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ABSTRACT
Limited fidelity of software-based wireless network simula-
tions has prompted many researchers to build testbeds for
developing and evaluating their wireless protocols and mo-
bile applications. Since most testbeds are tailored to the
needs of specific research projects, they cannot be easily
reused for other research projects that may have different
requirements on physical topology, radio channel character-
istics or mobility pattern. In this paper, we describe the
design, implementation and evaluation of MiNT-m, an ex-
perimentation platform devised specifically to support ar-
bitrary experiments for mobile multi-hop wireless network
protocols. In addition to inheriting the miniaturization fea-
ture from its predecessor MiNT [9], MiNT-m enables flexi-
ble testbed reconfiguration on an experiment-by-experiment
basis by putting each testbed node on a centrally controlled
untethered mobile robot. To support mobility and reconfig-
uration of testbed nodes, MiNT-m includes a scalable mo-
bile robot navigation control subsystem, which in turn con-
sists of a vision-based robot positioning module and a col-
lision avoidance-based trajectory planning module. Further,
MiNT-m provides a comprehensive network/experiment man-
agement subsystem that affords a user full interactive con-
trol over the testbed as well as real-time visualization of the
testbed activities. Finally, because MiNT-m is designed to
be a shared research infrastructure that supports 24x7 oper-
ation, it incorporates a novel automatic battery recharging
capability that enables testbed robots to operate without
human intervention for weeks.
Categories and Subject Descriptors: C.3 Special-Purpose
and Application-based Systems: Miscellaneous; C.2.3 Net-
work Operations: Network Management, Network Monitor-
ing [Wireless Testbed]
General Terms: Experimentation, Management, Measure-
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1. INTRODUCTION
Software-based wireless network simulations often fail to

faithfully capture many real-world radio signal propagation
effects such as non-uniform path loss, interference, and multi-
path fading [11]. This limitation is overcome through use of
physical wireless network testbeds. Although several on-
going efforts aim to construct a high-fidelity wireless net-
work testbeds for wireless protocol experimentation, they
share some of the following weaknesses. First, these testbeds
provide limited flexibility to the user to specify arbitrary ini-
tial wireless connectivity with user-defined pairwise signal-
to-noise ratios (SNR), as well as, node mobility patterns
during experiments. Second, often support for extensive
node mobility is accompanied with significant manual main-
tenance efforts for node charging and positioning, and thus
cannot work as an autonomic infrastructure that supports
24x7 operation. Finally, management and control interfaces
of many existing wireless network testbeds are often rather
primitive. Experiences of several groups in setting up wire-
less experiments underscore the need for a comprehensive
monitoring/control environment to improve the productiv-
ity of wireless protocol experimentation, especially for test-
ing cases involving node mobility and failures. This pa-
per describes the design, implementation, and evaluation of
MiNT-mobile (MiNT-m), a multi-hop mobile wireless net-
work testbed that (1) supports experiment-by-experiment
topology reconfigurability, (2) enables untethered node mo-
bility, (3) can operate autonomously in a 24x7 fashion, (4)
provides comprehensive monitoring and control of the net-
work testbed, (5) supports hybrid ns-2 simulations1, and (6)
is deployable in a limited physical space using radio signal
attenuation.

An obvious way to support node mobility and topology re-
configuration in a wireless network testbed is to mount each
testbed node on a mobile robot. Though conceptually sim-
ple, there are several technical challenges in designing and
implementing such a wireless testbed. First, each testbed
node must be battery-operated and self-rechargeable. The
key design issue here is how to build completely untethered
mobile robots that can operate autonomously, thereby far

1Unless otherwise specified, we use the term simulation and
hybrid simulation interchangeably.
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exceeding in usability the ones that are simply battery op-
erated and require frequent management. Second, to set
up a given initial topology or to enact a particular run-time
node movement pattern, an accurate positioning mechanism
is required to track and control the position of each wireless
network testbed node. Finally, to grow a mobile wireless
network testbed to a significant size of about 100 nodes, the
targeted size of the MiNT-m project, the cost of each testbed
node must be low, and the design of various testbed control
functions, such as node movement and position tracking,
must be scalable.

A MiNT-m node is built using a low-cost commodity robotic
vacuum cleaner called Roomba [1], which supports a lim-
ited number of externally controllable movements (move for-
ward, and change direction), is able to carry a large pay-
load (up to 30 pounds), and comes with an effective auto-
recharging capability. Mounted on each Roomba is a wire-
less network node supporting four 802.11 interfaces, each
of which is attached to an antenna through a radio signal
attenuator to reduce its signal coverage. Roomba’s auto-
recharging circuitry is modified to power up both Roomba
and the wireless network node. Moreover, a residual power
estimation and a recharge scheduling algorithm is designed
to keep track of the battery status of each node and de-
termine the next recharge time for a node. A vision-based
positioning system is designed to track the position of each
mobile node in the testbed. The positioning system robustly
tracks the nodes with zero false positives, and requires only
commercial off-the-shelf webcams. The resulting node po-
sition estimates are used for monitoring and for planning
trajectories for collision-free node movement.

A network/experiment management system is essential to
the robustness and usability of any wireless network testbed.
Existing wireless network simulators or testbeds neither pro-
vide real-time visibility into the detailed dynamics of the
protocols under simulation, nor support sufficient control
flexibility for steering the simulation runs towards more fruit-
ful directions. The network/experiment management sys-
tem designed for MiNT, called MOVIE (Mint-m cOntrol and
Visualization InterfacE) bridges this deficiency. Specifically,
MOVIE provides real-time display of network traffic load
distribution, pair-wise end-to-end routes, node/link liveli-
ness, protocol-specific state variables, positions of individ-
ual nodes and inter-node signal-to-noise ratios. In addition,
MOVIE allows users to control a simulation run dynami-
cally, including pausing a simulation run at a user-specified
breakpoint, inspecting its internal states and/or network
conditions, modifying different simulation parameters, and
resuming the run. It also supports a rollback mechanism
that allows one to go back to a previous state of a long-
running simulation, and resume from there with a different
set of simulation parameters.

In summary, this paper makes the following key contri-
butions to the state of the art of wireless network protocol
simulation systems:

• MiNT-m provides the most flexible testbed topology
reconfigurability and node mobility support for pro-
tocol simulations among all existing wireless network
testbeds. In addition, MiNT-m’s node mobility infras-
tructure requires no manual configuration in (a) node
movement control, (b) node position tracking and (c)
node recharging. This reduces the testbed setup and
administration cost to a minimum.

• MiNT-m offers one of the most advanced management
interfaces among all existing wireless protocol simula-
tion systems. This interface, called MOVIE, is able to
provide a detailed real-time view of the system con-
figuration, network traffic load distribution, node/link
liveliness, and evolution of protocol-specific states. In
addition, MOVIE provides users the flexibility to dy-
namically steer the direction of a simulation run (in-
cluding reversing the execution) by inspecting proto-
col states and modifying protocol parameters, network
configurations, and traffic loads accordingly.

The rest of the paper is organized as follows. Section 2
discusses prior work related to this research. Section 3 gives
an overview of MiNT-m. Section 4 discusses the details
of the mobility infrastructure. Section 5 presents the tech-
niques to enable 24x7 autonomous operation of the testbed,
while Section 6 details the MOVIE implementation. Section
7 evaluates various aspects of the first 12-node MiNT-m pro-
totype, and records results of experiments performed using
the prototype. Finally, Section 8 concludes the paper with
a summary of contributions.

2. RELATED WORK
In this section, we compare the mobility and visualiza-

tion aspects of MiNT-m with those of other wireless network
testbeds/simulators.

2.1 Node Mobility
Volunteer supported node mobility have been tried in an

early wireless testbed at CMU [15], as well as by the APE
testbed at Uppsala University [14]. Ideally, node movements
should be remotely controlled and their mobility fully auto-
mated, instead of depending on volunteers. In this paper,
we take the approach of introducing mobility using remotely
controlled robots.

The ORBIT testbed [18] introduces virtual mobility using
fixed wireless nodes by transferring states of a virtual node
from one physical node to another. This leads to discretized
mobility.

Mobile Emulab [12] uses 4 Acroname Garcia robots for
mobility. These robotic platforms cost over $1000 a piece,
as opposed to our improvised robotic platform based on
Roomba robotic vacuum cleaners ($249 a piece) [1]. More-
over, Netbed’s robots must be manually taken to their charg-
ing bases every 2-3 hours for recharge. Roomba comes with
an auto-charging feature, that makes our mobile testbed
truly autonomous. We also leverage on an earlier design of
using attenuators to miniaturize the testbed that we pro-
posed in MiNT [9]. This makes the arena of operation
smaller thus requiring smaller number of overhead cameras
to track the nodes.

A key aspect in node mobility is to allow collision-free
movement of the robots, which requires path and motion
planning of the robots. Existing literature [6] has explored
robot motion planning for various complex scenarios. Since
our testbed offers a much controlled environment, we ex-
plore a heuristic (discussed later) that is lightweight, and
computationally efficient. In contrast to the motion plan-
ning algorithm used in Mobile Emulab, since the Roombas
do not have object sensor, we have built the intelligence
to detect obstacles present on the path into the trajectory
planning procedure by using the tracking subsystem.
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2.2 Node Tracking
Associated with mobility feature is the use of a tracking

system for accurately determining the position and orien-
tation of each node. There are various systems that use
vision-based tracking system to track mobile nodes in dif-
ferent environments. Here, we briefly discuss three tracking
systems that are most similar to ours. Graham and Kumar
[10] use ceiling-mounted cameras and colored patterns on toy
cars to track them. They use 8 colors and an error-correcting
3x2 colored pattern to track the cars. Their system is de-
signed to track up to 22 mobile nodes and is able to uniquely
identify nodes as well as provide their position and orienta-
tion. Cremean et al. [7] use ceiling-mounted monochromatic
camera and binary (black/white) patterns to compute the
position and orientation of the nodes. Very recently and
concurrent to our work, Johnson et al. [12] have also im-
plemented a centralized tracking system that uses ceiling
mounted cameras and color patterns to determine the po-
sition and orientation of the mobile nodes in their wireless
testbed. Their tracking system does not uniquely identify
each tracked node, instead locality and motion pattern in-
formation is used to determine the identity of nodes.

Simplicity and cost of construction are the main differen-
tiators of our tracking system. Use of off-the-shelf consumer
webcams and standard APIs makes our tracking system in-
expensive and easily portable. Additionally, miniaturization
makes our tracking system more scalable. We also do not
need any frame-grabber cards. Thus no specialized equip-
ment/API needs to be procured and set up to install our
tracking system.

2.3 Testbed Visualization
A visualization tool is essential to study the dynamics

of the experiments in a testbed. CMU testbed [15] uses a
graphical interface that displays the position of the nodes,
the link characteristics, route changes for DSR protocol, and
throughput information. Similarly, the MIT RoofNet [5]
also has an online map of the link characteristics among all
the nodes in the testbed. It refreshes the link characteris-
tics periodically. Similarly, Kurkowski et al. [13] extended
NAM to develop a tool called iNSpect, which adds features
needed to study the mobility of nodes. Our extension of
NAM (MOVIE) goes much beyond iNSpect in making NAM
display real time as well as showing important events related
to wireless protocol evaluation, like route changes, link char-
acteristics, and protocol-specific attributes. Additionally,
MOVIE supports advanced control features such as experi-
ment breakpoint based on specified events, and rollback of
experiments.

3. SYSTEM OVERVIEW
MiNT-m derives from MiNT [9] the feature of using radio

signal attenuation to shrink physical space. The improve-
ment is in designing completely untethered nodes, that was
lacking in MiNT due to use of desktop PCs as testbed nodes.
More specifically, MiNT-m mounts a battery-powered small-
form-factor embedded computing board (RouterBOARD)
on an iRobot’s Roomba robotic vacuum cleaner. Figure 1
shows a picture of the current 12-node MiNT-m prototype.
In this section, we describe the hardware and software com-
ponents of MiNT-m, and how these are integrated into a
powerful and flexible wireless research platform.

Figure 1: MiNT-m prototype with 12 mobile nodes and
charging stations (top left corner of the image).

3.1 MiNT-m Architecture
The hardware and software components in MiNT-m are

shown in Figure 2, and described in more detail in this sub-
section.

Hardware Components: A mobile node comprises of
a wireless computing device and a mobile robot for physi-
cal movement. In MiNT-m, the wireless device is Router-
BOARD 230, which is a low-power battery-operated board.
Each RouterBOARD has 4 mini-PCI IEEE 802.11 a/b/g
cards, which make it possible to support multi-radio exper-
iments [4]. A radio signal attenuator is inserted between a
wireless interface and its antenna to shrink the signal cov-
erage and thus the physical space requirement. The mobile
robot is an inexpensive off-the-shelf robotic vacuum cleaner
from iRobot, called Roomba. Necessary modifications to the
Roomba are made to allow (i) the Roomba movements to be
controlled from the wireless computing board mounted on
it, and (ii) automatic recharging of a mobile node when the
batteries drain out. The mobile node design is discussed in
detail in Section 4.1.

The control server is a PC equipped with 3 wireless net-
work interfaces. All control traffic is transported on an
IEEE 802.11g channel and thus does not interfere with IEEE
802.11a channels, that are used in actual experiments. Mul-
tiple NICs allow the flexibility to scale the testbed to in-
creasing number of testbed nodes. The tracking server is a
cluster of PCs (currently 3 PCs) that periodically receives
snapshots of the entire testbed, as captured by a (3x2) grid
of commodity web cameras, and uses them for testbed node
identification and positioning. Smaller physical space re-
quirement also reduces the number of cameras needed.

Software Components: The key software components
in MiNT-m are: (a) the control daemon running on the cen-
tral control server, (b) the node daemon residing on each
testbed node, and (c) the network monitor and control in-
terface called MOVIE (Mint-m cOntrol and Visualization
InterfacE).

The control daemon running on the control server collects
position updates of testbed nodes from the tracking server
and event traces from experiment nodes, and correspond-
ingly updates the MOVIE display. It also communicates
user-issued control commands, regarding node position or
configuration changes, to individual node daemons that in
turn control the movement of mobile robots. Because all
event messages from the testbed nodes pass through the
control server, the control daemon also maintains a com-
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Figure 2: The control daemon running on the control
server collects inputs from the tracking server and the user,
and controls the movement of mobile robots. It also in-
cludes the MOVIE interface for monitoring and control.
Each testbed node corresponds to a Roomba robot and has
a node daemon running on it, which communicates directly
with the control daemon over a dedicated wireless control
channel. The vision-based tracking server periodically cap-
tures images of testbed nodes, and processes them to derive
the location of each testbed node.

plete log of activities in the testbed.
The node daemons on the testbed nodes communicate

with the central control daemon over an IEEE 802.11g chan-
nel that is determined at start-up time. The messages that
are communicated are either movement commands from the
central control daemon, or simulation events reported by
testbed nodes back to the central control server. Other pro-
grams running on testbed nodes, for example, an ns-2 simu-
lator, a TCP sender, or an RF monitoring agent, rely on the
node daemon for any communications with the central con-
trol server. For example, critical events in the event trace
that an ns-2 simulation run generates are passed in real time
through the node daemon to the controller node for display.

MOVIE provides a comprehensive monitor and control
interface that offers real-time visibility into the testbed ac-
tivity and supports full interactive control over testbed con-
figuration and hybrid simulation runs. MOVIE is derived
from Network Animator (NAM), a well-known off-line visu-
alization tool for ns-2 traces, but introduces several powerful
features for real-time monitoring and controlling simulation
runs and for interactively debugging simulation results such
as protocol-specific breakpoints and state rollback.

3.2 Using MiNT-m
Running a hybrid simulation on MiNT-m generally in-

volves three steps: experiment configuration, experiment ex-
ecution and experiment analysis.

Experiment Configuration:
To configure an experiment running on MiNT-m, a user
could specify (1) the testbed topology, (2) the applications
to run on the testbed nodes, (3) mobility patterns of testbed
nodes, and (4) network interface card parameters such as
radio channel, transmission power, etc. MOVIE allows con-

figuring the network topology through simple drag of a node
icon in the canvas. The control daemon accordingly triggers
physical movement of the chosen node, followed by update
of the pairwise signal strengths in MOVIE.

When the user runs an ns-2 simulation on the MiNT-m
testbed, an ns-2 instance runs on each testbed node. In
order to use MiNT-m as a protocol development platform,
Linux implementations of the protocol can be installed and
executed on each testbed node.

To describe node mobility pattern, the user specifies the
intermediate positions and final destinations, along with
their relative temporal offsets with respect to the begin-
ning of the simulation run. From these information, instead
of statically computing a global trajectory for each moving
testbed node, MiNT-m relies on a run-time collision avoid-
ance algorithm that dynamically resolves possible collisions
among testbed nodes by halting some of them when colli-
sions become imminent.

The user can also configure individual testbed nodes: One
can first gain a root shell on individual nodes and then de-
ploy applications or kernel modules, and then change their
wireless network card parameters, such as transmit power
and retry count.
Experiment Execution:
The user initiates the experiment through MOVIE and con-
trols the execution of an experiment by observing its progress
and intermediate results. In addition to starting/stopping
an experiment, MiNT-m provides users the ability to tem-
porarily pause an experiment, modify simulation parame-
ters on the fly, and then resume the experiment. Moreover,
MiNT-m supports the ability to rollback an experiment back
to a previous specified time, modify some simulation param-
eters and restart the simulation run from the restored state.
Finally, MiNT-m borrows from VirtualWire [8] and provides
a facility to introduce controlled faults that are designed to
expose potential bugs in protocol implementations.
Experiment Analysis:
MiNT-m allows the user to specify simulation events of in-
terest and to request the associated values to be displayed in
real time. In addition, MOVIE supports real-time display
of several wireless network parameters that are generally
useful across all wireless protocols, such as the inter-node
signal-to-noise ratio, the throughput on each wireless link,
and route between a pair of nodes.

4. AUTONOMOUS NODE MOBILITY
Building a complete infrastructure to support mobility

constitutes the most challenging part of the testbed de-
sign. The key components of the mobility infrastructure are:
(a) fully mobile nodes each composed of a battery-operated
wireless device mounted on a mobile robot, (b) the mecha-
nism to keep track of the nodes’ positions inside the testbed,
and (c) the mechanism to enable smooth mobility of nodes.
This section presents each of these components and the chal-
lenges in building them.

4.1 Mobile Testbed Node Design
Logically, each MiNT-m testbed node is a wireless net-

working device mounted on a mobile robot. One critical
factor is cost because MiNT-m is planned to scale to a size
with an order of hundred nodes. Next, for mobility, the
wireless networking device should have a small form factor
so that it can be easily mounted on a simple robot, and
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Figure 3: A MiNT-m testbed node comprises of a Router-
BOARD (RB-230) powered by an external laptop battery,
and a Roomba robotic vacuum cleaner whose movement is
controlled by a Spitfire Universal Remote Controller. The
RouterBOARD is equipped with 4 wireless NICs each con-
nected to a separate omni-directional antenna via a radio
signal attenuator.

should be power efficient to maximize its runtime even on
a small battery. After considering several options, Router-
BOARD’s RB-230 board is chosen as the hardware platform
for the wireless networking device. RB-230 is a small-form-
factor PC with a 266MHz processor and runs on an external
laptop battery. It also comes with a PCI extension board
(RB-14), which allows to connect 4 Atheors-based 802.11
a/b/g mini-PCI cards. Each of these cards is connected to
a 2 dBi external antenna through a 22 dB attenuator. This
adds a total of 44 dB attenuation on the signal path from
transmitter to receiver and thus makes it possible to deploy
a 12-node MiNT-m prototype within a space of 132.75” X
168.75” (Figure 1). In addition to the fixed attenuation, the
transmit power on the mini-PCI cards can be altered by 20
dBm to provide additional flexibility in tuning inter-node
signal-to-noise ratio.

The mobile robot used in MiNT-m is iRobot’s robotic vac-
uum cleaner called Roomba [1]. Unlike other commercially
available robotic platforms, whose price is in the range of
thousands of dollars, Roomba is much less expensive (retail
price: $249) because it is a consumer-grade product. Use of
Roomba greatly reduces the per-node cost and substantially
improves MiNT-m’s economic viability.

Designed primarily to be a vacuum cleaner, Roomba does
not have an open API for controlling its movements. This
limitation is circumvented through a clever use of its IR-
based remote control facility. Two primitives are enough for
arbitrary Roomba movement: (1) move the mobile robot for-
ward, and (2) turn the robot by a specified angle. A Roomba
can be instructed to perform these primitives through a re-
mote controller. Roomba’s remote control codes are learnt
using a programmable remote controller called Spitfire [3].
The central control server moves a testbed node by sending a

movement command to the testbed node’s RouterBOARD,
which then sends a corresponding command to Spitfire over
its serial port. Eventually Spitfire issues the associated in-
frared code to instruct the node’s Roomba to move accord-
ingly.

Figure 3 shows the current MiNT-m testbed node proto-
type. There are two shelves mounted on the Roomba. The
laptop battery and the Spitfire universal remote controller
sit on the lower tier, while the RouterBOARD based wire-
less networking device is on the top tier. The four external
antennas are mounted on poles located at four corners.

4.2 Position and Orientation Tracking
To enable autonomous robot movement, the central con-

trol daemon must keep track of the current position and
orientation of each testbed node. One option is to use
RF/ultrasound-based indoor local positioning systems such
as Cricket[16]. However, this option increases the per-node
cost, and introduces additional RF interference. Therefore,
we choose an optical or vision-based position/orientation
tracking system that only requires off-the-shelf webcams and
color patches mounted on testbed nodes. The resulting
tracking system is able to uniquely identify each testbed
node, and accurately pinpoint its (X, Y) position and orien-
tation (θ). Moreover, it can scale to over 100 nodes, which
is the target size of MiNT-m design.

Compared with general object tracking, the object track-
ing problem in MiNT-m is much less complicated because of
the following simplifications. First, change in lighting con-
dition in the testbed room is infrequent. Consequently, once
the color profiles have been calibrated for the initial light-
ing condition, it is not necessary to dynamically account for
fluctuation in lighting condition. Second, colors chosen for
tagging the testbed nodes are different from the background
color, in this case the floor’s color. The current MiNT-m
prototype uses a simple color recognition algorithm that
can reliably identify 8 distinct colors. Including multiple
colors in each pattern used to identify a testbed node allows
the scheme to scale to large number of uniquely identifiable
patterns. Finally, placement of webcams that periodically
take pictures of the testbed nodes does not change once it
is mounted. The current MiNT-m prototype uses 6 ceiling-
mounted webcams whose image planes overlap and are par-
allel to the floor. Each webcam continuously feeds captured
images to the tracking server it is connected to over a USB
port, and one tracking server supports up to two webcams.

The current MiNT-m testbed covers a floor space of 132.75”
X 168.75”. The webcam it uses is Logitech QuickCam 4000,
whose image resolution is 320 X 240. Each webcam is placed
at a height of 9.1 ft from the ground, and is able to cover a
floor region of approximately 87” X 66” which means each
pixel corresponds to 0.075 square inch area. To cover the
entire testbed arena, the prototype uses 6 webcams. These
webcams are placed such that they overlap with one another
and the overlap area is large enough to hold a Roomba com-
pletely. As a result, every Roomba is completely captured
by at least one webcam and the image streams from the 6
webcams can be processed independently.

MiNT-m uses colors to identify each testbed node and its
position/orientation. Colors are represented using the HSV
(Hue, Saturation, Value) space because the distribution of
colors is more uniform, and the Hue and Saturation com-
ponents are orthogonal to the Value (or brightness) compo-
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Figure 4: The color patch on a node has a unique head
and tail patch on all nodes. The vector from the centroid
of the tail patch to the centroid of the head patch is used
to determine the Roomba’s direction, thereby computing a
node’s orientation in the testbed arena. The node location
and identification are done using the center ID patches.

nent. The HSV profile of a number of colors in the testbed
room is computed, and eventually 8 colors are identified that
are clearly distinguishable based on at least one of the H,
S, or V components. Because the HSV profile for the same
color may change substantially from one camera to another
(due to slight changes in lighting in different parts of the
room), each camera is separately profiled.

MiNT-m associates a four-color pattern with each testbed
node, as shown in Figure 4. The head and tail color patches
are the same for all testbed nodes. Only the center patch,
which consists of two colors, are used in node identification.
The location of a testbed node is the centroid of the ID
patch. The orientation is determined based on its direction,
computed as the vector connecting the centroid of the tail
patch to that of the head patch. Using same colors for head
and tail patches introduces redundancies that guard against
noises and simplifies the determination of robot orientation.

The color recognition algorithm used in MiNT-m is ex-
tremely simple and thus efficient, and uses standard image
processing techniques for edge detection. It scans the pixels
in a captured image one by one. If the algorithm detects a
pixel of a known color, it searches the neighboring pixels to
check if they are of the same color, and grows pixels of the
same color into regions as much as possible. Combinations
of neighboring color patches are used to identify individual
testbed nodes.

Factors that affect the accuracy of MiNT-m’s color-based
position/orientation tracking algorithm are the size of each
color patch, the number of distinct colors used, the stabil-
ity of lighting condition, optical noise in the patch bound-
aries, which might distort centroid computation. Given the
patch size and the camera resolution used in the current
MiNT-m prototype, a 1-pixel recognition error could poten-
tially translate to 0.27 inch in location error, and 2.2 de-
grees in orientation. As an optimization, it is possible to
exploit inter-frame coherency to greatly mitigate the effects
of recognition errors.

4.3 Node Trajectory Determination
MiNT-m’s trajectory computation is based on a static tra-

jectory planning algorithm, which computes a robot’s path
assuming the world is static, and a dynamic collision avoid-

Algorithm 1 Node Trajectory Determination

for (∀ nodes marked for mobility) do
obstacle ← Nearest obstacle on direct path between
Ainitial and Afinal

if (obstacle == 0) then
// There is a direct path to the destination
Generate Roomba moves

else
Determine intermediate points (P1, P2, ..., Pn) on
lines ⊥ or at angle θ to direct path passing through
the nearest obstacle;
Check for direct path between Ainitial and any of
(P1, P2, ..., Pn) ;
Check for direct path between any of (P1, P2, ..., Pn)
and Afinal ;
if (∃ 2-hop direct path via Pi) then

Generate Roomba moves from Ainitial to Pi ;
Generate Roomba moves from Pi to Afinal ;

else
if (∃ direct path from Ainitial to some Pi) then

Generate Roomba moves from Ainitial to Pi ;
else

Move δ steps in a random direction away from
nearest obstacle;

end if
end if

end if
end for

ance algorithm, which detects and resolves collision by fine-
tuning pre-computed trajectories.

Given the current position and the target destination of
a testbed node (TN), the control server takes a snapshot of
the positions of other testbed nodes and treats them as ob-
stacles in the calculation of the TN’s trajectory. The static
trajectory planning algorithm first checks if there is a direct
path between the TN’s current position and its destination.
If such path does not exist, the algorithm identifies the ob-
stacle closest to the source position, and finds a set of in-
termediate points that lie on the line which passes through
the obstacle and is perpendicular to the line adjoining the
source and destination and have a direct path to both the
source and destination. If no such intermediate points ex-
ist, the algorithm finds a random intermediate point that is
δ steps away from the obstacle closest to the source and is
directly connected to the source, and repeats the algorithm
from this new intermediate point as if it is a new source.
The algorithm is shown in Algorithm 1.

In Figure 5, node N1 is set to move from Ainitial to Afinal.
However, N2, N3 and N4 block the direct path between
Ainitial and Afinal. The trajectory planning algorithm first
figures out that N3 is the obstacle closest to Ainitial, and
then computes the intermediate points P1, P2, ..., P6 to search
for 2-hop paths to Afinal. Because the paths L1 and L2 are
partially blocked, the algorithm eventually chooses path L3,
which passes through the intermediate point P3.

In addition to static trajectory planning, MiNT-m also
requires a dynamic collision avoidance algorithm because
testbed nodes could be moving and the robot movement is
not perfect. Given a snapshot of the testbed, which appears
once every 1/4 second in the current prototype, MiNT-m
performs a proximity check for each testbed node. If any
two nodes are closer than a threshold distance, both of them
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Figure 5: Finding the trajectory from N1’s current position
Ainitial to Afinal. As nodes N2, N3 and N4 block the direct
path, the algorithm tries to identify an alternate 2-hop path
to move N1 from its current source to its destination.

stop, a new path is re-computed for each of them, and the
algorithm moves them on their new trajectory one by one.
In the event that two nodes indeed collide with each other,
the algorithm again detects it through a proximity check and
stops the nodes immediately. In this case, the algorithm also
recomputes a new path for each of the two nodes, and moves
them one by one.

One problem with Roomba is that its movement is not
very accurate, which could also lead to dynamic collision.
Its forward movement is 5 inches per step, and the pivot
movement varies from 4 to 5 degrees per step. Furthermore,
a Roomba only allows three types of movement: forward,
clockwise turn and counter-clockwise turn. Hence backward
movement is implemented by a turn of 180 degree followed
by forward motion. The inaccuracies in Roomba movement
necessitate constant correction. Additionally, MiNT-m’s ob-
ject tracking errors also contribute to position inaccuracy.
Hence, after each sequence of 5 move commands are applied
to a testbed node, its trajectory is re-computed till it reaches
the destination point.

5. 24X7 AUTONOMOUS OPERATIONS
A key challenge in the design of MiNT-m is how to ren-

der the testbed self-manageable and providing uninterrupted
24x7 continuous operation. Since each testbed node is bat-
tery powered, the batteries must be recharged periodically.
Usually battery charging is a manual process that requires
the administrator to take discharged nodes to charging sta-
tions [12]. In contrast, MiNT-m supports automatic recharg-
ing of the nodes’ batteries and imposes zero manual charg-
ing overhead. In this section, we present the auto-recharging
mechanism, the residual battery capacity estimation mech-
anism, and the recharge scheduling policy. Finally, we dis-
cuss how we recover from node crashes resulting from bugs
in protocols under test.

5.1 Auto-Recharging Mechanism
Roomba provides a docking station to charge its batter-

ies. The Roomba docking station emits an IR beacon that
is received by a Roomba over a distance of around 5 ft.
When a Roomba’s battery power drops below a threshold,
it starts looking for a beacon emitted by the docking sta-
tion and uses the signal to home into the docking station
for recharge. Unfortunately, Roomba’s built-in battery can-

Diode

+ve −ve

Connector
Coaxial

Roomba RouterBoard
Battery

Figure 6: The auto-charging circuit for charging the wire-
less node battery when the mobile node docks itself into the
docking station for recharging.

not be used to directly power the RouterBOARD. Hence, we
use a separate universal laptop battery to power the Router-
BOARD. To recharge the RouterBOARD battery along with
the Roomba battery, we connect the RouterBOARD bat-
tery to the charging tip of the Roomba battery as shown
in Figure 6. This allows both the batteries to be charged
simultaneously from the same docking station.

5.2 Residual Charge Estimation
To keep the testbed running on a 24x7 basis, nodes with

low residual charge must be scheduled for recharge on ev-
ery charging cycle. Unfortunately, neither the Roomba nor
the RouterBOARD battery provide any API for probing the
residual battery capacity. Hence the residual charge on a
testbed node is estimated based on profiling of the batteries
and the node’s usage.

For each node, the residual charge on the Roomba’s inter-
nal battery and the RouterBOARD’s battery are estimated
separately. The residual charge on Roomba’s internal bat-
tery is estimated using the equation:

Rroomba = Iroomba −Nroomba ∗ Uroomba (1)

where Rroomba and Iroomba are the residual and the initial
charge on Roomba’s battery respectively. Nroomba is the
number of movements performed by Roomba, and Uroomba

is the energy consumed per movement. Although, a Roomba
battery drains even when Roomba is not moving, this is
negligible.

Similarly, the residual charge on RouterBOARD’s battery
is estimated as:

Rboard = Iboard−Tboard∗Uboard−Ndisk∗Udisk−Npacket∗Upacket

(2)
Here, Rboard and Iboard are the residual and the initial

charge on RouterBOARD’s battery respectively. Tboard is
the amount of time RouterBOARD has been on, and Uboard

is its idle power consumption per unit time. Ndisk and Udisk

are the number of hard disk operations performed by the
RouterBOARD and the energy consumed per disk operation
respectively. Finally, Npacket and Upacket are the number of
packets sent/received by the RouterBOARD and the energy
consumed per network operation respectively. The energy
consumed by each IR transmission is negligible.

5.3 Node Re-charge Scheduling Algorithm
A node cannot be used for experimentation while it is

being charged. However for 24x7 operation a set of nodes
must be operational at all times. Hence, a set of spare nodes
are provisioned in the testbed. Specifically, the testbed uses
n + m nodes, where n nodes are used in the experiments
at any time while m nodes are being recharged. If c is the
average charging time for a node and d is its average dis-
charging time, then by maintaining (m > n ∗ c/d) spare
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Figure 7: The webcam shot of the testbed. The color patch
on each node uniquely identifies the node as well as tells its
position and orientation.

nodes, the testbed can be run without any downtime. Nei-
ther the Roomba’s nor the RouterBOARD’s battery suffer
from any memory effect due to incomplete charge/discharge
cycles. Therefore, the actual recharge scheduling algorithm
is straightforward: at every recharge cycle, dock the m least
charged nodes out of n + m testbed nodes for recharge.

5.4 Node Crash Recovery
Another aspect of 24x7 operation is dealing with node

crash due to bugs in kernel modules. We utilize the 2
hardware watchdog controllers that each RouterBOARD is
equipped with. A software daemon periodically writes some
bytes to an I/O port indicating to the watchdog controller
that the node is alive. In the event of a node crash, the con-
trol daemon stops writing to the I/O port, and the control
server detects it after a timeout and automatically reboots
the node. To ensure that a reboot restores the original ker-
nel image, no user-specified module is loaded at boot-time.
This ensures that a crashed node can always automatically
recover within a fixed time.

6. MOVIE: MINT-M CONTROL AND VISU-
ALIZATION INTERFACE

The graphical user interface for MiNT-m is derived from
Network Animator (NAM) [2], that is one of the most com-
monly used visualization tools for ns-2. NAM is a Tcl/TK
based animation tool designed for offline viewing of network
simulation traces. It features topology layout, packet level
animation, and various data inspection tools. The input to
NAM is a list of < attribute, value > pairs. Based on the
attribute type, NAM displays different objects, like nodes
with node id and links with link characteristics.

An interface for management and control of a wireless
testbed benefits with more interactive features. The user
must be able to control node movements as well as configure
various node-level parameters. Also, the interface must pro-
vide real-time status update of different objects, like nodes,
links, routes in the testbed. Finally, during experimentation,
important events in the traces should be displayed in real
time, instead of offline. To incorporate these capabilities,
NAM is evolved into an interface for MiNT-m, called Mint-
m cOntrol and Visualization InterfacE (MOVIE) (Fig 8).
This section presents the features of MOVIE along with im-
plementation details of some of its advanced features.

Figure 8: MOVIE GUI acts as the front-end to the testbed,
and supports all management, control, and visualization
functionalities. Each node icon represents the actual posi-
tion of a physical node in the testbed (as shown in Figure 7).
Nodes are physically moved by dragging the corresponding
icons in the GUI. The number on each link represent the
signal quality for the link in that direction. MOVIE can be
used to set the network-wide parameters, and override them
on a per-node basis.

6.1 MOVIE Visualization Features
Based on the periodic updates from testbed nodes, MOVIE

displays states of different objects such as nodes, links, and
routes. As different events are triggered on the testbed, they
are shown in MOVIE in real time. However, displaying each
and every packet exchange substantially increases the con-
trol traffic, as well as hides useful information. Therefore
we extract only the important events such as route changes,
link quality changes, node movements, and display them in
real time. Since MOVIE displays all these events and states
as they occur, the events generated by different nodes need
to be merged to produce a unified sorted list of events, a
job performed by the control daemon. We now discuss the
exact testbed attributes displayed in MOVIE, and how they
are extracted before being sent to the control daemon.

Node Attributes: Each testbed node is represented by
an icon in MOVIE: The position and orientation of the
icon correspond to that of the node in the testbed arena.
Double-clicking on a node icon opens a window that dis-
plays various node-level attributes. These include network
card configuration, such as MAC address, radio channel, and
BSSID. The window further displays the residual charge on
the node batteries as estimated by the algorithm discussed
in Section 5.2. Right-clicking on the node icon displays its
hearing range neighbors, while left-clicking on it displays the
node’s interference-range neighbors. The determination of
interference-range neighbors is discussed in following sub-
section.

Link Attributes: MOVIE also displays link-level charac-
teristics, such as signal quality, error rate, and traffic load on
the link. All these characteristics are measured in a passive
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Figure 9: The changes in multi-hop routes are displayed
in real time in MOVIE. In the figure, the route switch from
node 2 to node 1 is sent to the control node, and displayed
in MOVIE in real time.

manner, upon reception of every wireless packet. To mea-
sure the link error rate, each packet is stamped by a unique
monotonically increasing sequence number.

Multi-hop Routes: Protocol debugging can be much sim-
plified through visualization of multi-hop routes discovered
by the routing protocol (like AODV) in use. Each node
maintains all the route table updates and periodically sends
them back to the controller node. Changes in routes are also
displayed in real time through MOVIE, as shown in Fig 9.

Protocol-specific Attribute Display: During develop-
ment of new protocols, it is often necessary to view the
changing values of different protocol-specific attributes, such
as TCP’s congestion window. MOVIE can display arbitrary
attribute values as long as they are exported by the protocol
developer as attribute-value pairs. For ns-2 based protocols,
the attribute can be simply exported as part of the NAM
file. For real implementations, we use the proc filesystem in-
terface to export various attributes. For new protocols that
plan to use the MiNT-m infrastructure, the values can be
directly written in an attribute-value format. For old pro-
tocols, which do not write in the desired format, a parser
must be installed that translates the results from the files
into the attribute-value format. These values are then sent
for display to MOVIE.

Determination of Communication and Interference
Neighbors: While setting up a topology for a wireless ex-
periment, an important step is to understand the interfer-
ence relationship among the neighbors. MOVIE can high-
light both the communication and sense range neighbors for
any specified node.

Determination of hearing range neighbors is straightfor-
ward: The chosen node sends out a broadcast ping. All the
neighbors that respond to the ping request are the hearing

range neighbors of the chosen node.
Determining interference range neighbors is relatively trick-

ier: A node may not normally hear the transmissions from
its interference range neighbors, but can sense their trans-
mission. For 802.11a transmissions at 6 Mbps, if the trans-
mit power of a card is increased by 2 dBm, then the sense
range neighbors become hearing range neighbors. Hence,
in order to determine sense range neighbors of a node, the
transmission rate is set to 6 Mbps, wireless card transmit
power is increased by 2dBm, and then a broadcast ping is
sent. The nodes that respond are the sense range neighbors
for this node at the default transmission rate and transmit
power.

6.2 MOVIE Control Features
MOVIE front-end (Figure 8) is designed to allow users to

configure the testbed on an experiment-by-experiment basis.
It provides all the necessary controls, collects detailed infor-
mation from the testbed, and gives real-time status update
to the users. Control activities of a user generate down-
stream data flow from MOVIE to the nodes. Visualization
functions feed data into MOVIE for display. This subsection
discusses the main control features supported by MOVIE.

Node Configuration: For each testbed node, the user can
set various configuration parameters such as card transmit
power, retry count, sensitivity threshold, and RTS thresh-
old. Most of these parameters are set using standard wireless
card API. The sensitivity threshold is the only one that is
set by directly altering a card register.

Topology Configuration: MOVIE allows user to position
the nodes at desired locations in the testbed by dragging the
corresponding icons in the GUI. The movement of a node
icon generates a destination point and triggers trajectory
computation on the controller node (discussed in Section
4.3). The controller node then issues move commands to
the node daemons on the corresponding nodes.

Given a certain placement of nodes, the node density can
be altered by changing the transmit power level of the nodes.
Further fine-tuning of topology is possible by selectively
disabling individual links and routes. Links are disabled
through use of MAC filtering function that drops all pack-
ets going from a specified source to a destination. Route
disabling is done by periodically deleting the corresponding
route table entry from all the nodes along the path.

Pause/Breakpointing in Hybrid Simulation: In hy-
brid simulation mode, the simulator is running in a dis-
tributed manner across all the nodes in the testbed. Debug-
ging such a distributed application is a challenging task. In
addition to simultaneous start and stop of an experiment on
all nodes, MiNT-m simplifies protocol debugging by intro-
ducing other standard features of a typical debugger, namely
pause and breakpointing of the experiment.

The implementation of the pause feature in MiNT-m re-
quires modification to the RealTime scheduler in the hybrid
ns-2. Normally, the real-time scheduler sets the simulator’s
clock value to the system clock. To account for pause, the
total pause period is measured and subtracted from the sys-
tem clock to update the simulator’s clock. When the simula-
tion is paused, the execution of events pending in the event
queue as well as those in transit to other nodes, is stalled.
However, since the simulator’s clock is also paused, no ad-
justment is needed to the time for the events in the event
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queue. In the pause state, the user is allowed to change the
physical configuration of the testbed, or alter any physical
parameters of the nodes in the testbed, like node positions
or transmit power, before resuming the execution.

The breakpoint feature is implemented by using the pause
mechanism. In breakpointing, the user specifies a watch
on ns-2 packet header fields. Each node matches the out-
going/incoming packet headers for pre-specified values, and
when a match occurs, a breakpoint signal is sent to the con-
troller node. The controller node then informs all the nodes
to pause their experiment execution.

Rollback Execution in Hybrid Simulation: The roll-
back feature for an experiment running in hybrid simulation
mode gives the flexibility to a user to repeat the experiment
from a snapshot time in the past with modified parameters
fed to the experiment. This saves on experimentation time
as the entire simulation experiment need not be repeated
from the beginning.

In order to implement this feature, the state of the ex-
ecuting process (hybrid ns-2 in case of MiNT-m) is stored
at regular intervals. On a rollback request, the saved state
is loaded and execution repeats from that point. The con-
troller node triggers each node controller to fork the ns-2
processes running on a node and stores the process id of the
forked process. On rollback, the stored process closest in
time to the rollback time is selected. The remaining stored
processes later in time to the executing process are purged
from the stored process list. In order to maintain consis-
tency of the display, once the node controllers report that
the rollback operation has succeeded, then MOVIE also re-
verts all events it has processed till the rollback time by
looking up the history. Once both MOVIE and each node
controller have successfully completed the rollback initiation
phase, the experiment is restarted from the user interface.

Note that this feature also rolls back the node positions
and the ns-2 script execution. It is, however, not possible to
rollback channel conditions.

7. MINT-M EVALUATION
In this section, we present an evaluation of different com-

ponents of MINT-m, namely the tracking system, the col-
lision avoidance algorithm, the auto-charging mechanism,
and the hybrid ns-2 simulator. We also present the evalua-
tion of a state-of-the-art MANET transport protocol ATP
on the testbed using the MiNT-m’s hybrid simulation mode.
A brief cost evaluation of the 12-node testbed is also pre-
sented. Finally, lessons learnt from using MiNT-m remotely
is discussed.

7.1 Tracking Accuracy and Scalability
The tracking system is required to get accurate position

and orientation information of each node in the testbed. Ide-
ally, if each step of the Roomba movement is exact, then it is
possible to figure out the current location of the node, based
on the initial position and the steps executed. However,
due to floor friction and mechanical non-homogeneity of the
Roombas, the Roomba movement is imprecise. Figure 10
shows the inconsistency in Roomba movements for both the
move forward as well as the rotate commands. This makes it
necessary to design a full-scale vision based tracking system
that can provide a more accurate location information than
that based on odometry.
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Figure 10: Roomba movement with each set of
move/rotate commands. The distance traveled and rotation
performed are not consistent making it difficult to track the
Roomba position based on steps executed. This inconsis-
tency makes the vision-based tracking system indispensable
to keep track of current node positions.
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Figure 11: Scalability of the tracking system in terms of
nodes tracked. With increasing number of nodes the the
time to locate each node increases. With 12 nodes, the
tracking system can produce one location update every 0.3
sec.

We measured the locationing accuracy of the tracking sys-
tem. The inaccuracy is measured as the difference between
the location and orientation of a MiNT-m node as returned
by the tracking system and its true coordinates. The mean
error in the coordinate distance is 0.95 inches with a stan-
dard deviation of 1.17 inches. The mean error in orientation
is 3.36 deg with a standard deviation of 2.77 deg.

Another important factor is the scalability of MiNT-m’s
object tracking algorithm with increasing number of nodes.
This is measured as the time taken for end-to-end tracking
(including frame grabbing, node identification, node loca-
tioning, and merging of location data from multiple tracking
servers) as the number of nodes in the testbed increases. In
Figure 11, we plot the time taken by the tracking server to
produce one set of node locations. Although the tracking is
done in parallel on all the tracking servers, multiple nodes
could be clustered within the area covered by one track-
ing server. This leads to an initial increase in the tracking
overhead with number of nodes. With 12 nodes, the track-
ing system could produce one location update for all the
nodes every 300 msec. The maximum number of nodes that
can fall within the coverage area of a tracking server is lim-
ited. Hence, as the testbed scales further and more tracking
servers are added, the tracking overhead should not increase
any further.

One of the physical constraints we had was the height
of the ceiling. If the webcams could be placed higher up,
then each webcam could cover a larger area thus scaling the
testbed size. To evaluate this theory, we scaled down the
size of the images we got from the webcams, and ran the
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Figure 12: Node path trace collected from MOVIE: Given
a destination a node can detect the presence of obstacles,
and find a collision free path.

Number Reconfiguration
of Nodes Time (sec)

2 18
3 38
4 47
5 82
6 100

Table 1: Topology re-configuration time increases with the
size of the testbed.

tracking algorithm on them. Even when each webcam image
is shrunk to 1/16th of its original size (equivalent to plac-
ing the camera at 4 times the current height), the tracking
system works well. In particular, the tracking system’s loca-
tioning error just increased from 0.95 inches to 2.32 inches,
while the error in reported orientation increased from 3.36
deg to 4.11 deg.

7.2 Collision Avoidance
Figure 12 shows the path followed by a node as a result

of the trajectory determination algorithm used in MiNT-m.
There are three other obstacle nodes on the mobile node’s
path. The trajectory determination algorithm takes the ob-
stacles into account, and generates a path that avoids these
obstacles. The line in the figure shows the resulting path.

To get an estimate of the overhead introduced by the com-
bination of position/orientation tracking and collision avoid-
ance algorithm, we measured the time taken by a mobile
node to move from initial marked position to final marked
position once with (i) tracking system and collision avoid-
ance turned on, and next with (ii) tracking system and
collision avoidance turned off and the mobile node mov-
ing through the same path selected in case-(i). The time
taken for case-(i) was 31 sec, while that for case-(ii) was 26
sec, showing that tracking system and collision avoidance al-
gorithm combined induce a 20% overhead on configuration
time.

Table 1 presents the topology reconfiguration time. In
each experiment run, all nodes started in parallel from fixed
initial positions around the corner of the testbed arena. The
final position of each node was chosen randomly and kept
constant for all the experiments. As more nodes are in-
troduced and they try to reach their destination in paral-
lel, there are effectively more dynamic obstacles present in
the environment leading to increase in the time to reach
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Figure 13: Charge and discharge cycles of a MINT-m node.
If the RouterBOARD is halted during charging, the battery
charges faster, hence it runs longer as shown by the increase
in discharge time.

the final topology configuration. Most current testbeds ei-
ther do not support experiment-by-experiment topology re-
configuration, or require several hours to come up with a
specified topology. Comparatively, MiNT-m reconfiguration
takes time of the order of minutes.

7.3 Auto Re-charging
We measured the charge and discharge times for the two

batteries. This information is used by the residual charge es-
timation algorithm to predict when a particular node needs
to be recharged. With a fully charged battery, the Router-
BOARD lasts around 13.5 hours without performing any
network or hard disk operations. The runtime reduction due
to different activities are: 2.05 sec for every 1M network op-
erations, and 8.82 sec for 1K disk operations. The runtime
reduction due to IR operations is negligible. On the other
hand, the Roomba battery lasts for 2 weeks without move-
ment, and can perform 13840 moves till the battery dies.
Since the number of mobility commands executed are less
than the RouterBOARD activities, therefore the Router-
BOARD usually depletes faster. The full charging time for
the Roomba battery is also 3 hours, which is less than the
time to charge the RouterBOARD’s battery.

Figure 13 shows the base discharge time (no network card
or hard disk activity) for the RouterBOARD battery when
the node has been charged for different periods of time. The
linearity of the discharge time with respect to charge time
simplifies the algorithm used to estimate how much charge
the battery has accumulated for a certain charging duration.

If the RouterBOARD is active during the charging pro-
cess, the battery gets depleted while charging. This leads to
a faster discharge during operation. To increase the lifetime,
the RouterBOARD is put into a halt state during charging,
and powered up using Wake-on-wireless LAN feature avail-
able on the wireless network cards before putting it back
into operation. This technique produces a substantial im-
provement on a testbed node’s battery lifetime, as shown in
Figure 13.

7.4 Hybrid-ns Performance
The core computing platform we use is a RouterBOARD-

230 that has a 266 MHz CPU and is processor-limited. As
we add more processing overhead on the system, the maxi-
mum throughput we can achieve goes down. We measured
the throughput degradation of a single hop as we enable
different features: remote tracing, per-packet local tracing,
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Tracing Type Throughput (Mbps)
No Tracing 20.51

On-line Remote Tracing 17.043
Per-packet Application Tracing 8.423

Per-packet Router Tracing 7.83
Per-packet MAC Tracing 16.08
Per-packet Full Tracing 5.53

Table 2: Hybrid-ns throughput as the tracing is turned on.
Due to tracing overhead the available throughput drops.
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Figure 14: This graph shows that the throughput of hy-
brid simulation will drop as expressions are added to the
breakpoint list.

experiment breakpointing, and experiment rollback.
We first look at the impact of different forms of tracing

on the maximum throughput achieved between two commu-
nicating MiNT-m nodes. Table 2 lists the results. Inter-
estingly, even without tracing, ns-2 application agents could
only achieve 20.5 Mbps as compared to 33 Mbps achievable
by a simple UDP flow running between the same nodes. This
is because of the additional processing overhead introduced
by ns-2, in contrast with a simple UDP sender that needs
almost no processing to prepare a packet. To achieve 20.5
Mbps throughput, we did few optimizations to ns-2 such as
use of heap scheduler instead of dynamic hash-based sched-
uler. This was required to avoid stalling of ns-2 during the
frequent re-hash operation done by the hash scheduler.

Any form of tracing introduces further CPU processing
overhead due to string operations done by ns-2. The on-line
remote tracing is done only for selected events and hence
results in least degradation (3.5 Mbps). Per-packet trac-
ing introduces maximum overhead. But even with full per-
packet local tracing and on-line remote tracing turned on,
the nodes could achieve 5.53 Mbps, enough to saturate a
channel operating at 6 Mbps link rate. Current hybrid-
ns implementation copies entire protocol packet including
its payload between user-space and kernel-space for send-
ing/receiving. As simulated protocols do not care about the
payload, one potential optimization is to only copy protocol
headers.

Another feature of hybrid-ns is breakpointing of experi-
ments. This feature requires matching expressions to trig-
ger the breakpoints when the event occurs. Since match-
ing different fields incurs overhead, the throughput reduces.
In Figure 14, we show the impact of increasing number of
breakpoint expressions on the throughput of hybrid simula-
tion. Despite the CPU bottleneck, the overhead increases
only slightly with increasing number of expressions. This

Item Cost ($)

Wireless Node
RouterBOARD RB-230 330

Wireless NICs and antennas 100x4 = 400
MiniPCI Adapter 65

Attenuators 40x6 = 240
Hard Disk 75

External Laptop Battery 170
Spitfire 135
Roomba 250
Total 1665

Tracking Server
Desktop PC 300x3=900

Quickcam 4000 100x6=600
Total 1500

Control Server
Wireless NICs and antennas 100x3 = 300

Desktop PC 300
Total 600

Table 3: Cost breakup of MiNT-m infrastructure.

is because the expressions are only checked once for each
packet, limiting the extra processing burden introduced by
breakpointing.

We similarly evaluated the performance of rollback fea-
ture. This feature requires regular snapshot (using fork()
system call) of ns-2 process running on every MiNT-m node.
Linux kernel’s fork() system call automatically uses copy-
on-write technique to avoid copying of all the pages at the
fork time. This spreads out the throughput degradation to
a few seconds after the fork() system call. With even a 1
minute snapshot granularity, the overall throughput degra-
dation was less than 0.25 Mbps.

7.5 Cost Evaluation
A major design goal for MiNT-m is to develop an inex-

pensive mobile wireless network testbed that is built from
commercial off-the-shelf components and can eventually be
duplicated in other institutions. None of the components in
MiNT-m are custom made, hence it is relatively straight-
forward to replicate the testbed elsewhere. Table 3 shows
the cost break-down of the components used in constructing
a single MiNT-m node, as well as the cost of the tracking
server and the control server. The current 12-node MiNT-
m prototype is implemented at an overall cost of around
$22,000.

7.6 Protocol Evaluation on MiNT-m
To demonstrate the usefulness of MiNT-m as an experi-

mentation platform, we studied a cross-layer MANET trans-
port protocol called ATP [19] using the MiNT-m’s hybrid-
ns simulation feature. Although, ATP has been compre-
hensively evaluated in pure ns-2 simulations, its behavior
has not been studied on a real testbed. Our experimental
study revealed several important characteristics of the pro-
tocol that we discuss in this subsection.

7.6.1 ATP Overview
In ATP scheme, every intermediate node measures queu-

ing and transmission delays for each packet passing through
it. The sum of exponentially averaged queuing and trans-
mission delays yields the average packet service time experi-
enced by all the flows going through the intermediate node.
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Figure 15: Fluctuations in ATP’s bandwidth estimation.
The channel bandwidth is fairly constant, as seen by an
optimal UDP stream sent over the same 3 hops.

In the equilibrium condition, each ATP flow attempts to
maintain exactly one data packet on every router along the
path [19]. The service time therefore reflects the ideal dis-
patch interval for all the flows competing over the bottleneck
link. Every packet bears the maximum service time encoun-
tered on any of the intermediate hops. The bottleneck ser-
vice time is communicated back to the sender, which adjusts
its packet dispatch interval to match this service time.

7.6.2 ATP’s Inaccurate Bandwidth Estimation
One of the key issues we observed with ATP is bandwidth

under-estimation. Figure 15 shows the fluctuations in band-
width estimation by an ATP flow originator performing FTP
upload to a node that is 3 hops away. The same figure also
shows the optimal bandwidth as seen by a UDP flow. The
optimal flow was found by sending a UDP stream at differ-
ent rates until the maximum was achieved. The stability of
the optimal UDP flow suggests that the channel bandwidth
fluctuations are negligible, and most of the bandwidth fluc-
tuations are internal to the ATP protocol itself.

Further experimentation revealed the root of the prob-
lem to be the service time measurement metric proposed by
ATP. The problem with the overall-service-time approach is
that it couples the queue-size management with rate esti-
mation, which leads to traffic fluctuations and in turn non-
optimal estimation of channel bandwidth [17]. More con-
cretely, it is very hard to maintain exactly one data packet
from each flow on every router. If there is even a slight
change in transmission time of a single packet, a queue (say
of two packets) builds up on the router for the rest of the
epoch. Clearly, an extra packet in the queue does not in-
dicate any change in the network bandwidth. However, in
the next epoch ATP sender proportionally reduces its send-
ing rate (to half in this example) to bring the queue down
to one packet. It is in these epochs, that an ATP sender
under-estimates the path bandwidth.

7.6.3 ATP’s Flow Unfairness
We tested several of the scenarios and came up with two

common ones where ATP demonstrates substantial unfair-
ness. These scenarios are depicted in Figure 16. The first
example (Fig 16 (a)) corresponds to the hidden terminal
scenario. Here one wireless link’s transmission is inhibited
by another link, eventually leading to unequal bandwidth
allocation between the two. Table 4 shows the resulting

F2F1

F1, F2, F3 F4

2 431

(a) Hidden Node Problem

3 4

(b) Unfair Channel Sharing

2 1

sense 

sense 

Figure 16: ATP’s unfairness scenarios: The wireless node
getting a lesser than fair share of bandwidth is numbered
1 (and colored in red or white), whereas the one getting a
larger share is numbered 3 (and colored in green or black).
(a) Node 1 lacks information about Node 3’s transmissions,
attempts its communication at inopportune times, and even-
tually backs off unnecessarily. (b) Flow F1, F2, F3, and
F4 all share the same channel, but ATP, like most other
transport protocols, allocates more bandwidth to F4 than
to others.

Flow ATP Thruput Optimal Thruput
(Kbps) (Kbps)

Hidden (Flow 1) 570.4 985.8
Inhibitor (Flow 2) 1104.6 1186.4

Table 4: ATP accentuates the hidden terminal problem.

bandwidth distribution between the two flows. Flow 1 orig-
inating from the hidden node gets much lesser bandwidth
than Flow 2 originating from the inhibiting node. Although
one could attribute this problem solely to the 802.11 MAC
layer, this problem can indeed be addressed at the transport
layer as demonstrated by fairness of optimal UDP flows go-
ing over the same network.

The second example (Fig 16 (b)) corresponds to a general
channel space sharing scenario. Concretely, ATP allocates a
radio channel’s bandwidth fairly among flows from a single
node, rather than among all flows from all nodes that share
the radio channel. As a result, a flow emanating from a
node with fewer flows tends to get a larger than fair share of
channel bandwidth. This is shown in Table 5 where Flow 4
gets much larger than its fair share, while Flow 1 and Flow
3 suffer.

7.6.4 Discussion
This protocol study demonstrates the usefulness of dif-

ferent MiNT-m features. Specifically, the ability to perform

Flow Id ATP Thruput Optimal Thruput
(Kbps) (Kbps)

1 383.0 641.6
2 590.1 641.6
3 484.7 641.6
4 1010.8 641.6

Table 5: ATP’s fairness in typical channel sharing scenario.
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hybrid-ns simulations enabled us to re-use the pure ns-2 code
written for ATP. Similarly, the ability to reconfigure topol-
ogy through MOVIE enabled us to come up with specific
topologies that revealed the protocol weaknesses. MOVIE
enabled us to visualize the queue size on every ATP router,
thus helped pinpointing the reason behind ATP’s fluctua-
tions.

8. CONCLUSION
Though there are several on-going efforts that aim to con-

struct high-fidelity general-purpose wireless network testbeds,
none of them provide adequate support for network topology
reconfiguration and node mobility. While mobile robot tech-
nology appears to be an obvious solution to this problem,
the associated engineering challenges are quite formidable
because of the following conflicting requirements. First, the
mobile robots used have to be low-cost because we need a
large number of them. Second, the mobile robots need to be
completely untethered so that unconstrained physical node
movement is possible. Third, the amount of human interven-
tion required to manage the mobile robots must be minimal
as they are meant to be the building blocks of a research
infrastructure operating at 24 hours per day and 7 days per
week. In this paper, we describe how MiNT-m, a generic
experimentation platform for mobile multi-hop wireless net-
work protocols, resolves these issues and strikes a good engi-
neering balance among them. MiNT-m shrinks the amount
of physical space required for experimenting with multi-hop
wireless network protocols through radio signal attenuation.
In addition, MiNT-m features several unique innovations:

• MiNT-m turns a consumer-grade robotic vacuum cleaner
appliance called Roomba into a general-purpose mo-
bile robot platform whose movement can be wirelessly
controlled from a central server.

• To support network topology reconfiguration and node
mobility, MiNT-m features a vision-based robot track-
ing system that requires only commodity web cameras,
and a dynamic collision avoidance algorithm for the
planning of node movement trajectories.

• To support fully autonomous 24x7 operation, MiNT-
m includes an automatic battery recharging facility
that constantly predicts the battery usage of individual
robots and schedules them for recharging when their
battery runs low.

• MiNT-m’s network management interface significantly
improves protocol simulation productivity because it
offers users full interactive control of simulation runs
and real-time visualization of simulated protocols’ states
and testbed network conditions. In particular, it sup-
ports advanced debugging features such as protocol-
specific breakpointing and reverse protocol simulation.

Although MiNT-m was originally designed to support wire-
less network emulation, its scalable robot positioning and
movement control, automatic self-recharging, comprehen-
sive monitoring and control, make it an effective platform for
general collaborative robot computing research as well, e.g.,
developing automatic guided vehicles for transporting goods
within factories or warehouses. The major future work of
the MiNT-m project is to scale the testbed from the current

12-node configuration to a 100-node configuration, including
its optical object tracking system.
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APPENDIX
A. WEBPAGE

Detailed instructions for implementing a MiNT node and
integrating the testbed is available at:
http://www.ecsl.cs.sunysb.edu/mint.
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