurations as application patterns. Pegboard both
simplifies and accelerates the design process and offers interactive,
continuous use of design diagrams throughout the project lifecycle
by:

• Maintaining an extensible repository of common application
patterns for distributed applications,

• Enabling the user to select an application pattern at the
beginning of the design process, and

• Automating creation of design, implementation and mapping
elements according to the chosen application pattern.

An application pattern in Pegboard can be regarded as a graph in
which the nodes correspond to sub-applications and the edges
correspond to connectors. The pattern graph is annotated with
additional information such as sub-application names and types,
connector protocols, names of associated resources, etc. Pegboard
maintains a repository of patterns that can be easily extended.

As shown in Figure 1, the Pegboard new-project wizard lets the
developer select an application pattern. Once selected, a
corresponding graph is loaded. The application design is
automatically created according to the chosen pattern by traversing
the pattern graph. The structure and attributes of the pattern graph
drive the generation of design and implementation objects in
Pegboard. This process involves:

• A graphical representation of the chosen pattern in the design
editor that allows the user to extend and/or refine the design of the
application.

• The resources that will contain the final implementation of the
components.

• The mapping of elements in the design editor to the resources
holding their implementation, and vice versa.

Upon termination of the wizard, the design is created according to
the chosen pattern and the user can continue with the specific
application design.

3.3.3 Extensibility
Pegboard incorporates Eclipse-based tools external to Pegboard into
the development process. It strives to give the flexibility to work
with external tool components as needed, while providing sufficient
structure to help orchestrate the development process.

Figure 9 shows Pegboard’s extension architecture, which addresses
the challenge of being able to “snap in” external tools without
having to modify them and without having Pegboard depend on
them.

144

Figure 9: Pegboard extension architecture

(arrows show plugin dependencies)

The Pegboard extensibility subsystem has the following layers.

The Pegboard Core Layer contains the Pegboard building blocks
as described so far, such as the design editor and selection mapper.
This layer contains the common features that are applicable to all
distributed application projects.

The Pegboard Extension Layer contains extension points for
invoking and leveraging other tools from Pegboard, and common
behavior associated with each extension point. Extension points are
fundamental in Eclipse’s plugin architecture [10], and let a plugin
developer define declaratively how one plugin can extend the
behavior of another. For example, Pegboard has an extension point
for creating a functional component inside a sub-application, S. The
implementation object for the functional component is created by a
new-project wizard residing in an external tool, where the type of
functional component (Java project, bundle project, etc.) determines
which wizard is invoked. The common behavior is to create a
functional component inside S (in the design space), to nest the
newly created project inside the Composite project corresponding to
S (in the implementation space), and to create a mapping between
the two.

Tool Bridges mediate between Pegboard and external tools. A tool
bridge is a small dedicated plugin that knows about both Pegboard
and the external tool to which it bridges. In particular, it provides
the functionality required by a Pegboard extension point,
appropriately delegating to the external tool without requiring
Pegboard to depend on that tool. For example, the Java bridge for
the extension point mentioned above invokes the Java new project
wizard in order to create a Java project implementing a new
functional component.

External Tools live outside the Pegboard code base. Ideally, these
tools know nothing about Pegboard, yet are able to contribute
effectively to the Pegboard-orchestrated development process.

In this architecture, the lower the layer containing the code, the
more reusable and broadly applicable it is. In particular, we strive to
move code from the tool bridges to the Pegboard extension layer, so
that it can be reused for different tools. Further discussion of
extensibility issues appears in Section 5.

4. USER STUDIES & FEEDBACK
Determining how and where to improve the environment for
developers working on mobile distributed applications requires
some analysis to learn how developers do their work. To help
narrow the scope of our effort, we obtained input from developers
during the initial phase of our project. We conducted phone
interviews, surveys, and exercises with developers who work with
complex projects, many of them mobile application projects, so they
could help us assess the kinds of tasks that could feasibly be
addressed and simplified with good tooling. This methodology for
engaging users in the design and development of systems is
commonly referred to as user-centered design [24].

We conducted a survey with sixteen developers to understand how
they evaluated their programming experiences with Eclipse and how
well Eclipse supports their work. The surveys included fourteen
questions and were administered in face to face interviews and
through email.

Of those questioned, 63% felt that Eclipse supports the way they
develop well and 19% claimed that it supports their work very well.
However, upon deeper inspection we learned that there were
deficiencies in how they could organize their code, in the effort
required to find their code, in features that support sharing code, and
in the launching of their projects. These lapses were particularly
apparent when working on multiple projects. When asked which
features could be improved one participant replied: “An actual
notion of project groups would be nice. Opening several project
groups at the same time would be good. A hierarchy of project
groups would be even better.” These and other comments provided
us with validity and support to pursue our efforts with Composite
Projects.

In face-to-face interviews, we also asked developers to draw a
design diagram of a system as described by a supply chain scenario
we created. The scenario consisted of multiple parties interested in
obtaining oranges from a distributor. One goal of this exercise was
to see how they graphically capture system elements in a diagram,
and to verify that the Pegboard design editor can support these
features. A second goal was to validate a hunch we had on the value
of having these diagrams persist throughout the development cycle.

Often developers make rough sketches of systems on their white
board. From the diagrams we collected during our testing we could
immediately see that the features we offer in the design editor do
support the basics of how developers graphically express systems.
We also learned that support for unstructured annotations is
valuable. Such capability is supported by the design editor in the
form of element descriptions and notes on the canvas (such as the
“MQe” annotation in Figure 3).

After speaking with developers, who often need to return to the code
of past projects, we were motivated to test the usefulness of these
diagrams a bit further. After four weeks we showed our test users
the same diagrams they drew of the system in our scenario. Without
giving them any advance notice or any additional documentation we
asked them to describe the system by looking at what they drew.
One participant was able to immediately recall all details of the
system, but others had to pause for a moment and try to read their
writing. Participants who had indicated a sense of flow by
numbering their elements as a means for describing the flow, were
better able to recall the functional details. Through this exercise we
could see how the diagrams could serve as an ongoing interactive

Tool 1

Tool Bridge 1 Tool Bridge 2 Tool Bridge n

Tool 2 Tool n

Pegboard Extension Layer

Pegboard Core

145

artifact for understanding, remembering, and communicating the
fundamental objects of the system..

When the Composite Projects feature was ready for release we
packaged it separately and gave it to developers to try out. This is an
important stage of the process, since it gives us an opportunity to
iterate on the design with feedback from actual users trying out the
feature with real code. One developer, who had close to 200 projects
in his workspace, said that Composite projects “made my navigating
around the large number of projects MUCH easier. Thanks!”

Also, through his usage we quickly found an oversight. We had not
enabled scrolling through a project list in the “Add Subprojects”
dialog. We had overlooked this need, since it arises only in very
large workspaces. By putting Composite Projects into a real work
environment we were better positioned to refine the interface in
many ways. It also confirms that Composite Projects help
developers manage the complexity of large software development
efforts.

The user-centered design methodologies we employed during the
course of developing Pegboard were valuable and necessary for
keeping two distinct technical groups in touch with each other [31].
By engaging with such developers, who had needs and styles
distinct from ours, we were able to maintain a level of realism for
our efforts. It is easy to imagine how other developers may work
and it is presumptuous to assume that your development style is
naturally the same as those who will be using the tool you build. We
explicitly wanted to avoid these mishaps, by having the two sets of
developers communicate with each other especially during the
design stage of the project. Communication was in the form of
written responses to questions, phone conversations, electronic
demonstrations, and observations while using the tool. All kinds of
input, or “field data”, help carve out a course for a successful tool
[18].

5. DISCUSSION & FUTURE WORK
In this section we look deeper into some of Pegboard’s design
issues, and describe our thoughts for future enhancements.

5.1 Platform Profiles
Platform profiles support the deployment of a sub-application on a
target run-time platform and ensure that the sub-application code
runs on the target platform. This feature supports distributed
applications where one or more parts run on resource-constrained
mobile devices with limited run-time environments. The capabilities
of the execution environment that can be used by an application
component at run-time are captured in a platform profile. An
example for this information is the Java Virtual Machine (JVM)
version and the set of libraries provided by a device.

Pegboard takes a top-down approach for profile support. For a
particular sub-application, the user selects the platform profile that
corresponds to the execution platform on which the sub-application
is to be deployed. The sub-application’s platform profile is shared
by all functional components within this sub-application. It sets the
boundaries for the development of any code within the functional
components.

Pegboard integrates external tools that act as individual
development platforms and support the development of a particular
application types. Functional components in the design space are

associated with projects in the implementation space that are
managed by corresponding external tools. The selected platform
profile specifies the environment in which the functional component
code is to be run. The target platform capabilities are translated into
project settings that drive the compilation of the source code (e.g.
JVM and classpath settings for a Java project). When the functional
component code is compiled using these settings, the result is
targeted to the chosen run-time environment ensuring that the
implemented code can be executed. Since all functional components
share the same platform profile, the entire sub-application can be
deployed.

We have implemented the described mechanism as a prototype for
functional components associated with Bundle Development
Toolkit (BDK) within Pegboard sub-applications of the type
“device”. The platform profile is represented using Composite
Capabilities/Preference Profiles (CC/PP) [7]. Like UAProf [32], the
prototype uses a specific CC/PP vocabulary. Its attributes describe
the JVM and the set of bundles to be used by the BDK projects.
From the sub-application level they are passed as requirements
when the functional component and its BDK project are created and
ensure that the code will not have any dependencies that cannot be
satisfied by the selected platform.

We plan to extend the prototype implementation to other sub-
application types and functional components associated with other
tools. We note that there is a relationship between the type of a
Pegboard sub-application and the CC/PP vocabulary of the platform
profile. Extending the scope also requires knowledge about the
compilation and deployment mechanisms of external tools for
correct translation of platform profile attributes to project settings,
and the existence of suitable APIs for applying these settings in the
external tools.

5.2 Connectors & Disconnection
The implementation of connectors is typically spread across
multiple sub-applications. By having an explicit representation for
connectors in the design diagram, we can drive various aspects of
connector-related development through the design editor. Here are a
few such aspects we have considered.

Generic creation: A generic wizard creates code regions for
placing the connector-related code, and maps them to the connector
design element. These regions belong inside the subprojects
corresponding to the two endpoints and in the shared area. The
outcome of the wizard may involve creation of new projects and
corresponding functional components.

Protocol-specific creation: A tool-specific wizard (in a tool bridge)
extends the generic creation wizard and also generates protocol-
specific boilerplate code. For example, for MQe (as used in Order
Entry) it can generate code in the shared area, which performs
queue management and message transport.

Data modeling: The schemas of messages flowing along the
connector can be modeled in a tool-specific manner. For example,
the tool can help create a Web services Description Language
(WSDL) specification for a web-service sub-application, and from
the WSDL generate SOAP classes for the connector between the
web-service sub-application and a device sub-application.

Disconnection support: Data modeling can apply to models that
support disconnection through model-based replication, such as

146

SDOSync [6]. In this case, synchronization agents would be
generated for both ends of the connector, and the SDO modeler
would generate the SDO classes to be shipped across.

In the current design, connectors are represented symmetrically, as
bidirectional arrows in the design editor. It is possible that a
directional representation better fits cases in which the
communication is highly asymmetrical, such as HTTP client and
server. An area to explore is whether supporting a directional
representation would improve usability of Pegboard and facilitate
additional functions.

An additional function that may prove useful is, upon selection of a
connector, to only highlight the code artifacts pertaining to one of its
endpoints (e.g., “show me the client-related communication code”)
or to the shared code for the connector.

5.3 Extensibility
Pegboard’s extensibility architecture enables it to interact with
external tool components, as explained in Section 3. The challenge
is to be able to connect to external tools that know nothing about
Pegboard, avoid having Pegboard depend on them, and yet deliver
an integrated development experience. The tool bridges create the
desired buffer: the bridge depends on Pegboard and on the tool it
mediates. An outcome of this design is that if the external tool is
absent in a given Eclipse installation, Pegboard continues to operate
correctly, except that the missing tool is not visible.

A limitation of this approach is that the tool bridge is restricted by
the externals of the tool: its public interfaces and its observed
behavior. In some cases we need to be cunning in working around
this limitation. For example, when launching an external wizard to
create a functional component, Pegboard needs to know the name of
the new project created. Since this information is not generally
available through the wizard API, we provided the heuristic solution
of inspecting the workspace project before and after, and thereby
computing the new project name. This can be overwritten by tool
bridges that can get the information more accurately.

Another facet of this limitation is the possible difficulty in affecting
the external tool’s behavior as a result of actions orchestrated by
Pegboard. Again, doing this successfully may require deep
familiarity with the tool’s interfaces so as to set parameters and data
beforehand. A less elegant, but often required approach is to have
the tool bridge detect inconsistencies and request developer
intervention.

5.4 Code Evolution
A key feature of Pegboard is the ability to work with both design
and implementation views of the application, and the mappings
between them. Keeping the mappings up to date throughout the
development cycle is essential to having a “live” design view. This
issue is reminiscent of the round trip problem in software
development [22], where a high-level representation (e.g., UML
model) generates a lower-level one (e.g., source code), and needs to
be kept in sync when the lower-level representation is changed (e.g.,
when editing the source code directly). The case of Pegboard is
interesting in that the relation between the two representations
(design and implementation) is looser than that of one being
generated from the other, yet still needs to be updated as the artifacts
evolve.

The following mechanisms help keep the Pegboard mappings
updated:

Initial generation: When creating a new Pegboard project based on
an application pattern, design and implementation elements are
generated, as well as the mappings between them.

Structured operations: Performing structured operations through
the design editor, such as creating new sub-applications, connectors
or functional components, triggers generation of corresponding
elements in the implementation space as well as the mappings to
them. When deleting a design element, a wizard should prompt the
developer as to the fate of the corresponding implementation
elements: keep them, delete them (actual resource deletion), or just
remove them from the Pegboard project (by removal from the
containing Composite project). This last choice is probably best as
default.

Rename: When renaming an element in the design editor, the
mapping information is updated accordingly. To support renaming
of implementation elements, we extended Eclipse’s refactoring [12]
framework. Whenever the developer performs a rename-project
refactoring, our extension updates both the Composite metadata and
the mapping information.

Pegboard has to be vigilant in updating the design space and
mappings in response to changes in the implementation space, so as
to ensure a tight correspondence between the spaces. The following
approach can be implemented by registering Eclipse resource
listeners, and specific listeners on Composite projects.

Adding artifacts in the implementation space: The listeners
prompt the developer as to whether to create corresponding design
elements. If so, the system also creates the appropriate mappings. In
addition, there needs to be an option to add a mapping to an existing
design element; this is especially important for connectors, which
may have complicated mappings.

Removing artifacts in the implementation space: The listeners
remove any mappings to the removed artifacts and prompt the
developer whether to keep the design element(s) mapped to those
artifacts.

In addition to the automatic and semi-automatic mechanisms listed
above, Pegboard can provide manual facilities for easily adding and
removing mappings. For example dragging an element from the
Composite Explorer and dropping it onto an element in the design
editor can ask whether to create a mapping.

Finally we note that evolution techniques may be applied to the
application pattern. The current implementation does not use the
pattern after initial creation of the application. It may be useful to
trace the evolution of the pattern throughout the development cycle.

5.5 Collaboration
Supporting collaboration between programmers is an important
function of any software development environment. Pegboard can
augment the collaboration support already in Eclipse by enabling
aggregate operations on hierarchies of projects, in addition to the
existing operations on individual projects. This support can be
achieved with straightforward additions to the Composite layer in
the current Pegboard implementation.

147

More specifically, Eclipse provides what it calls team operations
built on top of an external version control system such as the
Concurrent Versions System (CVS) [8]. Eclipse allows a developer
to synchronize his local copy of source code to a repository shared
with other developers and maintained by CVS. In this regard the
Eclipse user interface exposes common CVS operations such as
check out, update, and commit. Currently these operations apply to
single Eclipse projects.

We plan to extend Eclipse team operations to make them aware of
the composite project hierarchies enabled by Pegboard. Thus, for
example, invoking an update operation on a composite project
would recursively perform an update operation on the tree of
projects rooted at that composite project. Aggregating team
operations in this way is similar to aggregating launching operations
as described in Section 3.2.5. We do not foresee any problems in
adding these composite team operations to Pegboard.

There is an attractive collaboration-related aspect of Pegboard that is
already available in the current implementation. Namely, it is
possible for different developers on a team to organize the same set
of Eclipse projects into different hierarchies of composite projects,
or indeed for some developers to use composite projects and others
not to use them. For example, one developer working on the Order
Entry application may choose to organize her workspace into
composite projects as presented in Section 2, while another may
choose to leave his workspace as a flat collection of projects.

This flexibility is made possible by our choice to base composite
projects on metadata additions to Eclipse rather than on changing
the underlying Eclipse project structure, as described in Section
3.2.4. As a result, the source code repository stores self-contained
Eclipse projects that are independent of any structure imposed by
the separately stored metadata. Composite projects are themselves
stored in the repository as standalone Eclipse projects containing
only metadata that refers to other projects. One developer can
therefore check out one set of projects while another developer
checks out another set. The fact that Pegboard does not force every
developer on a team to use the same hierarchy of composite
projects, or to use composite projects at all, lowers the barriers to its
adoption.

5.6 Mobile Application Models
A challenge in developing mobile computing applications is that
they employ a broad spectrum of programming models. In the
disconnected operation model, the application runs locally on the
mobile device, and synchronizes code and data with a server when
connected to the network. The lack of network dependency
accommodates a responsive user experience that is unhindered by
network delays, but is limited to the data available on the mobile
device. On the other end of the spectrum, a pure browser-based
application requires a server connection to deliver its function, but
often provides a poorer user experience, especially in older
technologies such as WAP [21]. Nevertheless, the high degree of
connectivity is compelling, and has made the browser-based model
successful in certain markets, such as i-mode in Japan [25].
Browsers have been enhanced to provide a richer user experience
and be less dependent on connectivity. Examples are the AJAX
model [15], which employs device-side scripting and asynchronous
operation, and the forms-based model, which utilizes a device-side
processor to interpret a forms language, such as XForms [29] or
InfoPath [30]. Extending beyond the browser is the distributed rich

client model, in which first-class application components run on the
client devices as part of a traditional distributed application [11].
Multimodal applications, such as those including voice interaction,
are also appealing in the mobile space [20]. Distributed agent-based
systems such as JADE have also been utilized in the mobile space
[2].

A further challenge is that individual applications sometimes span
more than one of these models. For example, the Vindigo client
takes two forms: a disconnected client for Personal Digital
Assistants (PDAs) and a custom browser for mobile phones [4].

Pegboard attempts to address these challenges by providing a
general, extensible solution that is agnostic to programming model.
This approach is in contrast to model-specific solutions such as the
Multi-Device Authoring Technology [1] and HopiXForms [5]. We
plan to explore how well Pegboard accommodates different models
by using it to build a wide range of mobile applications.

6. RELATED WORK
In this section we concentrate on several systems that have goals or
features similar to Pegboard

6.1 Whitehorse
Whitehorse is a suite of novel graphical tools for developing
distributed applications [16] which has become part of the Microsoft
Visual Studio 2005 Team System product line. Visual Studio is an
IDE for developing a wide range of applications in different
programming languages (Visual Basic, C#, J#, and C++). It offers
many pre-defined projects for different application types ranging
from console applications to .NET applications and Web services.
The main focus in the beta release of MS Visual Studio 2005
Enterprise is on distributed applications based on web-services with
RPC-based data flow.

The Whitehorse suite uses a top-down development approach, and
provides graphical tools for individual tasks during the design and
deployment phase. The Application Connection Designer (ACD)
defines application components in a diagram. Components can be
connected with each other, their (SOAP) interfaces can be defined,
and the dataflow between them can be specified. The ACD also
supports generation of projects, source files, and skeleton code for
the defined components. The System Designer is used to compose
systems from applications defined via the ACD. Larger systems can
be created by nesting existing smaller units. Using the Logical
Datacenter Designer the user can define topologies of
interconnected servers on which individual application components
will be hosted. The Deployment Designer binds distributed
application components to logical servers in a target datacenter.
Once these bindings are defined for all components, deployment of
the application on a logical datacenter can be validated.

Like Pegboard, Whitehorse supports graphical design of distributed
applications. The graphical editors that allow the user to compose
the application design are key components in both platforms.
Important differences pertain to pattern support, application
structure, and extensibility. Unlike Pegboard, Whitehorse does not
support commonly recurring patterns for distributed applications,
and hence the design process starts from scratch for new
applications. Pegboard sub-applications contain multiple functional
components, whereas application components in Whitehorse do not
have further structure at the graphical level. Finally, leveraging

148

affordances of the Eclipse platform, Pegboard is itself an open
extensible framework, into which other Eclipse-based development
tools can be integrated.

6.2 Concern Manipulation Environment
The Concern Manipulation Environment (CME) is a framework that
extends the Eclipse platform for decomposing and managing
software into reusable and meaningful parts [17][27]. As an
approach for supporting software evolution by creating encapsulated
concerns out of existing software, it helps the developer create
features that can be used across domains. This effort could be used
in concert with Pegboard’s organizational features to facilitate
further code reuse and sharing throughout the software lifecycle.

6.3 Together
Together [2] is a modeling tool that provides a synchronized view
between the design and the implementation level. It generates stubs
for any design that a developer selects from its own catalog of
design patterns, similarly to Pegboard. However, the scope of the
patterns is different between the two tools: Together deals with mid-
level design-level patterns that contain classes and relationship
among classes, whereas Pegboard deals with architectural patterns
that contain projects and relationships among projects.

6.4 Component-Based Systems
Component-based systems are used to assemble applications from
components. As such, they provide means for building distributed
applications, since the components may run on multiple computing
nodes. Fuentes and Troya [13] describe an integrated development
environment for building multimedia and collaborative applications
based on the MulitTEL component-based framework. At the core of
their approach is an Architecture Description Language (ADL) for
defining and composing components. They leverage the ADL for
delivering integrated tools such as a visual builder and component
directory. In contrast to this approach, Pegboard provides a veneer
over existing tools within an IDE, does not impose a specific
language-driven methodology, and provides a more explicit
representation of the computational nodes.

6.5 Service-Oriented Architectures
Like component-based systems, Service-Oriented Architectures
(SOA) provide a uniform abstraction of distributed applications as a
set of interacting services [9] [28]. Tools supporting SOA are
provided by many industry players, including Microsoft, IBM and
BEA. Pegboard supports service-based components (e.g., via Web
service sub-applications), but does not impose a service-oriented
structure for the applications it creates.

7. CONCLUSIONS
In this paper we have presented a tooling framework that extends
the Eclipse IDE to support structured development of mobile
distributed applications. Pegboard helps manage development
complexity through visualization, simplification, organization and
guidance throughout the development cycle. Early feedback from
developers indicates that Pegboard improves their experience when
dealing with large development efforts. We hope that this work
raises awareness of the need for better tools for building mobile
systems, applications and services.

8. ACKNOWLEDGEMENTS
Sébastien Demathieu was instrumental in developing an earlier
version of Composite Projects. Guru Banavar helped motivate the
Pegboard effort. Dave Bevis, David Lection, Pierre Carlson and Jim
Colson provided valuable input and guidance. Richard Cardone and
Norman Cohen provided many insightful comments on the
manuscript; we thank them for their considerable effort in reviewing
this paper.

9. REFERENCES
[1] G. Banavar et al. An Authoring Technology for Multi-Device

Web Applications, IEEE Pervasive Computing, Vol. 3, No. 3,
July/September 2004.

[2] M. Berger, S. Rusitschka, D. Toropov, M. Watzke and M.
Schlichte, “Porting Distributed Agent-Middleware to Small
Mobile Devices”, AAMAS Workshop on Ubiquitous Agents on
Embedded, Wearable and Mobile Devices, Bologna, Italy, July
2002.

[3] Borland Together Technologies
http://www.borland.com/us/products/together

[4] R. Cáceres, J. Donham, B. Fitterman, D. Joerg, M. Smith and
T. Vetter, “Mobile Computing Technology at Vindigo,” IEEE
Wireless Comm., Vol. 9, No. 1, February 2002.

[5] R. Cardone, D. Soroker, A. Tiwari, “Using XForms to
Simplify Web Programming”, Proc. 14th Intl. Conference on
the World Wide Web (WWW ‘05), Chiba, Japan 2005, pp. 215-
224.

[6] P. Castro, F. Giraud, R. Konuru, A.Purakayastha, D. Yeh, “A
Programming Framework for Mobilizing Enterprise
Applications”, Proc. 6th IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA), English Lake District,
UK 2004, pp.96-205

[7] Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies 1.0. W3C Recommendation, 15 Janauary
2004, http://www.w3.org/TR/CCPP-struct-vocab .

[8] Concurrent Versions System (CVS) http://www.cvshome.org/ .
[9] F. Curbera, D. Ferguson, M. Nally and M. Stockton, “Toward

a Programming Model for Service-Oriented Computing”,
Proc. International Conf. on Service-Oriented Computing
(ICSOC ‘05), Amsterdam, The Netherlands 2005, pp. 33-47.

[10] Eclipse. http://www.eclipse.org .
[11] Eclipse Rich Client Platform http://www.eclipse.org/rcp .
[12] M. Fowler, Refactoring: Improving the Design of Existing

Code, Addison-Wesley, 1999
[13] L.Fuentes and J.M. Troya, “Coordinating Distributed

Components on the Web: an Integrated Development
Environment”, Software Practice and Experience, Vol. 31 No.
3, Jan. 2001, pp. 209-233.

[14] E. Gamma , R. Helm , R. Johnson , J. Vlissides, Design
patterns: elements of reusable object-oriented software,
Addison-Wesley, 1995

[15] J.J. Garrett, “Ajax: A New Approach to Web Applications”
http://www.javalobby.org/articles/ajax/

149

[16] B. Gibson and A. Thorne: Visual Studio 2005 Team System:
Designing Distributed Systems for Deployment. MSDN
Library Article,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnvsent/html/vsts-arch.asp .

[17] W. Harrison, H. Ossher, S. Sutton and P. Tarr, “Supporting
Aspect-Oriented Software Development with the Concern
Manipulation Environment”, IBM Systems Journal, Vol. 44,
No 2, 2005, pp. 309 – 318

[18] K. Holtzblatt, “Designing for the Mobile Device: Experiences,
Challenges, and Methods”, CACM, Vol. 48, No. 7, July 2005,
pp. 33-35.

[19] IBM WebSphere MQ Everyplace. http://www-
306.ibm.com/software/integration/wmqe/ .

[20] M. Jost, J. Haussler, M. Merdes, R. Malaka, “Multimodal
interaction for pedestrians: an evaluation study”, Proc 10th
Intl. Conf. on Intelligent User Interfaces, San Diego, CA., 2005
pp. 59-66.

[21] N. Leavitt, “Will WAP Deliver the Wireless Internet?”, IEEE
Computer, vol. 33, no. 5, May 2000, pp. 16-20.

[22] N. Medvivovic, A. Egyed and D. Rosenblum, “Round-Trip
Software Engineering Using UML: From Architecture to
Design and Back,” Proc. 2nd Workshop Object-Oriented
Reengineering (WOOR 99), ACM Press, 1999, pp. 1–8.

[23] Microsoft Visual Studio. http://msdn.microsoft.com/vstudio .

[24] D. Norman and S. Draper, User Centered System Design: New
Perspectives on Human-Computer Interaction. Lawrence
Erlbaum Associates, 1986.

[25] NTT DoCoMo http://www.nttdocomo.com .
[26] OSGi Alliance Service Platform http://www.osgi.org .
[27] H. Osher, P. Tarr, “Using Multidimesional Separation of

Concerns to (Re)shape Evolving Software”, CACM, Vol. 44,
No. 10, Oct. 2001, pp. 43 -50.

[28] M. Papazoglou, “Service-Oriented Computing: Concepts,
Characteristics and Directions”, Proc. 4th International
Conference on Web Information Systems Engineering
(WISE03), Rome, Italy, 2003, pp. 3-12.

[29] T.V. Raman, XForms, XML Powered Web Forms. Addison-
Wesley, 2004.

[30] T. Robbins, Programming Microsoft InfoPath. Charles River
Media, 2004.

[31] S. Spraragen, "The challenges in creating tools for improving
the software development lifecycle", Proc. ICSE Workshop on
Human and Social Factors of Software Engineering, St. Louis,
Missouri 2005, pp.1-3.

[32] User Agent Profile Specification, Open Mobile Alliance, 20
May 2003
http://www.openmobilealliance.org/release_program/docs/UA
Prof/OMA-UAProf-V2_0-20030520-C.PDF .

150

