
Enhancing the Security of Corporate Wi-Fi Networks
Using DAIR

Paramvir Bahl†, Ranveer Chandra†, Jitendra Padhye†, Lenin Ravindranath†

Manpreet Singh‡, Alec Wolman†, Brian Zill†
†Microsoft Research, ‡Cornell University

ABSTRACT
We present a framework for monitoring enterprise wireless net-
works using desktop infrastructure. The framework is called DAIR,
which is short for Dense Array of Inexpensive Radios. We demon-
strate that the DAIR framework is useful for detecting rogue wire-
less devices (e.g., access points) attached to corporate networks, as
well as for detecting Denial of Service attacks on Wi-Fi networks.

Prior proposals in this area include monitoring the network via a
combination of access points (APs), mobile clients, and dedicated
sensor nodes. We show that a dense deployment of sensors is nec-
essary to effectively monitor Wi-Fi networks for certain types of
threats, and one can not accomplish this using access points alone.
An ordinary, single-radio AP can not monitor multiple channels ef-
fectively, without adversely impacting the associated clients. More-
over, we show that a typical deployment of access points is not
sufficiently dense to detect the presence of rogue wireless devices.
Due to power constraints, mobile devices can provide only limited
assistance in monitoring wireless networks. Deploying a dense ar-
ray of dedicated sensor nodes is an expensive proposition.

Our solution is based on two simple observations. First, in most
enterprise environments, one finds plenty of desktop machines with
good wired connectivity, and spare CPU and disk resources. Sec-
ond, inexpensive USB-based wireless adapters are commonly avail-
able. By attaching these adapters to desktop machines, and dedi-
cating the adapters to the task of monitoring the wireless network,
we create a low cost management infrastructure.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management; Network monitoring

General Terms

Management, Reliability, Security

Keywords

Wireless networks, 802.11, security, rogue AP, denial-of-service

1. INTRODUCTION
Many corporations make substantial investments in their wire-

less infrastructure. For example, Microsoft’s IEEE 802.11 based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’06, June 19–22, 2006, Uppsala, Sweden.
Copyright 2006 ACM 1-59593-195-3/06/0006 ...$5.00.

wireless (Wi-Fi) network consists of approximately 5,000 access
points (APs) supporting 25,000 users each day in 277 buildings,
covering more than 17 million square feet [10]. In addition to the
equipment costs, the costs of planning, deploying, and maintain-
ing such networks is substantial. Thus, it is important to develop
infrastructure that improves the ability of Information Technology
(IT) departments to manage and secure their wireless networks.

In recent years, researchers have uncovered security vulnerabili-
ties in Wi-Fi networks [20]. They showed that the Wired Equiv-
alency Protocol (WEP), the popular 802.11 security mechanism
that most corporations were using at the time, was fundamentally
flawed. In a series of highly publicized papers, they showed that
802.11 networks could be compromised easily. The community
reacted quickly by developing and deploying alternate security so-
lutions including VPNs, IEEE 802.1x [30], several variations of
EAP [14], Smart cards, and more recently WPA [29]. Yet, the wire-
less LAN (WLAN) security problem was not completely resolved.

Last year, Microsoft conducted a series of interviews with WLAN
administrators of several large and small organizations [10]. The
goal of these interviews was to understand the difficulties involved
in deploying and managing corporate WLANs. The issue of WLAN
security came up repeatedly during these interviews. All adminis-
trators felt that WLAN security was a problem. They were unhappy
with the quality of the tools they had at their disposal. Many of
them would periodically walk around their buildings using WLAN
scanning software (e.g. NetStumbler [33]) looking for security vul-
nerabilities. Some hired expensive outside consultants to conduct
security vulnerability analyses of their WLAN deployment, only to
conclude that what they really needed was an on-going monitor-
ing and alerting system. Most administrators believed that better
systems to manage WLAN security are needed.

Even after protocols such as IEEE 802.1x and WPA are deployed,
corporate networks can be compromised by off-the-shelf 802.11
hardware and software. For example, an unauthorized AP can be
connected to the corporate Ethernet, allowing unauthorized clients
to connect to the corporate network. The rogue AP may be con-
nected by a malicious person or, as is more often the case, by an
employee who innocently connects an AP in his office without re-
alizing that he is compromising the corporate network. A rogue
AP (or a rogue ad-hoc network [16]) can circumvent the elaborate
security measures that the IT department may have put in place to
protect the company’s intellectual property.

To test our assertion that people inadvertently compromise the
security of their networks, we conducted an experiment in two
large organizations that had secured their WLANs using one of the
methods mentioned previously. We walked around with a WLAN-
enabled laptop in a small section of the two campuses looking for
APs to which we could connect. Sure enough, we found several

1

“Rogue APs”. We successfully connected to the rogue APs and we
were able to browse the Internet and to access internal web servers
in both organizations.

Beyond rogue APs and rogue ad-hoc networks, there are a num-
ber of other ways to attack corporate 802.11 networks. For exam-
ple, Eavesdropping, where the attacker passively listens to the traf-
fic on the wireless network and gleans useful information, Denial
of Service, where an attacker exploits flaws in the 802.11 protocol
to disable the wireless link and disrupt communication, Phishing
(sometimes called Pharming), where the attacker impersonates a
legitimate AP and lures unsuspecting clients to connect to it. De-
tails of these and other attacks are provided in Section 2. The point
is that WLAN security continues to be a challenge.

The effectiveness of any management solution for wireless net-
works depends upon the ability to perform RF sensing from a large
number of physical locations. This is important both for coverage
and for pinpointing the precise location of a problem. We designed
the DAIR (Dense Array of Inexpensive Radios) system for building
wireless network management applications that benefit from dense
RF sensing. The virtues of our system and the different applica-
tions that we intend to build are described in our recent position
paper [16]. In this paper, we describe the design, implementation
and performance of our first wireless management application.

The DAIR approach is unique in that it builds on the following
two important observations. First, in most enterprise environments
one finds plenty of desktop machines. The machines are generally
stationary and are connected to wall power. They have good wired
connectivity, spare CPU cycles, free disk space, and high-speed
USB ports. Second, inexpensive USB-based wireless adapters are
readily available and their prices continue to fall.1 By attaching
USB-based wireless adapters to desktop machines, and dedicating
the adapters to the task of monitoring the wireless network, we cre-
ate a low-cost monitoring infrastructure that is then used to manage
the security of the network.

The first DAIR application that we have built and deployed is
an alert system that looks for security breaches in enterprise 802.11
networks. It correctly detects inadvertent security breaches by non-
malicious users, and raises the bar against attacks by malicious
users. It does not handle the case where a malicious user employs
non-802.11 compliant wireless devices to connect to the network.

We have deployed the DAIR security management application
in a 98 m by 32 m office building. Our current deployment uses
22 desktop machines. We have written 31,757 lines of C, C++,
and C# code to build this system. The average CPU load on each
of the desktop machines running the DAIR monitoring software is
no more than 2.25%. The average CPU load on the DAIR server
varies between 20 to 40% depending on the time of the day. Our
server and desktop machines are older models with less CPU horse-
power and memory than is typically available in current corporate
systems. The additional network traffic due to DAIR is an insignif-
icant 2.5Kbps from each desktop machine.

In summary, the primary contributions of this paper are:

• We provide specific examples of why standard authentica-
tion and encryption schemes are inadequate to secure corpo-
rate Wi-Fi networks, which motivates our solutions based on
continuous monitoring of Wi-Fi networks.

• We show that to provide comprehensive coverage for detect-
ing security breaches, a dense deployment of RF sensors is
necessary.

1On July 28th, 2005 at http://www.anandtech.com/, we found a sale
price of $6.99 for an 802.11g USB adapter.

• We describe how a scalable system of dense Wi-Fi sensors
can be built inexpensively.

• We build such a system and evaluate its performance.

2. ATTACKS ON WI-FI NETWORKS
In this section, we describe some attacks that network admin-

istrators of corporate Wi-Fi networks have to guard against. We
broadly classify these attacks as passive and active. The classifica-
tion is important for understanding the strengths and limitations of
the DAIR security management system.

Eavesdropping
Eavesdropping is a passive attack. The attacker passively listens

to the traffic on the wireless network and gleans useful information.
The listener may use sophisticated code breaking techniques [20].
Countermeasures include use of better encryption techniques as
well as physical security measures such as use of radio-opaque
wallpaper [5]. Passive attacks are difficult, if not impossible, to
detect and we do not address them in this paper.

Intrusion
Any attack that allows a user to gain unauthorized access to the

network is called an Intrusion attack. Intrusion attacks are active
attacks and several such attacks are possible.

An attacker can compromise the corporate network by gaining
physical access to its wired network and connecting a wireless AP
to it. The AP creates a “hole” through which unauthorized clients
can connect, bypassing the elaborate security measures that the IT
department may have put in place. A similar attack can be carried
out by using ad-hoc wireless networks instead of APs. A corpo-
rate network may also be compromised when an attacker finds and
uses an unsecured AP connected to the network by an unsuspect-
ing employee. The widespread availability of inexpensive, easy-to-
deploy APs and wireless routers has exacerbated this problem. As
mentioned earlier, we found several unsecured APs in large orga-
nizations. The DAIR security management system can detect both
rogue APs and rogue ad-hoc networks. Another way a corporate
network can be compromised is when an attacker obtains the cre-
dentials (e.g., WEP passwords, IEEE 802.1x certificates) needed to
connect to the corporate network [20]. The DAIR security manage-
ment system can not currently detect such attacks.

Denial of Service (DoS)
Denial of Service attacks are active attacks. A variety of DoS at-

tacks are possible. Some DoS attacks exploit flaws in the IEEE
802.11 protocol. For example, a disassociation attack is where
the attacker sends a series of fake disassociation or deauthentica-
tion messages, causing legitimate clients to disconnect from the
AP [19]. In a NAV attack, the attacker generates packets with
large duration values in the frame header, thereby forcing legiti-
mate clients to wait for long periods of time before accessing the
network [19]. In a DIFS attack, the attacker exploits certain timing-
related features in the IEEE 802.11 protocol to aggressively steal
bandwidth from legitimate users [34]. In all three cases, the at-
tacker transmits packets in an abnormal way, either by generating
non-compliant packets, or by transmitting compliant packets at an
abnormally high rate. The DAIR security management system can
detect such attacks. DoS attacks are also possible by creating large
amount of RF noise in the neighborhood of the network. The DAIR
security management system can detect such attacks by comparing
current observations with historical data observed from multiple
vantage points.

2

Wired Network

Air Monitor Air Monitor
Land

Monitors

Inference
Engine Database

USB Dongle USB Dongle

Air Monitors

Commands
Summarized

Data

Commands
and Database

Queries

Data from
database

Data to
inference engine

Summarized data
from Monitors

Figure 1: The DAIR Architecture.

DoS attacks can also be mounted by gaining access to the corpo-
rate wired network and attacking the APs from the wired side. The
DAIR system does not handle DoS attacks on the wired network.

Phishing
Phishing is an active attack. An attacker sets up a wireless AP

that masquerades as a legitimate corporate AP (same SSID, per-
haps even same BSSIDs). If the client does not use mutual authen-
tication, it is possible for the attacker to lure unsuspecting legiti-
mate users to connect to its AP. The attacker can then use a variety
of techniques to extract private information (for example, sniff for
passwords). The DAIR system can detect phishing attacks. How-
ever, we do not describe solutions to phishing attacks in this paper.

3. DESIGN AND ARCHITECTURE
Figure 1 provides a high-level illustration of the major compo-

nents of the DAIR system. In this section, we provide a detailed
description of each of the components and describe the current sta-
tus of our implementation.

The DAIR system is designed for easy deployment in enterprise
environments, both large and small. DAIR makes use of existing
enterprise desktop machines for monitoring. In such an environ-
ment, the IT department can decide which desktops will be used
for monitoring, and they can also manage the process of deploying
the DAIR software on such systems. Therefore, we expect that few
incentives will be necessary to convince the primary users of these
desktop computers to run the DAIR software on their machines.
In a corporate environment, most users do not have administrative
privileges to their desktop machines, so they will not be able to tam-
per with the DAIR software, either purposefully, or inadvertently.
However, we must ensure that the DAIR monitoring software does
not adversely impact the interactive performance of desktop com-
puters it runs on.

3.1 The AirMonitors
We use the term AirMonitor to refer to an ordinary desktop com-

puter in the enterprise that is equipped with an inexpensive USB
802.11 wireless card and has two components of the DAIR soft-
ware installed: (1) the AirMonitor service; and (2) a custom device
driver that works with any USB wireless card based on the Atheros
chipset. The AirMonitor service is user-level code that runs as a
Windows service, the equivalent of a daemon on Unix systems.
The primary task of the AirMonitor is to listen continuously, ei-
ther on a fixed channel, or in scan mode on a sequence of channels.
The AirMonitor configures the wireless card in promiscuous mode,
so that all 802.11 frames are received, including those destined for
other 802.11 stations.

We modified the Windows device driver written by Atheros for
their USB 802.11 chipset to support two new capabilities.2 First,
we added frame logging support to the driver so that all received
802.11 frames are copied into an in-kernel ring buffer. All frames
are copied into this buffer, including those that have decoding er-
rors – only those frames whose preamble cannot be decoded are
discarded. Stored along with each frame is additional information
about the frame reception, including the signal strength, the chan-
nel, and the data rate. We also added support to allow user-level
programs to copy the contents of the kernel ring buffer, and to count
how many frames are dropped if the ring buffer becomes full.

The other major capability we added to the driver is a new mode
that we call “monitor mode.” Monitor mode disables all of the
driver’s default scanning behavior. When the driver is not associ-
ated with a wireless network, it performs periodic active and pas-
sive scans. An active scan is performed by switching to each chan-
nel, issuing a probe request, and then waiting for probe responses
from any surrounding access points. Passive scans are done by lis-
tening for beacons on each channel, in turn. Monitor mode is useful
for two reasons: first, when monitor mode is enabled the AirMoni-
tors become completely passive; second, when a particular channel
is selected, the device will not automatically switch to other chan-
nels thereby missing some frames on the channel it was supposed
to be monitoring.

The AirMonitor service contains all of the user-level code for
monitoring. Figure 2 shows a diagram of the AirMonitor service in-
ternals. The AirMonitor service enables promiscuous mode, mon-
itor mode, and frame logging at the driver level, at which point all
frames are delivered to the service. Within the service, the basic
unit of extensibility is a “filter”: each new application built to use
the DAIR system installs an application-specific filter that runs in-
side the AirMonitor service. The Filter Processor takes all frames
from the driver and multicasts them to each running filter. The
filter’s primary task is to analyze the frames, summarize them in
an application-specific manner, and then submit those summaries
to the database server. For example, the filter that we use to as-
sist with detecting rogue wireless networks summarizes all SSID’s
(network names) and BSSID’s (Access Point MAC addresses) that
it overhears,3 and then submits those summaries to the database
server every 90 seconds. To ease the task of building a new fil-
ter, the AirMonitor service contains a number of support modules.
For example, filters make use of our 802.11 parser module to ex-
tract information from the frames, and they make use of our SQL
helper module to assist with the task of submitting summaries to
the database. The intent is that filters do whatever summarization
is sensible to improve the scalability of the system without impos-
ing an undue CPU burden on the AirMonitors – we don’t want to
submit every frame that each AirMonitor overhears to the database,
yet we also don’t want the AirMonitors to do all of the complex data
analysis, which is the responsibility of the inference engine.

The Command Processor module of the AirMonitor service ac-
cepts commands from other components of the DAIR system (e.g.,
the DAIR management console, or one of the inference engines).
Before accepting an incoming request, it checks to see if it can
fulfill the request. For example, if an AirMonitor receives a new
request to monitor a specific channel different from the one it is
already monitoring, it will refuse that new request. Similarly, if the
AirMonitor determines that the additional request will place un-

2We are not using the MADWiFi driver which supports similar
functionality, but only for the Linux platform.
3Note that SSID/BSSID information is also available in frames
other than beacons. Many 802.11 frames contain BSSIDs and
probe responses contain both an SSID and BSSID.

3

 Command Processor

Filter Processor

Driver Interface

Filter

WiFi Parser

SQL Client

Remote
Object

Command
(Enable/Disable Filter/

Send Packets)
Heart
Beat

Command
Issuer

Custom Wireless USB Driver SQL Server

Deliver Packets to all the
Registered Filters

Enable/Disable
Filters

Enable/Disable
Promiscuous/Logging

Summarized
Packet Information

Dump summarized data
into the SQL Tables

Get Packets/Info
from the Device

Send Packets/
Query Driver

DHCP Parser

Other Parser

Wired NIC Driver

FilterFilter

Sender

Packet

Packet
Constructor

Send Packet

Figure 2: The AirMonitor Architecture.

due burden on the host, it will refuse the request. While the precise
definition of what constitutes undue burden varies based on circum-
stances, parameters such as history of CPU and memory usage are
taken into consideration [24].

The AirMonitor nodes are not limited to passive observations.
For example, an inference engine may request one of the AirMon-
itors to attempt to associate with an Access Point in order to gather
more information. This requires the AirMonitor node to send asso-
ciation requests and to process incoming responses.

All of the components shown in the AirMonitor service diagram
have been implemented. Furthermore, we currently have imple-
mented four filters: one to summarize SSID and BSSID informa-
tion for detecting rogue wireless networks, one to summarize disas-
sociation frames, one to summarize data transfers between clients
and access points, and one to summarize frames that appear to have
abnormal duration (NAV) values.

3.2 The LandMonitors
Internally, the structure of the LandMonitors is identical to that

of the AirMonitors. The key difference between the LandMonitor
and the AirMonitor is that LandMonitors are used to monitor the
wired network – as we will see in Section 4, two of our tests for de-
tecting rogue wireless networks involve monitoring the wired net-
work. We expect that LandMonitors will be deployed with much
less density than AirMonitors, although this depends on the net-
work configuration at a given site. For many organizations, having
a single LandMonitor per subnet that continuously monitors the up-
link to the subnet router will offer adequate visibility into the wired
network. For those organizations that want greater visibility (e.g.,
for the replay test described in Section 4.1.1), many enterprise-class
Ethernet switches can dynamically enable port mirroring, allowing
a LandMonitor to cycle through many different links within a sub-
net. As with the AirMonitors, all the LandMonitor components
have been implemented, and we have also implemented two filters
for the LandMonitors: one for monitoring DHCP requests, and an-
other to implement replay detection. The details of these filters are
described in the next section.

3.3 The Inference Engine
The computationally intensive analysis tasks are all performed

by the inference engines. As was the case with the filters in the Air-

Monitor service, each application that is built to run on the DAIR
system installs an application-specific inferencing component that
runs on one of the inference engine nodes. Our expectation is that
IT administrators will allocate dedicated machines to inferencing
rather than running these tasks on end-user’s desktop computers.

The inference engines learn about new events by issuing periodic
queries to the database server. For most applications, such queries
only need to analyze data that was submitted to the database server
by the AirMonitors after the previous query. To illustrate the kind
of computation done by an inference engine, we briefly describe
the inference engine for detecting rogue wireless networks. The
inference engine issues periodic queries that look at all new arrivals
in the “SSID and BSSID seen” table since the last query, and then
checks whether any of those networks are not in the list of approved
SSID’s and BSSID’s. If it finds an unknown network, then the
inference engine issues commands to the AirMonitors to perform
the sequence of tests used to decide whether the unknown wireless
network is connected to the corporate wired network in question.

3.4 The Database
We use Microsoft’s SQL Server 2005 as our database server. We

made no custom modifications to the database server. Furthermore,
apart from creating appropriate table layouts, indices and triggers,
we did little to optimize the database performance. We plan to
carry out further optimizations by using more sophisticated tools
that perform workload-specific index tuning.

The DAIR system is designed to scale to handle very large en-
terprises. Our use of a centralized database does not limit the
scale of the system because when the number of clients in the
system exceeds the capacity of a single database server, one can
simply deploy another database server. The only constraint is that
clients should be assigned to servers in a location-aware manner, to
limit the number of queries that must be performed across multiple
database servers.

4. DETECTING ATTACKS
We now describe how we leverage the DAIR architecture to de-

tect intrusion and denial of service attacks.

4.1 Intrusion Attacks
We focus on intrusion attacks that involve connection of unau-

thorized wireless equipment to a corporate network. There are
many scenarios whereby rogue wireless equipment may be con-
nected to a corporate network. For example, an employee might
bring in a wireless AP from home and plug it in to the corporate
network without configuring it to require the necessary authentica-
tion. Or a disgruntled employee may deliberately attach an unau-
thorized AP to the corporate network. Once an unauthorized AP
is attached to the corporate network, the security of the network
is compromised even if all the authorized APs are configured to
use appropriate authentication mechanisms. Thus, detecting these
unauthorized or “rogue” APs is an important challenge.

One may argue that the rogue AP problem is best solved by se-
curing the wired network. For example, if the 802.1x protocol is
deployed on the wired network, or if some form of MAC address
filtering is employed, unauthorized access points will not be able to
connect to the wired network. Similarly, VPN or IPSec based solu-
tions can limit access to corporate resources to authorized clients.
While these solutions are certainly useful, they do not fully solve
the problem. An authorized client, connected to the wired network
and equipped with a wireless interface, can bridge the two network
interfaces to provide link-layer forwarding, or provide IP-level for-
warding by acting as a NAT. The wireless interface can then be put

4

in ad-hoc mode, and used to allow unauthorized clients to connect
to the wired network. For example, Carnegie Mellon University
has recently issued prohibitions [9] against having two active inter-
faces on the same machine. We posit that a distributed monitoring
infrastructure, acting in addition to solutions like 802.1x and VPNs,
provides a better solution to the problem.

It may appear at first glance that the monitoring infrastructure
does not need to do much: an organization simply needs to main-
tain a database of all authorized APs, including their SSIDs and
BSSIDs. An alarm is raised whenever an unknown SSID or BSSID
is heard by a wireless sensor. This sensor can be an AP, a mobile
client, or a dedicated sensor node. This is the basic mechanism
proposed in previous research [15], and many wireless manage-
ment companies offer rogue AP detection as part of their product
offerings [1, 2]. Unfortunately, this straightforward approach is
susceptible to both false negatives and false positives. We now dis-
cuss how the DAIR framework can be used to minimize both false
positives and false negatives.

4.1.1 Guarding Against False Positives
In many office buildings, one is likely to overhear APs deployed

by other corporations in the vicinity. The fact that an AirMoni-
tor can hear an AP that is not in the database of authorized APs is
not necessarily cause for alarm. The inference engine prioritizes
the alarms by investigating whether the “suspect AP” (hereafter re-
ferred to as the suspect) is attached to the corporate network. If the
inference engine determines that the suspect is indeed attached to
the corporate network, then the alarm is assigned a higher priority.
While it is not always possible to determine whether the suspect is
connected to the corporate network, we have implemented several
tests to answer the question in many situations.

Our tests for detecting whether the suspect is attached to the cor-
porate network depend on detecting that the suspect device is for-
warding packets between the wireless and the wired network.

The suspect device can forward packets to the wired network in
one of two ways. First, the suspect may forward frames at the link
layer (“layer 2”), without involving higher layers of the networking
stack. The term “access point”, as defined in the 802.11 standard,
refers to such a link layer forwarding device. Most commercial-
grade access points are link-layer forwarders. Second, the suspect
may forward packets at the IP layer, by acting as a router. Most
wireless devices designed for home networking are IP-layer for-
warders. These devices combine AP and router functionality, usu-
ally along with NAT capabilities.

We first describe a test that can reduce false positives regardless
of whether the suspect is a link layer or IP forwarder. Then we de-
scribe a test that is useful when the suspect is a link layer forwarder.
Finally we consider the case where the suspect is an IP forwarder.

Note that while we describe these tests assuming that the rogue
device is either an AP or a router, the ideas can be applied with
minimal modifications to detect rogue ad-hoc networks as well. We
omit the description of these modifications and associated details.

Association Test
To determine whether the suspect is connected to the corporate

network, the inference engine directs one of the AirMonitors to
attempt to associate with it. If the association is successful, the
AirMonitor then attempts to communicate with (e.g., ping) one or
more well-known entities that are only accessible from within the
corporate network. If this test succeeds, then we know the suspect
is attached to the wired network. If the attempt to associate or the
ping fails, perhaps because the AP has MAC address filtering or
WEP enabled, then we must run more tests.

08 01 D5 00 00 11 95 DA 19 8B 00 08 02 F6 88 AF

00 11 95 DA 19 8B 30 19 AA AA 03 00 00 00 08 00

45 00 00 3C 17 69 00 00 80 01 A1 9F C0 A8 00 36

C0 A8 00 32 08 00 6F 33 03 00 DB 28 61 62 63 64

65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74

75 76 77 61 62 63 64 65 66 67 68 69 16 33 CF DF

FC Duration Receiver Address (BSSID) Source Address

Destination Address Seq

FCS

802.2 LLC Header

IP Version Hdr Length, Total Length, TTL, ... Source IP Addr

Dest. IP Addr

Payload

Figure 3: The highlighted bytes in the IP header of an unen-
crypted packet reveal the destination address of the packet. In
this case it is 192.168.0.50, which was part of our test network.

08 41 A2 00 00 0B 86 C6 E4 80 00 40 96 30 C1 0B

00 12 DA 30 92 40 B0 61 F9 01 98 C0 A4 F7 FB F1

40 A3 12 E6 7C 0D 6D 53 B5 96 DF 5B CD 1B 3C C3

63 78 61 CB 2C 6F 31 5E 21 13 8A 3E CD 67 7A BA

0B 50 93 52 3E 92 A8 31 ED 4E FF 92 50 BD 93 74

43 2F 02 69 FB 38 FB 71 B8 51 B1 E5 88 DE 6F C9

D6 F4 92 4B 47 D4 81 34

FC Duration Receiver Address (BSSID) Source Address

Destination Address Seq

FCS

Frame Body

Figure 4: A WEP encrypted data frame sent to a layer 2 AP.
The highlighted bytes are the MAC address of the subnet router
on the wired network.

The question of which AirMonitor(s) should be tasked to carry
out the association test is a matter of policy. In our current imple-
mentation, one or more of the AirMonitors that saw beacons or data
packets transmitted from the suspect are selected manually from a
central console. We plan to implement an automatic selection pol-
icy that will take into account factors such as signal strength of
observed packets.

Source/Destination Address Test
This test is used when an AirMonitor can hear data frames that

are either destined to or transmitted from the suspect. The inference
engine scrutinizes the data frames captured by the AirMonitors for
source and destination addresses. If data frames sent to the suspect
carry a destination address of a device known to be on the corporate
network (or conversely, if frames from the suspect carry such a
source address), then we can reasonably conclude that the suspect
is acting as an illicit gateway. If the frames are not encrypted, then
both the MAC and the IP addresses are available for inspection. If
the frames are encrypted, only the MAC addresses are visible.

If we can view the IP addresses, we look at the source/destination
IP address of the host with which the device associated with the
suspect is communicating. If the corporate network is not using
private addresses, we compare the IP address with the known IP
subnet ranges on the corporate network to determine if the commu-
nication is with a corporate host. See the example in Figure 3.

In any case, we can look at the source or destination MAC ad-
dress of the packets and compare them with the MAC addresses of
devices known to be on the corporate network. If a device asso-
ciated with the suspect is communicating off the subnet to which
the suspect is connected, then the destination (or source, depend-
ing on direction of communication) MAC address in their packets
will be the MAC address of the subnet router. See example in Fig-
ure 4. Otherwise, the MAC address will be from a device directly
connected to the subnet to which the suspect is connected.

5

This test requires a database of the MAC addresses of subnet
routers and other devices on the corporate network. To generate
this database, the LandMonitors use their routing tables to deter-
mine the IP addresses of all routers on the local subnet, and then is-
sue ARP requests to the routers to determine their MAC addresses.
The LandMonitors collect the MAC addresses of other devices on
the local subnet by continuously listening for ARP requests which
are broadcast on the wired network. While switched Ethernet pre-
vents us from easily observing arbitrary traffic on the wired net-
work, we can still observe broadcast traffic from anywhere on the
subnet. The LandMonitor periodically summarizes the list of MAC
addresses that issued ARP requests, and submits those summaries
to the central data collection server.

The MAC address test works only if the suspect is a link-layer
forwarder. If the suspect is an IP-layer forwarder, such as a wire-
less router that combines AP and NAT functionality, the destination
MAC address of the wireless traffic will simply be a MAC address
belonging to the wireless router. To handle the case of wireless
routers forwarding encrypted traffic, we rely on two additional tests
described next.

Replay Test
For this test, the inference engine asks one or more of the Air-

Monitors to play back some of the data frames it overheard with
the suspect BSSID. We limit ourselves to playing back data frames
that are destined to the suspect device (i.e., the “TO DS” flag in
the 802.11 header is true). When the replay test is conducted, the
selected AirMonitor replays all the received data frames for either
a fixed duration or until a certain threshold has been reached for the
total number of unique replayed data frames. To replay an individ-
ual data frame, the AirMonitor transmits the entire frame 5 times,
and the content is identical each time.

On the wired side, we deploy at least one LandMonitor on each
subnet, in such a way that we can sniff all the frames that are
headed to the subnet router. The AirMonitor that is about to re-
play the frame alerts all the LandMonitors before it starts to re-
play the frames. The LandMonitors start checking to see if multi-
ple identical instances of the same frame appear on the wired net-
work. If multiple instances of a frame are spotted on the wired
network during the time when the AirMonitor is replaying frames,
the LandMonitor can reasonably conclude that the suspect device
is connected to the wired network. We include several heuristics to
make sure that spurious retransmissions and certain other types of
network traffic do not trigger false alarms.

The replay test is immune to MAC address filtering by the sus-
pect device. It will even work in the presence of encryption, as
long as the encryption protocol does not include protections against
frame replay. Many wireless security protocols rely on WEP at
their core, and are therefore susceptible to replay attacks at least for
short durations. We have verified that our replay test works even on
Microsoft’s corporate wireless network, which employs 802.1x, as
well as IPSec.

As with the association test, we currently manually select the
AirMonitors that carry out the replay test.

DHCP Signature Test
The DHCP signature test operates independently of all other

tests, and does not include any wireless component. A wireless
router device that wants to communicate with other devices on the
wired network is likely to issue a DHCP request shortly after it is
plugged into the wired network. We use a DHCP LandMonitor that
listens to broadcasts of DHCP requests on the wired network, and
inserts the summaries of these requests into the database.

The inference engine detects the type of device that issues the
DHCP request by parsing the contents of the DHCP requests. DHCP
requests can contain a variety of options, and the DHCP protocol
allows for the content of some of these options to be highly vari-
able between implementations. Our studies indicate that the con-
tents and ordering of the DHCP options, in particular the parameter
request list, can be used as a fingerprint to determine the type and
the manufacturer of the device that issued the request. For exam-
ple, we can distinguish between requests that come from Windows
clients, and those that come from wireless routers. In many cases,
we can also determine the manufacturer of the wireless router (e.g.,
DLink, NetGear) If the inference engine detects a DHCP request
whose fingerprint does not match any of the device types that are
usually connected to the corporate network, or it detects a device
whose type and manufacturer does match that of an authorized AP
but whose specific MAC address is not on the list of authorized APs
of that type, then it raises an alarm.

4.1.2 Guarding Against False Negatives
A malicious user may configure a rogue AP (or a rogue router)

to advertise the same SSID and BSSID as one of the authorized
AP devices. It becomes much more difficult to detect such devices.
Unlike the “false positive” problem that we described in the previ-
ous section, this situation presents risk that the DAIR system would
not raise an alarm when it really should. We call this the “false
negative” problem. To guard against false negatives, the DAIR in-
ference engine can use a number of different techniques to detect a
rogue AP that is masquerading as an authorized AP.

First, the inference engine uses historical information to detect
anomalies: for example, if a set of AirMonitors suddenly starts
hearing an “authorized” AP that they have never been able to hear
in past, an alarm is raised. This technique works only when the
rogue AP and the corresponding authorized AP are at noticeably
different locations.

If the rogue AP and the authorized AP are near each other, we
can exploit the sequence number carried in the header of all 802.11
frames to detect the fact that multiple APs are advertising the same
SSID and BSSID. An 802.11 sender increments the frame sequence
number each time it transmits a frame [28] (excluding retransmitted
frames), so successive frames from a sender have monotonically
increasing sequence numbers (except when the sequence numbers
wrap around). If a rogue AP is masquerading as an authorized AP,
the frames sent by the two will intermingle, and therefore succes-
sive frames will no longer have monotonically increasing sequence
numbers. The inference engine raises an alarm when it detects this
occurrence. The sequence number test will work as long as both
the authorized and the rogue AP are active simultaneously.

If the attacker manages to disable an authorized AP, and deploys
a rogue AP advertising the same SSID and BSSID near the location
of the authorized AP, then neither of the above two techniques will
detect it. In this case, we can continuously estimate the location of
each authorized AP, using the signal strength measurements taken
by multiple AirMonitors. If the inference engine notices a signifi-
cant change in the location of an authorized AP, it raises an alarm.
The usefulness of this approach is limited by the accuracy of the
location determination algorithm.

4.2 DoS Attacks
Several flaws in the 802.11 architecture can be exploited to gen-

erate a variety of DoS attacks on corporate Wi-Fi networks [19,
34]. The DAIR framework can be used to detect a variety of these
attacks. We have currently implemented mechanisms to detect two
types of DoS attacks.

6

4.2.1 Deauthentication / Disassociation Attacks
This attack is described in detail in Bellardo et al. [19]. The at-

tacker sends spoofed deauthentication or disassociation frames to
either a mobile client, an access point, or both. This will force the
victim or victims to exit the authenticated/associated state. Since
most wireless drivers on client devices automatically try to re-associate
if disassociation occurs, the attacker must continuously generate
such spoofed frames to cause significant service disruption. The
attack is particularly worrisome, since the attacker only needs to
overhear frames from the corporate Wi-Fi network to carry out the
attack – it does not need to do any sophisticated decryption.

We have implemented a filter that allows each AirMonitor to
submit disassociation frames to the database. The inference en-
gine can easily detect the increased level of disassociation and/or
deauthentication frames (perhaps by correlating frames observed
at different AirMonitors) and raise an alarm. Furthermore, the in-
ference engine can also provide a rough estimation of the location
of the attacker by correlating the signal strength of the disassocia-
tion/deauthentication frames seen by different AirMonitors.

4.2.2 NAV Attacks
In Raya et al. [34], the authors detailed several DoS attacks on

Wi-Fi networks. In one of the attacks, the attacker continuously
sends frames with artificially large duration values in the 802.11
header [27]. The duration field is used to update the network allo-
cation vector (NAV) for any device that hears these frames. There-
fore, these large NAV values will force the other transmitters in
range of the attacker to withhold their transmissions for extended
periods of time.

We have implemented a filter that allows the AirMonitors to sub-
mit information about frames with abnormally large duration val-
ues to the database. The inference engine further analyzes these
frames to raise an alarm if necessary. This mechanism works by
measuring the actual duration of the data transmissions and com-
paring them with the duration values contained in the 802.11 header.
This technique is essentially identical to that described in Raya et
al. [34]. By correlating observations made by different AirMoni-
tors, the inference engine can also provide a rough estimation of
the location of the attacker.

4.3 Summary
We show that the seemingly simple problem of detecting rogue

APs is, in fact, quite challenging. We also describe how the DAIR
architecture leverages the unique attributes of the desktop infras-
tructure to limit the number of false negatives and false positive
alarms. Our techniques are not foolproof, and we do not guarantee
that a suspect is not connected to the corporate network. However,
we do provide the network administrator with more information,
without many false positives and false negatives. We also describe
how the DAIR architecture can be used to detect certain types of
DoS attacks. We have currently implemented all the mechanisms
described in this section, except those used for guarding against
“false negatives”. In particular, the ability to calculate an actual lo-
cation from a list of (AirMonitor, signal strength) pairs is not yet
supported by the DAIR system. As such, the location support de-
scribed in Sections 4.2.1 and 4.2.2 is implemented simply by pre-
senting a list of the nearest AirMonitors ordered by signal strength.

5. EXPERIMENTAL RESULTS
We built the DAIR system, and it is currently operational in sev-

eral offices on our floor. We begin by providing a detailed descrip-
tion of the hardware and software that we use. Then, we present re-
sults that support our argument that dense deployment is necessary

for detecting intrusion attacks. Having argued for dense deploy-
ment, we then present results that show that the DAIR architecture
is capable of handling the dense deployment. Finally, we present
results that illustrate certain aspects of the detection techniques de-
scribed in Section 4.

5.1 Test Environment
Our experiments were conducted on one floor of a fairly typi-

cal office building. Our building has rooms with floor-to-ceiling
walls and solid wood doors. There is a corporate wireless LAN
with six 802.11 a/b/g access points operating on our floor. Our cur-
rent DAIR system deployment consists of 22 AirMonitors and 1
database server. See Figure 5.

Our database server is Microsoft SQL Server 2005 running on
Microsoft Windows Server 2003 SP1. The server hardware is a
Compaq Evo D500 with a 1.7 GHz Intel Pentium 4 and 1GB of
RAM. The database is stored on a 40 GB 7200 RPM Seagate IDE
drive. The drive is formatted as NTFS.

Our AirMonitors run on one of two different types of hardware.
One type of machine is a HP Compaq Business Notebook nc6000
with a 2 GHz Intel Pentium M and 512 MB of RAM. These ma-
chines run Microsoft Windows XP SP2. We have 6 AirMonitors
of this type, located near the six corporate network access points in
our building (offices 17, 26, 27, 28, 29 and 30), and used for the
deployment density experiments. The other type is a Compaq Evo
D500 SFF, identical to the hardware used for our database server.
These machines run Microsoft Windows Server 2003 SP1. We have
16 AirMonitors of this type, located in offices numbered 23 and
lower, and used for all the other experiments. All AirMonitor ma-
chines were equipped with a Netgear WG111U USB 2.0 dongle.
This is an 802.11 a/b/g radio with an Atheros chipset.

5.2 Sensor Deployment Density
We argue above that the availability of inexpensive, USB-based

wireless cards makes dense deployment of wireless sensors possi-
ble. However, we have not addressed the question of what deploy-
ment density might be sufficient. The results in this section provide
some guidance on this point. Given the seriousness of the rogue AP
problem, we would like to maximize the probability of detection,
while minimizing the number of false positives and false negatives.

Let us consider a scenario in which an unsuspecting user brings
an AP or a wireless router from home, and plugs it into the cor-
porate network. The user uses the AP for his/her own work. In
this scenario, both the AP and the user’s wireless NIC are likely to
be operating at full power. In other words, the user is not making
any attempts to hide from the monitoring system. We would like
to know what density of AirMonitors is required to detect such a
rogue device.

We first consider a baseline deployment consisting of one Air-
Monitor placed near each corporate AP on our floor. There are six
corporate APs on our floor. Their locations are shown by dark cir-
cles in Figure 5. Each AirMonitor listens on 802.11a channel 52.

This deployment provides a good baseline case for two reasons.
First, certain commercial products such as Aruba [4] advocate co-
locating sensor devices with wireless APs. Second, our corporate
wireless network is well-provisioned for both 802.11a and 802.11b/g
access, and we can connect to at least one corporate AP from each
office on our floor in both 802.11a and 802.11b/g mode.

We set up a rogue AP in 15 offices around the periphery of our
building, as well as in two internal conference rooms. The offices
are roughly uniformly distributed around the periphery within lim-
its imposed by practical factors such as occupant consent. These
offices are shaded in grey in Figure 5.

7

UP

DN

DN

UP

31

EL 32

0102

0406

07

0809101112

1314

17
1823

25

32

43

33

34353637

38 39

44

40 41 42

26

2729

28

30

~
 3

2
 m

~98 m

Figure 5: Building map. For the sparse deployment test, AirMonitors were placed in the offices denoted by dark circles; these circles
also represent the locations of the six legitimate corporate APs. The shaded offices denote the locations where we temporarily placed
a rogue AP. Light circles (and number 17) mark offices containing a denser deployment of AirMonitors used for various other tests.

Rogue AP AirMonitor Location
Location 26 27 28 29 17 30

8 Beacons 24 0 0 0 97 0
Data To AP 0 0 0 0 1.7 0
Data From AP 0 0 0 0 0.8 0

34 Beacons 0.8 98 0 0 97 0
Data To AP 0 0.2 0 0 0 0
Data From AP 0 31 0 0 0 0

37 Beacons 0 0 0 98 0 98
Data To AP 0 0 0 0 0 0.2
Data From AP 0 0 0 0 0 76

40 Beacons 7 0 98 98 0 98
Data To AP 0 0 48 0 0 0.2
Data From AP 0 0 98 3 0.8 0

Table 1: Percentage of frames overheard by AirMonitors over
60 seconds. 802.11a, channel 52, full power.

In each office, the rogue AP was set to operate on 802.11a chan-
nel 52. The AP was broadcasting beacons every 100ms. We also set
up a laptop in the same office, that sent and received traffic through
the AP. The laptop sent a 1000 byte UDP packet to a wired host
every 100ms, and the wired host sent a 1000 byte UDP packet to
the laptop every 100ms as well. Thus, 3 frames were sent on this
rogue wireless network every 100ms: the beacon, the 1000 byte
packet sent by the AP, and the 1000 byte packet sent to the AP. For
each office, we check how many frames each AirMonitor overheard
within a 60 second interval.

The results for four corner offices are shown in Table 1. We
see that for each office, there is at least one AirMonitor that hears
most of the beacons. This is true for all offices that we tested, not
just the four corner offices. Thus, on our office floor, the baseline
deployment of 6 AirMonitors is sufficient to detect the presence of
a rogue AP by simply overhearing the beacons.

However, as we discussed in Section 4, to determine whether the
AP is connected to the corporate network, we need to look at data
frames being sent to or from the AP. The data in Table 1 shows that
the AirMonitors were far less likely to overhear data frames. This
is not surprising: the beacons were small frames sent at the lowest
data rate, while the data frames were much larger, and were sent
at higher data rates. Thus, distant AirMonitors were less likely to
successfully overhear the data frames. In Figure 6, we show the
number of AirMonitors that received a majority of the data frames
sent to and from the rogue AP in each office. We see that in at

least 4 offices no AirMonitor saw a majority of the data frames sent
either to or from the rogue AP.

In the scenario that we just described, the channel on which the
rogue AP operated was known in advance, and all the AirMonitors
were set on that channel. In reality, each AirMonitor will have to
monitor multiple wireless channels, using some scanning schedule.
The number of wireless channels that must be monitored is quite
large: for North America, the 802.11 standard defines 11 channels
in the 2.4GHz band (802.11b/g), and 13 channels in the 5GHz band
(802.11a). Even after taking advantage of channel overlap, and spa-
tial overlap in the overhearing range of each AirMonitor, a particu-
lar AirMonitor will be on a given channel only for a short amount
of time. This is not a problem for detecting beacon frames; for each
office, at least one AirMonitor overhears almost all the beacons sent
by the rogue AP. However, the probability that an AirMonitor will
overhear a data frame sent to or from the rogue AP is much lower.
If this probability varies significantly over time, then scanning will
further reduce the chance of data frames being overheard.

To illustrate the temporal variability of the probability that an
AirMonitor will overhear frames from a particular office, we car-
ried out the following experiment. We set up the rogue AP in office
08, and left it there for a period of 5 hours between 3pm and 8pm
on a regular workday. During this time period, the occupant of
the office conducted his normal business. The AP was operating
on channel 52, as before. We also set up data traffic as described
above. We measured the fraction of data frames received by the
six AirMonitors for 50 one-minute intervals spread uniformly over
these 5 hours. Only the AirMonitor in office 17 overheard any data
frames, and the fraction heard in each one-minute interval varied
substantially over time, as illustrated in Figure 7. We carried out
similar experiments for 802.11g, and the variability results were
similar to those for 802.11a.

We conclude from these results that the baseline deployment of
six AirMonitors is sufficient for simply detecting the presence of a
rogue wireless device on our floor, at least when the device is mak-
ing no attempts to hide (i.e., transmitting beacons at full power),
and the channel on which it is operating is known in advance. How-
ever, even in this simple scenario, the baseline deployment of six
AirMonitors is not sufficient to guarantee that any data frames sent
to or from the rogue AP will be detected. Thus, this baseline de-
ployment is not sufficient to eliminate false alarms using the var-
ious techniques that we discussed earlier in the paper. Given the
seriousness of the rogue AP problem, we would like to eliminate as
many false alarms as possible.

8

0

1

2

3

4

5

6

12 8 1 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Location of Rogue AP (Office Number)

N
u

m
b

er
 o

f
A

ir
M

o
n

it
o

rs

Overheard >= 50% of Data Frames sent to Rogue AP

Overheard >= 50% of Data Frames sent from Rogue AP

Figure 6: Number of AirMonitors that overheard a majority of
the data frames sent to or from a rogue AP. 802.11a, channel
52, full power.

0

20

40

60

80

100

0 50 100 150 200 250 300

Time (Minutes)

P
er

ce
n

ta
g

e
R

ec
ei

ve
d

Data Frames to AP

Data Frames from AP

Figure 7: Percentage of data frames sent to or from a rogue AP
in office 8, overheard by the AirMonitor in office 17. 802.11a,
channel 52, full power.

Next, we consider a dense deployment of AirMonitors. We de-
ployed an AirMonitor in each of 16 offices in one corner of our
building. These offices are indicated by light circles in Figure 5,
along with office 17. We were unable to place an AirMonitor in the
office between 13 and 17, due to logistical issues. Each AirMonitor
was tuned to channel 52 in 802.11a band.

We placed a rogue AP in each of these 16 offices that had an Air-
Monitor. The rogue AP was set to operate at full power on channel
52 in 802.11a band, and to transmit beacons every 100ms. We also
set up data traffic as before, so a data frame was sent both to and
from the rogue AP every 100ms. We then counted the number of
beacons and data frames overheard by each AirMonitor. We found
that all the AirMonitors received almost all of the beacons from
each office. We also found that a large number of AirMonitors re-
ceived a majority of the data frames sent to and from the rogue
AP in each office. These numbers are shown in Figure 8. We also
repeated the experiment for 802.11g, and obtained similar results.

These results are not surprising. It is obvious that the number
of AirMonitors that can overhear frames from a particular location
can only increase with the density of deployment. Yet, the contrast
between Figure 6 and Figure 8 is important. It illustrates the point
that with a dense deployment, the number of AirMonitors that can
overhear data frames from a particular location increases signifi-
cantly. Thus, even when AirMonitors are scanning the channels,
one can more easily come up with a scanning assignment that can
ensure that each office is “covered” by at least one AirMonitor at
all times.

It is difficult to achieve such a dense deployment of sensors by
using only Access Points and mobile clients as some of the pre-
vious work [15] has suggested. Using dedicated sensors for such

0

2

4

6

8

10

12

14

16

12 11 10 9 8 7 4 1 2 6 25 13 17 18 23 14
Location of Rogue AP (Office Number)

N
u

m
b

er
 o

f
A

ir
M

o
n

it
o

rs

Overheard >= 50% of Data Frames Sent to Rogue AP

Overheard >= 50% of Data Frames Sent from Rogue AP

Figure 8: Number of AirMonitors that overheard a majority of
the data frames sent to or from a rogue AP. 802.11a, channel
52, full power.

a dense deployment is also expensive. The DAIR architecture en-
ables dense deployment of sensors at low cost.

We have also experimented with setting the rogue AP on lower
power, and using directional antennas to focus the power away from
the AirMonitors. We discovered that even with the baseline deploy-
ment of 6 AirMonitors, at least one AirMonitor was always able to
hear most of the beacons from the 15 peripheral offices. However,
the data frame reception was worse than what is shown in Figure 6.
This result further underscores the need for dense deployment of
the AirMonitors.

The dense deployment of AirMonitors provides another advan-
tage: the location of the rogue AP or the DoS attacker can be pin-
pointed with much better accuracy. The accuracy of location esti-
mation provided by systems such as RADAR [17] and Sextant [25]
increases with the number of observation points.

5.3 System Scalability
In the previous section, we argued that a dense deployment of

AirMonitors is necessary for better system performance. However,
a dense deployment brings scalability challenges. In this section,
we evaluate the scalability of our system.

We set up 16 AirMonitors in the offices indicated by the light
circles in Figure 5. Each AirMonitor was set to listen on chan-
nel 1 in the 802.11b/g band. We selected channel 1 because it is
the busiest channel in this corner of the building. We ran the 16
AirMonitors for a period of 24 hours spanning a typical workday.
Each AirMonitor was running 4 filters: the BSSID filter, the Data
Packet filter, the Disassociation filter and the NAV filter. Each fil-
ter inserted data into the database at regular intervals. The update
interval for each filter was chosen at random between 60 and 120
seconds. Thus, the average update interval was 90 seconds. In ad-
dition to being an AirMonitor, the machine in office 01 was also
acting as a LandMonitor, and ran a DHCP filter.

In addition to the AirMonitors, one instance of the inference en-
gine was also running. The inference engine issued several queries
to the database every 60 seconds, checking for rogue networks as
well as disassociation and NAV attacks.

During these 24 hours, the average number of packets processed
by an AirMonitor was over 4.9 million. The filters summarized the
data quite effectively: we estimate that each AirMonitor, on aver-
age, generated less than 2.5Kbps of traffic on the wired network.

The 16 AirMonitors together inserted over 2.5 million rows in
the database tables over the 24 hour period. One reason for the large
number of rows is that each packet may be overheard and processed
by multiple AirMonitors. Because the AirMonitors are submitting
summaries of what they have heard, our inference engines use the
time of observation to correlate when multiple AirMonitors have

9

 0

 50

 100

 150

 200

 250

 300

 350

1
AM

11
PM

9
PM

7
PM

5
PM

3
PM

1
PM

11
AM

9
AM

7
AM

5
AM

3
AM

1
AM

D
at

ab
as

e
S

iz
e

(M
B

)

Figure 9: Database size growth over 24 hours.

 0

 20

 40

 60

 80

 100

1
AM

11
PM

9
PM

7
PM

5
PM

3
PM

1
PM

11
AM

9
AM

7
AM

5
AM

3
AM

1
AM

S
er

ve
r

C
P

U
 L

oa
d

(%
)

Figure 10: CPU load on the database server, averaged over 10
minute intervals.

heard the same “interesting” event. The growth in the overall size
of the database is shown in Figure 9. The database grows by ap-
proximately 350MB during this period. As one might expect, the
database grows faster during normal working hours. The CPU load
on the database server, averaged over 10-minute interval is shown
in Figure 10. The peak load is only 43%. Although 350MB may
seem large, this data does not need to be kept forever. Future ver-
sions of the DAIR system will include a data archiving component
that further summarizes the filter data to allow historical analysis,
and then discards the filter data periodically.

The latency experienced by insert operations (performed by the
AirMonitors) and by query operations (performed by the inference
engine) are shown in Table 2. The table illustrates that while a
small number of insert and query operations can take several sec-
onds, most database operations take a short time. This result is
yet another indication that the database can easily handle the load
imposed by our system.

We also experimented with shorter update intervals. When we
reduced the update interval by a factor of 6, i.e., each AirMonitor
was inserting data in the database every 15 seconds, the load on the
database increased by only 10% on average.

In light of these results, we believe that we can easily scale our
system by at least one order of magnitude by simply using a faster
machine for the database server. There are approximately 100 of-
fices per floor in our building. So one database server will be suffi-
cient to handle data from one floor of our building. Given the nature
of wireless networks, the number of queries that the inference en-
gine must perform across multiple database servers (i.e., correlate
data across multiple floors or multiple buildings) will be limited.
Thus, the system can be scaled further by adding additional servers
for other floors.

The growth in size of the database can be handled by archiving
data that is more than a few days old to backup devices. The net-
work traffic generated by our AirMonitors is small, and is unlikely

Insert Query
Median 0.13 0.01

90th Percentile 1.94 0.03
Max 26.96 6.59

Table 2: Latency of database operations in seconds.

 0

 25

 50

 75

 100

1
AM

11
PM

9
PM

7
PM

5
PM

3
PM

1
PM

11
AM

9
AM

7
AM

5
AM

3
AM

1
AM

C
P

U
 L

oa
d

(%
)

Machine not running AirMonitor

 0

 25

 50

 75

 100

1
AM

11
PM

9
PM

7
PM

5
PM

3
PM

1
PM

11
AM

9
AM

7
AM

5
AM

3
AM

1
AM

C
P

U
 L

oa
d

(%
)

Machine running AirMonitor (In office 04)

Figure 11: Comparison of CPU load on two machines. The load
is averaged over 10 minute intervals.

to overwhelm the network, or create a network bottleneck near the
database server.

We now quantify the load imposed by the AirMonitor service on
the host machine. We set up a “baseline” machine, in addition to the
the 16 AirMonitors. This machine had identical hardware and soft-
ware configuration to the AirMonitor machines, except that it was
not running the AirMonitor software. In Figure 11, we show the
CPU load on the baseline machine, and on one of the AirMonitors,
over the 24 hour period. We see that the the AirMonitor service
imposes little additional load on the machine. In fact, the average
additional load on the AirMonitor machine is just 2.25%. The two
spikes in the load, one at 2AM, and another at 8AM, are results of
administrative activities such a backups and security scans that our
IT department performs on all machines connected to the corpo-
rate network. We thus conclude that it is indeed feasible to run the
AirMonitor service on each desktop machine, without adversely
impacting the user’s computing experience.

5.4 Demonstrative Results
In this section we present results that illustrate specific aspects

of some of the detection techniques discussed in Section 4.

5.4.1 Delay Incurred by the Association Test
The association test identifies APs that do not use security mea-

sures to form a wireless network. APs set up by careless employees
usually fall in this category. We studied the overhead of this test by
analyzing the time taken to return success and failure. We used two
APs for this experiment. We disabled all security hooks on the first
AP, and enabled WEP with Open Authentication on the second one.
Figure 12 shows the steps involved in the association test, and the
time taken by each step when connecting to both the APs.

The association test starts by resetting the AirMonitor. It dis-
ables promiscuous and monitor mode on the AirMonitor, to allow
it to join a wireless network. The AirMonitor then confirms the
existence of the rogue network by listening for beacons from the
BSSID. If the BSSID is heard, the AirMonitor disables the Win-

10

0

10

20

30

40

50

60

70

80

Test Success Test Failure

Ti
m

e
(i

n
se

co
n

ds
)

Reset AirMonitor

Check TCP Connectivity

Association to BSSID
Disable ZeroConf

Validate BSSID

Reset AirMonitor

Figure 12: Breakdown of steps in the association test.

Wireless Replays Num Analyze Detect 5
Replays in Trace Packets Trace (s) Replays (s)

24 20 15270 12.86 0.03
62 44 20071 23.30 4.13
8 6 19932 23.58 4.95
24 18 45956 128.71 2.75
69 47 25273 37.74 1.63
35 28 40975 102.19 1.59

Table 3: Results of the replay test on a router that serves more
than 150 APs. Each trace is 30 second long.

dows Wireless Zero Configuration service. (This service associates
the wireless card to its own list of networks, and has to be stopped
for the duration of the test.) The AirMonitor then sets its channel to
that of the rogue BSSID and tries to connect to the rogue network.
If association is successful, and the AirMonitor gets a valid IP ad-
dress, the AirMonitor checks for TCP connectivity to a corporate
resource. In our experiments we checked for connectivity to port
80 on the Web Proxy server, which resides on the wired network.
The association test concludes by re-establishing promiscuous and
monitor mode on the AirMonitor.

The time taken by each of the above steps is illustrated in Fig-
ure 12. Note that to ensure successful completion of each step we
have provided variable wait periods. This is one of the reasons for
the 50 second delay in reporting failure when connecting to an AP.
The AP may be far from the AirMonitor, or the wireless medium
may be lossy, and so the AirMonitor repeatedly tries to associate
to the AP. Despite all these steps, the association test completes
in a short period of time. It identifies the unsecure rogue equip-
ment within 45 seconds, and returns failure within 75 seconds. An
association failure is a trigger to run the other tests described in
Section 4.1.1 to identify the rogue device.

5.4.2 Effectiveness of the Replay Test
We studied the effectiveness of our replay test by replaying pack-

ets on one of the APs in our corporate wireless network. We set up
an AirMonitor near the AP to replay these packets. Each test lasted
20 seconds and was done in the peak hours of a weekday. We con-
figured the wired router of this AP to capture packets for 30 min-
utes. This included a 10 minute duration when we did not run the
replay test. We performed the replay test 6 times in the remaining
20 minutes. The router serves APs in 9 buildings of our corporate
campus, which corresponds to more than 150 APs. Therefore, it
sees significant load as shown in the 30 second traces of Table 3.

We analyzed the packet trace at the router and found that there
were no replayed packets in the first 10 minutes of the trace. In
the remaining 20 minutes, the only replayed packets were in the
duration when we were running the replay test. This confirms the
effectiveness of the replay test.

We then extracted 30 seconds of the trace for the duration when
each of the replay tests were performed. This included a 5 second
time before and after the replay test. Table 3 provides more details
of our experimental results. A significant number of the replayed
packets are captured at the router. Not all reach the router because
some of the replayed packets are sent to destinations within the sub-
net. Further, the size of the trace file captured at the router varied
from around 15 to 45 thousand packets, showing a high variation
in the activity seen at the router. The time to parse the trace file
for detecting replays is proportional to the number of packets in the
file and the file size. In this case it varies from 12 seconds to a little
over 2 minutes. This overhead is acceptable because the replay test
does not need to run continuously; it is executed on-demand, and
only when the other tests described in Section 4 fail.

To further reduce the overhead of the replay test, we note that
the inference engine need not analyze the entire trace file. Because
there are no repeated packets at the router during normal operation,
the replay test inference engine can raise an alert as soon as it sees
a certain threshold of replayed packets in the trace, and it can then
stop analyzing the trace file. Table 3 presents the results of this
optimization using a detection threshold of 5 unique packets that
are replayed 5 times. As we can see, this optimization significantly
reduces the time taken by the replay test to complete.

5.4.3 Effectiveness of the DHCP Test
We have tested our DHCP fingerprinting methodology on the

DHCP messages sent by a number of common operating systems
and embedded devices, including Microsoft Windows, Apple OS
X, FreeBSD, Linux, and home routers from NetGear and D-Link.
We found we could uniquely identify the OS or type of the send-
ing device just from the contents of the parameter request list op-
tion. For example, current versions of Windows request the DHCP
server to send it parameters 1, 15, 3, 6, 44, 46, 47, 31, 33, and 43,
while OS X requests parameters 1, 3, 6, 15, 112, 113, 78, 79, 95,
and 252. Even if two implementations were to request the same
parameters, they are free to list the parameters in any order, and
thus are still likely to differ. And while we believe that the param-
eter list is likely to be sufficient to disambiguate most implementa-
tions, some also provide a vendor identifier option in their DHCP
messages which identifies them directly (although one of the home
routers we tested misidentified itself as “MSFT 98”). Finally, both
brands of home routers we tested included a hostname option that
contained the model number of the specific device.

To test our DHCP monitoring capability, we ran our monitor on
both our own corporate LAN as well as the LAN at a major net-
working conference. DHCP requests occurred at a leisurely pace
on both networks we monitored, the peak load was only a few per
minute. The total number of distinct parameter request lists seen
over a several day run on our (somewhat homogeneous) corporate
network was 22, while the more varied conference network yielded
27 unique requests over several hours of monitoring. Our expecta-
tion from this data is that the size of the “known good” signatures
dataset which our DHCP monitor must compare against to deter-
mine whether to flag an alarm would remain reasonably small.

5.4.4 Threshold for Detecting Disassociation Attacks
The inference engine raises an alarm if one or more AirMonitors

sees an abnormally large number of disassociation or deauthentica-
tion packets. To determine the threshold for raising an alarm, we
conducted some measurements.

First, we monitored wireless traffic at two different institutions
at various times of the day, and on various channels. We found that
the number of disassociation and deauthentication packets sent ev-

11

ery minute never exceeded 5. The median number of such packets
seen every minute during the day was 2. Furthermore, no duplicate
disassociation packets were seen in any minute.

Next, we wrote a small program to launch a disassociation attack
against our corporate network. We monitored the wireless medium
for data packets from a specific wireless client, and used the in-
formation in the data packets to send a disassociation message to
the client and the AP. Using this scheme, we were able to disasso-
ciate all wireless clients we tested. However, in the case of most
clients, the driver (along with Windows’ Wireless Zero Configura-
tion Service) was able to bring the connection back up within a few
seconds. Therefore an attacker needs to send disassociation packets
at a high rate to cause significant damage to a wireless network.

Given these two measurements, we decided to set the threshold
for raising an alarm to 10 packets per minute on any given channel,
or 5 packets per minute if all 5 packets are directed to the same
client or the same access point. Given these thresholds, there is
the possibility both for false positives and false negatives. False
negatives are not much of an issue as long as clients reassociate
automatically, because if the rate of disassociation messages in an
attack is below the threshold, then the client will be getting service
much of the time. If our measurements are truly representative of
other wireless environments, then we do not expect to see many
false positives.

6. DISCUSSION
In this section, we discuss the issues surrounding which channels

the AirMonitors should listen on, and we summarize the limitations
of our detection techniques.

6.1 Channel Assignment
We argue in the previous section that a dense deployment of

DAIR nodes is desirable. However, we did not discuss which chan-
nels the DAIR nodes should listen on. This question is complex,
and it has been recognized as a key challenge in designing wireless
monitoring systems [22].

There are practical limits to how densely one can deploy the Air-
Monitor nodes. For example, in the scenario that we discussed ear-
lier, we deployed one sensor node per office. Even with such dense
deployment, data packets from some of the offices could be over-
heard in only 8 or 9 other offices. Contrast this with the fact that the
802.11 standard specifies 11 channels in the 2.4GHz band, and 13
channels in the 5 GHz band. Thus, at least some of the AirMonitor
nodes must monitor multiple channels. In other words, some sort
of scanning schedule must be created.

The scanning schedule should minimize the amount of time any
location is left “uncovered” on a particular channel, subject to con-
straints imposed by the number and the location of the AirMonitors
that cover that area. One can take advantage of the fact that some-
times it is possible to overhear data packets on overlapping chan-
nels. It may also be possible to use an adaptive strategy in which
all AirMonitors rapidly scan all the channels, until a possible prob-
lem is detected. At that time, a group of AirMonitors is dedicated
to exclusively monitoring the channel on which the anomalous ac-
tivity is observed. Yet another possibility is to use the proportional
time/frame count strategy proposed by Deshpande et al. [22]. We
are currently investigating these questions in more detail. Since our
current deployment is small, we simply use a static assignment of
channels.

6.2 Limitations
The detection techniques proposed in this paper have certain lim-

itations. In this section, we characterize the specific limitations of

these techniques. We also discuss the general limitations of the
DAIR architecture, as well as the limitations of using the DAIR
architecture to build security applications.

In our paper, we have focused on Wi-Fi networks. There are
many other kinds of wireless networking technologies in use such
as Bluetooth and WiMax. If inexpensive network interfaces for
these networking technologies become available, the DAIR archi-
tecture could easily be used for monitoring these other kinds of
networks as well.

A general limitation of the DAIR architecture, and therefore of
the solutions proposed in this paper, is that they will be most effec-
tive in an enterprise scenario. In particular, we require that an office
building has a moderately dense deployment of stationary desktop
computers, each of which has connectivity to the wired network.
Furthermore, we require that these desktop computers be under the
control of a single administrative entity (or perhaps a small number
of administrative entities).

The main drawback of the techniques that we proposed to detect
rogue wireless devices is that we can never guarantee a suspect de-
vice is harmless. If one of the tests succeeds, then we can conclude
that the device is connected to the corporate network. However,
if all the tests fail, we still cannot say with absolute certainty that
the suspect device is not connected to the corporate network. In
other words, if the person deploying the rogue device has mali-
cious intent and has some technical sophistication, then each of our
sequence of tests can be defeated.

Like all monitoring systems, our monitoring system is at the
risk if some component of the monitoring system is compromised.
Specifically, if some of the desktop machines that we use as mon-
itors are compromised, the attacker can use them to submit false
data. Such false data can force our system to generate a large
number of alarms. If a large number of AirMonitors are compro-
mised, the attacker can launch a denial of service attack against the
database server.

It might also seem that by adding a wireless interface to a desk-
top computer, we have made the computer more vulnerable, since
this new interface may provide an attacker another avenue through
which to compromise the machine. However, this is not the case.
We have modified the device driver for the wireless interface so
that it will not connect to any network except under limited cir-
cumstances (e.g., when we ask it to join a specific network during
the association test). Even while carrying out such tests, we can
closely monitor and control the flow of traffic on the wireless inter-
face. It is, of course, possible that the attacker may compromise the
machine by some other means, and replace our driver with another
driver that does not have these protections.

7. RELATED WORK
A slew of products for securing corporate networks are available

in the market. Firewalls prevent unauthorized users from gaining
access to the network [7, 11]. IDSs detect compromised machines
in the network [6, 12]. IPSec secures the communication channel
between two authorized machines [31], and is frequently used by
VPN software. While these techniques are effective in reducing
the number of attacks from outside the corporate network, they do
not secure the Wi-Fi network against the attacks described in Sec-
tion 2. In particular, none of these can detect rogue Wi-Fi devices
and DoS attacks on Wi-Fi networks. The use of VPNs and IPSec
is often not sufficient, as we discussed earlier. IDS products usu-
ally detect compromised machines once the attack is launched, and
most have a high false positive rate, which significantly reduces
their usefulness from the perspective of a network administrator.
In comparison, the DAIR security management system detects and

12

locates rogue Wi-Fi devices and various DoS attacks with few false
positives and minimal human intervention.

There are several commercial products in the area of corporate
Wi-Fi security [1, 2, 3, 13]. Most use one of two approaches:
they either rely on APs or they use dedicated and expensive cus-
tom hardware sensors for RF monitoring. The marketing literature
of these products contains few technical details.

Some commercial products rely on APs for monitoring wireless
networks [3]. Although cost effective, this approach has several
limitations. First, a single-radio AP can not easily monitor multi-
ple channels since its primary function requires it to spend most of
its time on one specific channel serving associated clients. Second,
the APs usually have limited CPU power and memory resources,
so polling them (i.e., issuing SNMP queries) too frequently is prob-
lematic. Third, an AP only provides a view of one end of the wire-
less communication, so an AP-based solution can not be used to
detect problems such as RF holes or excessive interference that pri-
marily affect the client end of the communication. Finally, as dis-
cussed in Section 5.2, monitoring the network from an AP alone
does not provide comprehensive coverage. To overcome these lim-
itations, some vendors augment the AP-based monitoring by de-
ploying special sensor nodes throughout the organization [1, 2].
However, such specialized sensors are expensive, and require care-
ful planning for an effective deployment.

We are aware of only one prior research paper on detecting rogue
devices [15]. In this, mobile clients and APs monitor the network
and detect rogue devices. Cisco’s Wireless LAN Solution Engine
uses a similar approach [8]. The proposed scheme has a few lim-
itations. First, it is difficult to guarantee complete coverage be-
cause the monitoring sensors are mobile. Second, the amount of
RF monitoring and reporting depends on the battery of the mobile
clients. Third, the algorithm proposed in Adya et al. [15] flags any
unknown AP as a rogue device, even if the AP is not plugged into
the corporate network. Fourth, the proposed techniques do not de-
tect rogue ad hoc networks, and finally, the previous work does not
detect DoS attacks on Wi-Fi networks.

There is some prior research on detecting greedy and malicious
behavior in IEEE 802.11 networks. Bellardo et al. [19] present
a study of various DoS attacks in IEEE 802.11 networks. They
demonstrate the attacks, and present simple schemes to counter
them. The solution requires clients to cooperate with each other
and in some cases, changes to IEEE 802.11. DAIR, on the other
hand, detects these faults and reports them to the network adminis-
trator. The detection framework for DAIR is more efficient due to
the presence of a larger number of sensors.

DOMINO is an AP based solution for detecting greedy behav-
ior in IEEE 802.11 hotspots [34]. Several other researchers have
proposed monitoring and characterization of wireless networks by
polling the APs [18, 23, 26, 32]. These systems have the same
drawbacks as other AP based solutions discussed earlier.

The benefits of dense sensor deployments were presented in Con-
ner et al. [21]. The focus of that paper was on environmental mon-
itoring applications such as temperature control or locating empty
meeting rooms, and not Wi-Fi monitoring.

8. CONCLUSION
We present the DAIR system for monitoring enterprise wireless

networks using desktop machines. The DAIR architecture takes
advantage of the key attributes of the desktop infrastructure: dense
deployment, stationarity, wired connectivity, and spare CPU and
disk resources.

The first DAIR application we built monitors the corporate Wi-
Fi network for security breaches and Denial of Service attacks. We

showed that the seemingly simple problem of rogue AP detection is
quite complex. We describe in detail how DAIR reduces both false
negative and false positive alarms when alerting network managers
of security problems.

We built and deployed the DAIR system on a small scale in our
offices. We used this deployment to show that a dense deployment
of sensors is needed to effectively deal with Wi-Fi security prob-
lems. The performance results from this small deployment show
that our system can be scaled to larger deployments.

In the future, we plan to expand this initial deployment to cover
our entire office building. We are currently building several addi-
tional performance monitoring and network management applica-
tions using the DAIR framework, and we are extending the DAIR
system to support accurate location determination.

9. ACKNOWLEDGMENTS
We thank our shepherd, David Kotz, the MobiSys anonymous

reviewers, and Dave Maltz for their feedback on this paper. We also
thank Jakob Eriksson for discussions about the rogue AP problem,
and we thank Geoffry Nordlund for his assistance with the replay
test experiments.

10. REFERENCES
[1] AirDefense: Wireless LAN Security. http://airdefense.net.
[2] AirTight Networks. http://www.airtightnetworks.net.
[3] AirWave Management Platform. http://airwave.com.
[4] Aruba Wireless Networks. http://www.arubanetworks.com.
[5] BAE Systems, Frequency Selective Surface Panels.

http://www.baesystems.com/atctowcester/products.htm.
[6] Cisco Intrusion Prevention System.

http://www.cisco.com/en/US/products/sw/secursw/ps2113/.
[7] Cisco PIX 500 Series Security Appliances.

http://www.cisco.com/en/
US/products/hw/vpndevc/ps2030/index.html.

[8] Cisco Wireless LAN Solution Engine (WLSE).
http://www.cisco.com/
en/US/products/sw/cscowork/ps3915/.

[9] CMU Warning Against Multiple Active Interfaces.
http://www.cmu.edu/computing/documentation/
connect wire wireless/wired wireless rules.html#multiple.

[10] Private communication with Microsoft IT department.
[11] Symantec Enterprise Firewall.

http://enterprisesecurity.symantec.com/
products/products.cfm?productid=47.

[12] Symantec Network Security 7100 Series.
http://enterprisesecurity.symantec.com/
products/products.cfm?productid=540.

[13] Symbol Technologies: SpetcrtumSoft Wireless Management
System. http://www.symbol.com.

[14] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and
H. Levkowetz. Extensible Authentication Protocol. RFC
3748, IETF, June 2004.

[15] A. Adya, P. Bahl, R. Chandra, and L. Qiu. Architecture and
Techniques for Diagnosing Faults in IEEE 802.11
Infrastructure Networks. In Proceedings of the Annual ACM
International Conference on Mobile Computing (MobiCom),
September 2004.

[16] P. Bahl, J. Padhye, L. Ravindranath, M. Singh, A. Wolman,
and B. Zill. DAIR: A framework for managing enterprise
wireless networks using desktop infrastructure. In

13

Proceedings of the Annual ACM Workshop on Hot Topics in
Networks (HotNets), November 2005.

[17] P. Bahl and V. N. Padmanabhan. RADAR: An in-building
rf-based user location and tracking system. In Proceedings of
the IEEE Conference on Computer Communications
(Infocom), March 2000.

[18] M. Balazinska and P. Castro. Characterizing mobility and
network usage in a corporate wireless local-area network. In
Proceedings of the Annual ACM/USENIX International
Conference on Mobile Systems, Applications and Services
(MobiSys), May 2003.

[19] J. Bellardo and S. Savage. 802.11 denial-of-service attacks:
Real vulnerabilities and practical solutions. In Proceedings
of the USENIX Security Symposium, August 2003.

[20] N. Cam-Winget, R. Housley, D. Wagner, and J. Walker.
Security flaws in 802.11 data link protocols.
Communications of the ACM, 46(5):35–39, May 2003.

[21] W. S. Conner, L. Krishnamurthy, and R. Want. Making
Everyday Life Easier Using Dense Sensor Networks. In
Proceedings of International Conference on Ubiquitous
Computing (UbiComp), October 2001.

[22] U. Deshpande, T. Henderson, and D. Kotz. Channel
sampling strategies for monitoring wireless networks. In
Proceedings of the Second International Workshop On
Wireless Network Measurement (WiNMee). IEEE Computer
Society Press, April 2006.

[23] Diane Tang and Mary Baker. Analyis of a Local-Area
Wireless Network. In Proceedings of the Annual ACM
International Conference on Mobile Computing (MobiCom),
August 2000.

[24] J. R. Douceur and W. J. Bolosky. Progress-based regulation
of low-importance processes. In Proceedings of ACM
Symposium on Operating Systems Principles (SOSP),
December 1999.

[25] S. Guha, R. Murty, and E. G. Sirer. Sextant: A unified node
and event localization framework using non-convex
constraints. In Proceedings of the Annual ACM International
Conference on Mobile Ad Hoc Networking and Computing
(MobiHoc), May 2005.

[26] T. Henderson, D. Kotz, and I. Abyzov. The changing usage
of a mature campus-wide wireless network. In Proceedings
of the Annual ACM International Conference on Mobile
Computing (MobiCom), September 2004.

[27] IEEE80211. IEEE Standard for Wireless LAN-Medium
Access Control and Physical Layer Specification, P802.11.

[28] IEEE802.11b/D3.0. Wireless LAN Medium Access
Control(MAC) and Physical (PHY) Layer Specification:
High Speed Physical Layer Extensions in the 2.4 GHz Band.

[29] IEEE802.11i. IEEE Standard for Telecommunications and
Information Exchange Between Systems - LAN/MAN
Specific Requirements - Part 11: Wireless Medium Access
Control (MAC) and physical layer (PHY) specifications -
Ammendment 6: Medium Access Control (MAC) Security
Enhancements, 2003.

[30] IEEE802.1X. IEEE Standard for Local and metropolitan area
networks, Port-Based Network Access Control, 2004.
http://www.ieee802.org/1/pages/802.1x.html.

[31] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol. IETF RFC 2401, November 1998.
http://www.ietf.org/rfc/rfc2401.txt.

[32] D. Kotz and K. Essien. Analysis of a campus-wide wireless
network. Wireless Networks, 11:115–133, 2005.

[33] M. Milner. NetStumbler WLAN detection software, 2004.
http://www.stumbler.net.

[34] M. Raya, J.-P. Hubaux, and I. Aad. DOMINO: A System to
Detect Greedy behavior in IEEE 802.11 Hotspots. In
Proceedings of the Annual ACM/USENIX International
Conference on Mobile Systems, Applications and Services
(MobiSys), May 2004.

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

