
Shake Them Up!
A movement-based pairing protocol for CPU-constrained devices

Claude Castelluccia
INRIA and University of California, Irvine

claude.castelluccia@inria.fr

Pars Mutaf
INRIA

pars.mutaf@inria.fr

Abstract

This paper presents a new pairing protocol that allows
two CPU-constrained wireless devices Alice and Bob
to establish a shared secret at a very low cost. To our
knowledge, this is the first software pairing scheme that
does not rely on expensive public-key cryptography, out-
of-band channels (such as a keyboard or a display) or
specific hardware, making it inexpensive and suitable for
CPU-constrained devices such as sensors.

In the described protocol, Alice can send the secret
bit 1 to Bob by broadcasting an (empty) packet with the
source field set to Alice. Similarly, Alice can send the
secret bit 0 to Bob by broadcasting an (empty) packet
with the source field set to Bob. Only Bob can identify
the real source of the packet (since it did not send it, the
source is Alice), and can recover the secret bit (1 if the
source is set to Alice or 0 otherwise). An eavesdropper
cannot retrieve the secret bit since it cannot figure out
whether the packet was actually sent by Alice or Bob.
By randomly generating n such packets Alice and Bob
can agree on an n-bit secret key.

Our scheme requires that the devices being paired, Al-
ice and Bob, are shaken during the key exchange pro-
tocol. This is to guarantee that an eavesdropper cannot
identify the packets sent by Alice from those sent by Bob
using data from the RSSI (Received Signal Strength In-
dicator) registers available in commercial wireless cards.
The proposed protocol works with off-the-shelf 802.11
wireless cards and is secure against eavesdropping at-
tacks that use power analysis. It requires, however, some
firmware changes to protect against attacks that attempt
to identify the source of packets from their transmission
frequency.

1 Introduction

The current trend in consumer electronics is to embed
a short-range wireless transmitter and a microprocessor

in almost everything. The main motivation is to facil-
itate communication and cooperation amongst wireless
devices in order to reduce their size/cost and increase
their functionality. In this context, each device can be
seen as a peripheral of the others. For example, a user
can use the display and the keyboard of a PDA to access
his cellular phone or personal server [21]. Similarly, he
can use a cellular phone or PDA to retrieve temperature
data sensed by a local sensor [19].

The main security challenge is to securely associate
the devices together. For example, when a device re-
ceives data from a sensor, it needs to make sure that the
data is received from the sensor it has selected and not
from an impostor. Furthermore, integrity and privacy are
often very important too.

The process of securely associating two wireless de-
vices is often referred to as pairing. This process allows
two devices, communicating over a short-range radio, to
exchange a secret key. This key can then be used to au-
thenticate or encrypt subsequent communication. It is
important to notice that the key exchanged in a pairing
protocol does not need to be authenticated since the iden-
tities (often provided by certificates) do not matter in this
context. A user who is pairing two devices together only
needs assurance that a key was exchanged between the
devices he/she has selected (for example, the two devices
he/she is holding in his/her hands).

In summary, a pairing protocol is composed of two
separate sub-protocols:

1. Key exchange sub-protocol: this protocol is run be-
tween the two wireless devices and results in a se-
cret key shared between the two devices.

2. Pairing validation sub-protocol: this protocol is ex-
ecuted between the two wireless devices and the
user. Its goal is to guarantee (with some large
enough probability) to the user that a key was ex-
changed between the two devices he/she actually
wished to pair.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 51

Motivations and design constraints: The motivation
of this work is to design a pairing protocol for CPU-
constrained devices, such as sensors. Designing pair-
ing protocols for such environment is very challenging
because sensors have limited CPU and memory. Also,
because of their low costs, most of them cannot rely on
tamper resistant components. The consequence of the
limited computing and storage capabilities is that modu-
lar arithmetic is difficult and therefore, asymmetric cryp-
tography cannot be used. In particular, standard Diffie-
Hellman (DH)[6] key exchange protocols are excluded.
Even low exponent RSA[18] techniques that allow en-
cryption cost to be minimized are prohibitive when sen-
sors are involved. Our goal is to design a pairing protocol
that meets these constraints.

More specifically, we aim at designing a protocol that
does not use public key cryptography and does not rely
on some preconfigured information. Furthermore, the
designed protocol must not increase the complexity and
the cost of the sensors by requiring additional hardware
(a display, an I/O interface or an out-of-band channel,
such as an infrared one). Finally, it should not require
exotic wireless technologies, but instead work with cur-
rent wireless networking standards such as 802.11 or
802.15.4 (an emerging Wireless PAN technology, de-
signed for low power sensors). The proposed protocol
must be secure against passive and active attacks. In
other words, it must not allow active or passive attack-
ers to learn the key exchanged between two paired de-
vices. It must provide protection against Man-in-the-
Middle (MitM) attacks that attempt to impersonate one
or both of the devices during key agreement. It must
also provide some protection against Denial-of-Service
(DoS) attacks, i.e. prevent attackers from disrupting the
pairing protocol and exhausting the devices’ resources,
such as their battery.
Contributions: We present a novel secure pairing tech-
nique based on a key agreement protocol that does
not depend on CPU-intensive operations. Two CPU-
constrained wireless devices A and B can establish a
shared secret over an anonymous broadcast channel. An
anonymous channel is a channel on which an eavesdrop-
per can read the packets that are exchanged but is unable
to identify the source. Using such a channel, A can send
the secret bit 1 (resp. 0) to B by broadcasting an (empty)
packet with the source field set to A (resp. B). Only B
can identify the real source of the packet (since it did not
send it, the source is A), and can recover the secret bit (1
if the source is set to A or 0 otherwise). An eavesdrop-
per cannot retrieve the secret bit since it cannot figure out
whether the packet was actually sent by A or B. By ran-
domly generating n such packets A and B can agree on
an n-bit secret key.

The protocol is secure if and only if the packets of A

and B cannot be distinguished by an eavesdropper. On
a wireless channel, this property is difficult to achieve
through protocol design since an eavesdropper can mea-
sure the signal strength of each packet and may be able to
determine the real source of each packet. Therefore, we
propose that during key agreement, the user(s) be very
close to each other and shake their devices (i.e. randomly
turn and move one around the other) in order to random-
ize the reception power of their packets by a potential
eavesdropper and make power analysis very difficult.
Organization: The paper is structured as follows: Sec-
tion 2 presents the related work. Section 3 presents the
basic ideas of our scheme. Section 4 describes our pro-
posal in detail. Section 5 presents experimental results
and analysis. Section 6 presents a discussion. Finally,
Section 7 concludes the paper.

2 Related work

2.1 Secure pairing
The problem of secure pairing of wireless devices has
been tackled by several researchers. The proposed key-
exchange solutions can be classified into the four main
categories described in this section.

All of the approaches that we review below require
some additional mechanism for pairing validation (ex-
cept the last two ones). The only solution proposed in
the literature so far is to provide the user with some ev-
idence that both devices computed the same secret key.
For example, the devices can both display a hash of the
secret key [7]. These solutions are not always practical
since they require devices with a display and/or a key-
board.

2.1.1 Public-key cryptography based solutions

These solutions rely on public-key based key exchange
protocols such as Diffie-Hellman or RSA [7, 10, 11]. In
Diffie-Hellman based schemes, devices exchange their
Diffie-Hellman components and derive a key from them.
In RSA-based schemes, one of the devices selects a se-
cret key and encrypts it under the other device’s public
key. The main problem of these solutions is performance.
They require that devices perform CPU-intensive opera-
tions such as exponentiation, which are prohibitive for
CPU-constrained devices.

2.1.2 PIN-based schemes

In Bluetooth, two wireless devices derive a shared key
from a public random value, the addresses of each device
and a secret PIN number. The PIN number is provided to
each device by the user via an out-of-band channel, such

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association52

as a keyboard. While this solution is computationally
efficient, it requires that both devices be equipped with
some kind of physical user interface. As a result, this
solution cannot be used to pair devices lacking physical
interfaces, such as sensors.

2.1.3 Physical contact or imprinting

In [19], Stajano and Anderson propose a solution, called
imprinting, based on physical contact. Two devices get
paired by linking them together with an electrical contact
that transfers the bits of a shared secret. No cryptography
is involved, since the secret is transmitted in plain-text.
Furthermore, the key validation phase is not necessary
since there is no ambiguity about the devices that are in-
volved in the binding (i.e. MitM attacks are impossible).

While this solution is interesting, it requires each de-
vice to have some additional hardware to perform the
electrical contact. Similarly, it might be possible to trans-
mit a secret key through an infrared channel to a nearby
node. Infrared transmissions require absolute line-of-
sight links, making it more difficult for third-party inter-
ception. Nevertheless, in both cases, i.e. physical contact
or infrared transmission, the complexity and the cost of
the devices would increase1. This violates one of our de-
sign requirements, that the pairing protocol should not
require extra equipment. We wish to achieve key agree-
ment through the actual communication channel.

2.1.4 Using a Faraday cage

Alternatively, the two devices can be put in a Faraday
cage where the secret key is transmitted in plain-text. A
Faraday cage is an electrical apparatus designed to pre-
vent the passage of electromagnetic waves, either con-
taining them in or excluding them from its interior space.
Consequently, an eavesdropper could not hear the secret
key. An idealized Faraday cage is a hollow electrical
conductor such as an empty sphere or box. Practical
Faraday cages can be made of a conducting mesh instead
of a solid conductor. However, this reduces the cage’s
effectiveness as an RF shield. In our case, the paired de-
vices are small and hence can be enclosed in a conduct-
ing box. However, this solution is probably impractical
for the general case; a conducting box is not always avail-
able. Users cannot possibly foresee when and where they
will need secure pairing (and clearly we cannot recom-
mend a user to carry a metal box with her all the time).

Similarly to a Faraday cage, a cable could be used for
secret key transmission, instead of wireless link. How-
ever, users typically do not have cables available when
they need to communicate, and requiring it will be a con-
siderable impediment to secure communication.

One of our design requirements is to develop a proto-
col that does not require extra hardware/equipment. So-
lutions based on using a Faraday cage or cable clearly
violate this constraint.

2.2 Other shaking-based schemes
As we will describe in detail, “Shake Them Up!” se-
curity depends on shaking two devices. “Smart-Its
Friends”[12], although not related to key agreement nor
security, is based on a similar user-device interaction.
The authors propose that sensors be equipped with a two-
axis accelerometer. When a user takes two devices in one
hand and shakes them, the devices generate and broad-
cast similar movement data. If the difference is below a
specified threshold, then the two devices recognize each
other as friends and a dedicated connection is established
between them. In another related work, “Are you with
me?”[15], the authors propose using accelerometers to
determine if two devices are carried by the same person.

In “Shake Them Up!”, the shaking process has a com-
pletely different role (and no accelerometers are used in
this paper). Devices are shaken/rotated for randomizing
the signal power of the messages received by a potential
eavesdropper.

3 Basic ideas

This section describes the main ideas of our scheme. We
first describe how two devices, communicating over an
anonymous channel, can exchange a secret key without
CPU-expensive computation. We then define formally
what we mean by “anonymous channels” and describe
how they can be implemented in practice.

3.1 Pairing over anonymous channels
This section describes a new technique that allows two
parties to securely exchange a secret over an anonymous
channel while preventing eavesdroppers from determin-
ing its value (or actually any of its bits). By anonymous
channel, we mean a broadcast channel that hides the ori-
gin of the messages. On an anonymous channel, a pas-
sive wiretapper can read the messages that are broadcast,
but is unable to identify the source. Anonymous channels
require a property that we call Source Indistinguishabil-
ity. This property is defined and discussed in Section 3.2.

Our key exchange protocol was inspired from the pro-
tocol proposed by Alpern and Schneider in [3]. In this
paper, the author presents a protocol that allows two par-
ties to agree on a secret key on channels for which an
eavesdropper cannot tell “who” broadcasts each mes-
sage. The technique is called “Key exchange using key-
less cryptography”, or “Keyless key agreement”.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 53

For users Alice (A) and Bob (B) to agree on a n-bit
key KAB[n], each first chooses its own random 2n-bit
string:

RA[1], RA[2], ..., RA[2n]

RB[1], RB[2], ..., RB[2n]

User A then broadcasts 2n anonymous messages (with-
out sender identifier), one for each bit in RA. Simi-
larly, user B broadcasts 2n anonymous messages (with-
out sender identifier), one for each bit in RB . The secret
key is then defined by the bits RA[j] sent by A such that
RA[j] 6= RB[j]. Note that there are on the average n
such bits. The salient property of the protocol is that the
message content is not hidden. All messages are acces-
sible to potential eavesdroppers, which however cannot
determine the origin of each message. As a result, they
are unable to identify the packets sent by A and there-
fore identify the correct bits. Since A knows her bits, she
can easily identify the bits sent by B. Similarly since B
knows his bits, he can easily identify the bits sent by A.
Note that the packets transmitted by A and by B must
be interleaved. Otherwise it might be easy for an eaves-
dropper to identify the bits sent by the same source from
a timing analysis. RA[1] and RB [1] should be sent first,
followed by RA[2] and RB[2], the transmission order of
each pair being randomized, and so on.

The protocol presented by Alpern and Schneider re-
quires the broadcast of 4n messages for A and B to agree
on an n-bit secret key. We propose an optimization that
reduces the number of broadcast messages to n. The
overview of our protocol is the following (a more de-
tailed description is presented in Section 4):

1. A selects n/2 random bits
RA[1], RA[2], ..., RA[n/2]

2. B selects n/2 random bits
RB[1], RB[2], ..., RB[n/2]

3. A builds n/2 messages mA[1], mA[2], ...,mA[n/2],
where the source identifier of mA[j] is either set to
A if RA[j] = 1 or set to B if RA[j] = 0.

4. B builds n/2 messages mB[1], mB[2], ...,mB[n/2],
where the source identifier of mB[j] is either set to
B if RB [j] = 1 or set to A if RB [j] = 0.

- A and B send their messages synchronously but in
a random order. In other words, the first messages
of A and B are sent (in a random order), followed
by the second messages (in a random order), and so
on. In total, n messages are sent.

- For each message that A (resp. B) receives, it
checks whether the source identifier is set correctly

(note that only A and B can perform this verifica-
tion) and sets KAB[k] to 1 if the source is correct or
to 0 otherwise.

3.2 Source indistinguishability: definition
and requirements

The described key exchange protocol requires the source
indistinguishability property. In other words, if two par-
ties, A and B, run the previously described key exchange
protocol, an eavesdropper should not be able to distin-
guish the packets sent by A from the packets sent by B.
Failing to achieve this property actually leads to an inse-
cure protocol, since the eavesdropper could then recover
some (if not all) bits of the exchanged key.

This notion of source indistinguishability is very sim-
ilar to the notion of ciphertext indistinguishability in en-
cryption schemes [8]. The basic idea behind indistin-
guishability of an encryption scheme is to consider an ad-
versary (not in possession of the secret key) who chooses
two messages, m1 and m2, of the same length. Then one
of the messages is encrypted and the ciphertext is given
to the adversary. The encrypted scheme is considered
secure if the adversary cannot tell which of the two mes-
sages was encrypted.

We define source indistinguishability in a similar way
as follows: a communication scheme between two par-
ties A and B is source indistinguishable if for a given
packet P , emitted by A or B, an eavesdropper cannot tell
whether the packet was sent by A or B. More formally,
the difference between the probability that the packet was
sent by A and the probability that the packet was sent by
B should be very small:

Pr[source(P) = A] − Pr[source(P) = B] < ε

In practice, source indistinguishability requires the
communication to be temporally and spatially indistin-
guishable. In the following sections, we discuss these
requirements in detail 2.

3.2.1 Temporal indistinguishability

Given two parties A and B communicating together, an
eavesdropper should not be able, using timing analysis,
to identify the packets emitted from A from those emit-
ted from B with a probability larger than 1/2. Further-
more, the eavesdropper should not be able to group pack-
ets emitted by the same source.

It is clear from the previous definition that a commu-
nication system that uses a TDMA (Time Division Mul-
tiplexing Access) based MAC (Medium Access Control)
protocol cannot provide temporal indistinguishability. In
a TDMA-based system, each terminal is given one or
several time slots and can transmit only during one of

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association54

its slots. As a result, it is very easy for any eavesdropper
to identify the packets transmitted by a source or at least
identify the packets sent by the same source.

Random access MAC protocols, such as CSMA
(Carrier Sense Multiple Access) are more appropriate.
CSMA protocols such as Ethernet or wireless Ethernet,
multiple nodes are allowed to use the same channel in
a random fashion. Before transmitting data a node lis-
tens to the channel. If the channel is busy then it waits
for a random time and then listens again. If the chan-
nel is not busy, then it transmits its packet. In CSMA,
collisions may happen when two terminals transmit si-
multaneously. CSMA/CD (Collision Detection) enables
devices to detect a collision. After detecting a collision,
a device waits a random time period and then attempts to
re-transmit its message. With a CSMA-based system, the
order of the packets sent by the different users can easily
be randomized. This feature is crucial for the security
of our approach. In this case, it will be very difficult for
an eavesdropper to use timing information to identify the
source.

3.2.2 Spatial indistinguishability

Given two parties A and B communicating together, an
eavesdropper should not be able, using spatial analysis
(or signal strength analysis), to distinguish the packets
emitted by A from those emitted by B with a probability
larger than 1/2. In other words, the eavesdropper should
not be able to detect the packets’ source from their re-
ception power.

This property is very difficult to achieve in practice
since waves attenuate according to the free space prop-
agation law and the eavesdropper can easily identify the
location of the transmitter from the reception power of a
received packet, i.e. from power analysis. More specifi-
cally, according to free space propagation law, the recep-
tion power Sr of a packet transmitted with power St by
a transmitter that is located at a distance d is defined as:
Sr = St Gt Gr K

d2 , where Gt is the antenna gain of the
transmitter, Gr is the antenna gain of the receiver and
K is a constant that depends on the signal frequency (or
wavelength). If the receiver knows St and the gain, it can
easily estimate d. An eavesdropper listening to a com-
munication between two parties A and B can also use
the reception power to identify the source of the packets
with a probability larger than 1/2.

Let’s assume that A and B use the same type of an-
tenna (i.e. they have the same gain) and let’s define
k = Gt Gr K . If A and B transmit their packets
with a power uniformly distributed between [St; St + δ]
then A receives the packets from B with a power uni-
formly distributed between [k St

d2 ; k (St+δ)
d2]. Similarly,

B receives the packets from A with a power uniformly

distributed between [k St

d2 ; k (St+δ)
d2]. If the eavesdrop-

per is listening with a large antenna (i.e. G′

r is large s.t.
k′ = Gt G′

r K > k) and it is closer to A than to B (i.e.
dA ≤ dB), then:

1. the power of A’s packets received by the
eavesdropper is uniformly distributed between
[k′ St

d2

A

; k′ (St+δ)
d2

A

] and,

2. the power of B’s packets received by the
eavesdropper is uniformly distributed between
[k′ St

d2

B

; k′ (St+δ)
d2

B

].

Therefore the eavesdropper can identify all the packets
received with a power between [k′ St

d2

B

; k′ St

d2

A

] as belong-
ing to B and all the packets received with power between
[k′ (St+δ)

d2

B

; k′ (St+δ)
d2

A

] as belonging to A. The scheme can
only be secure if one of the two following conditions is
met:

1. Condition 1: dA = dB . The scheme is secure be-
cause the power of the packets sent by A is statisti-
cally indistinguishable from the power of the pack-
ets sent by B. If dA 6= dB , the eavesdropper can
identify some of the bits of the secret key. The num-
ber of bits that can be identified depends of the val-
ues of dA and dB . If dB > (St + δ

St
)1/2dA, the

eavesdropper can guess the source of all the packets
exchanged between A and B and therefore all bits
of the secret key. If dA < dB < (St + δ

St
)1/2dA,

the eavesdropper can guess the source of some per-
centage of the packets. This percentage depends
on the difference between dA and dB . Note that if
the eavesdropper can monitor at several locations,
and receive the same packets with different recep-
tion powers, it will be even easier for her to identify
the source of the packets.

2. Condition 2: A and B move during the pairing
phase such that dA and dB (and therefore their re-
spective powers) are statistically indistinguishable.

4 Movement-based pairing

This section describes a new protocol that can be used
to pair two devices A and B securely and without using
expensive public-key cryptographic protocols. Our key
agreement protocol is based on the combination of the
two following: we first optimize Alpern and Schneider’s
keyless key agreement protocol and adapt it to an ad hoc
configuration. Secondly, we show that the protocol can
be secured against power analysis by shaking the two de-
vices around each other. We show that it is secure against
DoS (Denial-of-Service) and MitM (Man-in-the-Middle)
attacks.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 55

1
0
0
1
1
0
0
1

1
0
0
1
1
0
0
1

src:A dst:B

src:A dst:B

round 0

SECRET KEY

round 1

src:B dst:A

src:A dst:B

src:B dst:A

src:B dst:A

src:A dst:B

round 2

round 3

round 4

round 5

round 6

round 7

hash(A|B|key)

hash(B|A|key)

src:B dst:A

terminal A terminal B
Start (k)

Start

Figure 1: Key agreement protocol for movement-based
pairing.

4.1 Key agreement

In our pairing protocol, key agreement is performed us-
ing the protocol described in Figure 1. This protocol is
an optimization of the approach proposed by Alpern and
Schneider [3]. The number of messages per secret bit is
reduced (1 instead of 4), making the protocol more en-
ergy efficient.

The protocol starts by a START message transmitted
by one of the two parties, either A or B. This message
contains the value k which is the size of the key, and
the address of the packet’s source. Upon reception of
this message, the other party replies with another START
message that contains its address. This exchange allows
each device to learn the other party’s address and the size
of the desired shared key. It should be triggered by the
user, for example, pushing a button on both devices.

At each round j, either A or B (with equal probabil-
ity) broadcasts an empty packet at time tj , where tj is
randomly selected in the interval [jT ; (j + 1)T], and T
is a constant. Secret bits are represented by the correct or
inversed placement of source and destination addresses.
If the sender and recipient addresses are correct, the ter-
minals A and B presume a secret bit TRUE (1), other-
wise they presume FALSE (0). For example, in Figure
1, the first message is sent by A. The source address is
set to A and the destination address is set to B. Since the
packet was actually sent by A, the resulting bit (the first

bit) of the secret key is then set to 1 by A and B. Note
that an eavesdropper cannot identify the real source of
the packet and therefore cannot retrieve the value of the
exchanged secret bit. Each packet identifies one bit of
the secret key. At the end of the k rounds, A and B share
a k-bit long secret key. Therefore, if a 60-bit long key is
required, the protocol should contain 60 rounds, i.e. 60
packets.

The protocol is terminated by two messages, that are
used to validate the exchanged key. The message sent by
A contains the value a = hash(A|B|key), where key
is the exchanged key. The message sent by B contains
the value b = hash(B|A|key). The order of these two
messages is also random. When B receives the value a,
it can verify that A has the same key. Similarly, A can
verify, upon reception of b, that B computed the correct
key.

4.2 Achieving spatial indistinguishability:
Shake them up!

As described in Section 4, the previous scheme is secure
only if the source of the packets are indistinguishable.

Time indistinguishability is provided by randomizing
the order of transmission of packets sent by A and B,
as described in the previous section. An eavesdropper
can therefore not guess who is going to transmit next.
Also, we are using CSMA-based wireless systems, such
as 802.11, to guarantee that the access to the channel is
also random and does not reveal any information about
the source.

As explained previously, spatial indistinguishability is
more difficult to achieve. We propose to achieve this
property with user assistance. The user(s) should shake
(i.e. move and turn) the devices during key agreement in
order to equalize the average signal strength of the two
devices measured by a potential eavesdropper.

The required movements depend on the type of an-
tennas used. For truly omni-directional antennas, an-
tenna orientation will not reveal any signal strength dif-
ference between two devices. In these cases, it will be
sufficient to take both devices and turn them, one around
the other, in order to equalize the effect of distance (be-
tween each terminal and the eavesdropper) on the signal
strength measurements performed by an eavesdropper. If
the antennas are not truly omni-directional, randomizing
the distance will not be enough to achieve spatial indis-
tinguishability. Different orientation of the devices may
reveal a serious signal level difference. In order to avoid
this problem, during key agreement the two devices must
be randomly turned to different directions (in our exper-
imentations we used commodity 802.11 cards which are
not omni-directional. Section 5 contains more details on
this issue).

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association56

Clearly, in both cases, having small and lightweight
devices (e.g. sensors or small PDAs) will reduce the user
burden for key agreement. The user can take one device
in each of his hands and randomly move them one around
the other according to the horizontal and vertical axes. If
the devices are very small, he can take both of them in
one hand and shake his arm, like he would do with an
orange juice bottle.

The security of the proposed scheme depends on the
quality of the movement. Users of our scheme should
be aware that it is their responsibility and in their best
interest to move the devices properly during the pairing
phase. Movement-based operations or “protocols” are
quite frequent and accepted in our everyday lives. For
example, orange juice or shaving cream bottles are uni-
versally shaken prior to use. This is now a well-known
and quite a natural protocol. Furthermore it is commonly
accepted that it is the responsibility and in the interest of
the consumer to perform this shaking operation properly.

4.3 Protection against MitM and DoS at-
tacks

4.3.1 Protection against MitM attacks

Defeating a MitM (Man-in-the-Middle) attack requires
assurance for a terminal A that a secret key is really be-
ing exchanged with the intended terminal B and not an
impostor’s device. This is the goal of the Pairing Valida-
tion protocol, as described in Section 1.

In our case, this problem is reduced to the follow-
ing issue: “how do the two devices reliably determine
each other’s address in the presence of many other de-
vices?” As explained in Section 2.2, the smart-its friends
scheme solves this problem. However this solution may
be considered costly and impractical since it requires
extra hardware, namely an accelerometer. Certificates
could also be used for authenticating the START mes-
sages. However, our goal in this paper is to avoid CPU-
expensive operations such as exponentiations or signa-
ture verifications.

In our case, proximity (and hence high signal level of
START messages) is used for authentication. In “Shake
Them Up!”, the pairing protocol is triggered by the user
by, for example, pushing a button on the devices. At this
point, the devices will start to generate START messages
at a specified rate. The user will bring the two devices
near to each other (possibly resulting in antenna contact).
The devices will receive each other’s START message
with a high signal level, starting the “Shake Them Up!”
procedure. Experience with 802.11 cards has shown that
a very high signal level can be obtained when two cards
touch each other, and a distance about 1 or 2 cm quickly
results in a much lower signal level. Using a signal level

threshold e.g. 0 or 1 dBm, this device association pro-
tocol can be implemented. In our case, the higher the
specified rate of START messages, the faster the devices
can detect each other with high signal level (when the
user finds the correct positioning). Let Q be the period
of broadcast START messages. While initiating the pair-
ing process, if the user missed a START message (i.e.
it was received at a lower signal level than the specified
threshold), the user must wait another Q time units. Con-
sequently, Q must be low, e.g. for example 1 second, to
allow the user to easily and quickly start the pairing pro-
cess. Once the two devices obtain each other’s address
correctly, MitM attacks will be impossible.

A distant impostor may attempt to foil this technique
by increasing its transmission range. However this attack
is easily detectable since the victim will receive several
START messages at a rate higher than Q.

One of the devices, say device B, may be down and
an attacker may profit from this situation to imperson-
ate B. This attack can be prevented if each device has a
status LED which indicates whether it is active or down.
Even a sensor device (with no display) is likely to have
such a LED. Furthermore, if the devices A and B are
shaken together (i.e. the user holds the two devices in
one hand and shakes his hand), A should receive the mes-
sages coming from B with constant signal power. Most
likely, the signal power of the different messages sent
by the attacker will be different (since the attacker is not
shaken together with A and therefore does not follow the
same mobility pattern). In this scenario, this attack can
easily be detected by A.

4.3.2 Protection against DoS attacks

We can differentiate between two kinds of DoS (Denial-
of-Service) attacks on a key agreement protocol. In the
first one an attacker may exploit the key agreement pro-
tocol to force a victim to perform computationally ex-
pensive operations, with the goal of draining its battery
or preventing it from performing useful work. Unlike
public-key cryptography-based schemes, our protocol is
not based on CPU-intensive operations and therefore im-
mune against such DoS attacks. Another DoS attack may
consist of sabotaging the key agreement, i.e. making it
impossible for the two parties to agree on a same secret
key.

In our basic scheme, it is easy for an attacker to insert
a bogus packet with source address A and destination
address B (or vice versa) and perform what we call a
key poisoning attack. Such a packet inserted by a third
party would generate different secret bits at the terminals
A and B. The attacker can insert an arbitrary number of
bogus packets, and make it impossible for A and B to
agree on a secret key.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 57

0
00

1 1
0 0

sqn=1 src:A dst:B

sqn=1 src:B dst:A

sqn=2 src:A dst:B

sqn=2 src:B dst:A

1
1

1

0 1
1

sqn=3 src:B dst:A

sqn=3 src:B dst:A11 1
00

SECRET KEY

1

0

0
0 0

1

sqn=0 src:A dst:B

sqn=0 src:A dst:B

round 0

round 1

round 2

round 3

hash(A|B|key)

hash(B|A|key)

Start (k)
Start

terminal A terminal B

Figure 2: A protocol that resists what we call a key poi-
soning DoS attack. When this protocol is used for key
agreement, an active attacker cannot poison (i.e. corrupt)
the secret key by inserting bogus messages with the ad-
dresses of A and B (see text for details). This protection
is obtained at the cost of two messages per secret bit.

The protocol depicted in Figure 2 defeats the key poi-
soning attack. In this protocol, each secret bit is con-
structed using one packet from A and another from B,
i.e. both terminals contribute to the construction of each
secret bit. Each secret bit is given a sequence number
(which also corresponds to the round number). In order
to generate the secret bit i the two terminals generate a
packet with correct or flipped address positions, in ran-
dom order (i.e. the probability that the first packet i will
be transmitted by A is 0.5). The outcome of the two
packets i are combined by taking their sum (mod 2), or
exclusive OR. The result is the secret bit i.

In order to alterate the secret bit i, an attacking node
can insert x packets with the same sequence number. In
this case both sides will record x + 2 bits with the same
sequence number, but only two of them will be the same
at both sides. Let {a1, ..., ax+2} and {b1, ..., bx+2} the
set of bits (with the same sequence number) that the ter-
minals A and B have recorded. Then we have

a1 ⊕ · · · ⊕ ax+2 = b1 ⊕ · · · ⊕ bx+2

if x is even, and

b1 ⊕ · · · ⊕ ax+2 6= b1 ⊕ · · · ⊕ bx+2

if x is odd.
Key poisoning can be defeated by taking the sum (mod

2) of the bits with the sequence number i, as usual (ex-
cept that in normal operation x = 0). Note that if the

attacker inserted an odd number x of packets, the termi-
nal A must invert the resulting secret bit i. This protocol
requires twice as many messages as the basic protocol.
However, this protocol is only necessary when the user
believes that his devices are under DoS attack. Other-
wise, the basic scheme should be used.

This protocol fails, however, when A and B do not re-
ceive the same messages. This might happen when some
of the messages are lost. We therefore suggest that A and
B append to each of their messages a hash of all the pre-
vious messages they have seen since the beginning of the
protocol. As a result, if one or several messages are lost,
A and B can detect it immediately (instead of waiting
until the end of the protocol and comparing a hash of the
derived keys).

5 Experimentations and analysis

In this section, we analyze, by experimentations, the se-
curity of the proposed pairing scheme. More specifically,
we show that signal power analysis cannot be used by an
attacker to retrieve the key exchanged between two de-
vices that use our pairing protocol. We also evaluate the
energy cost of our protocol and show that although it re-
quires several messages, it is much more energy-efficient
than a Diffie-Hellman based pairing protocol.

5.1 Setup and methodology
We built a testbed with lightweight laptops equipped
with a PCMCIA Lucent IEEE 802.11 Wavelan card op-
erating at 2.457GHz (802.11 channel 10) and 2Mbps bit
rate and in ad hoc mode. Our cards support RSSI (Re-
ceived Signal Strength Indicator) and allow us to visu-
alize and evaluate the power of received packets. Our
signal level cryptanalyzer is built upon Linux wireless
tools3, and in particular iwspy that allows to get per node
link quality. The iwspy command takes as argument a
MAC address M , and outputs the received signal and
noise levels of packets whose source address is M .

Figure 3 depicts a typical measurement that can be car-
ried out by any user using the iwpsy tool and a simple
sampling script. Note that iwspy also outputs the noise
level which is about -96dBm in our environment.

The received signal strength depends on at least 4 dis-
tinct factors:

1. Transmission power: Packets are transmitted at our
cards’ default value which is 15 dBm4.

2. Distance between the source and the signal level an-
alyzer.

3. The relative angle between the source and the sig-
nal level analyzer: the cards that we use are not

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association58

-100

-90

-80

-70

-60

-50

-40

-30

-20

 0 50 100 150 200

M
ea

su
re

d
si

gn
al

 a
nd

 n
oi

se
 le

ve
ls

 (d
B

m
)

Sample

signal level
noise level

Figure 3: A typical iwspy output. In this example,
the “iwspied” terminal is stationary while the first ∼100
samples are taken and then it moves to a location that
is closer to the signal level analyzer machine. The dis-
tance between the two cards is easily determined by sig-
nal strength analysis.

omni-directional and the received signal level de-
pends heavily on the relative angle of the two cards.

4. Relative position of the terminals (or, cards): when
the two terminals are very close, they may become
obstacles for each other. For example, terminal A
may be in front of terminal B. In this case, packets
from A are received at a higher signal level (even if
the above factors had no impact on the signal level
difference).

During each experiment, referred as ‘scenario’, Eve
(eavesdropper, or cryptanalyzer) measures the signal
strength of the packets sent by Alice (terminal A) and
Bob (terminal B) during key agreement. Many different
experiments were carried out. We only provide the most
representative ones that we consider generic and applica-
ble to almost all situations because they perfectly reflect
the points (2) and (3) listed above. Our first scenario,
denoted scenario1, is illustrated in Figure 4-a. In this
scenario Alice and Bob are close to each other (within
0.5 meter) and make two kinds of movements in order to
equalize their average signal strength captured by Eve:

• We use commodity wireless Ethernet cards and they
are not omnidirectional. Thus, in order to confuse
Eve, Alice and Bob must turn their laptop in ran-
domly changing directions (at a reasonable speed).
The process requires reasonable effort from the user
and takes around 16 seconds for agreeing upon an
80-bit secret key. The details of movement speed
and its effect on security will be discussed later.

• Alice and Bob move their devices one around an-
other with a reasonable effort, i.e randomly and at a
moderate speed. This helps Alice and Bob to hide
their relative distance between their cards and a po-
tential eavesdropper that may be located anywhere.

In scenario1, we consider a pessimistic passive attack
where Eve’s wireless Ethernet card (the white arrow) is
directly oriented to Alice and Bob and situated only 2.2
meters away. This allows Eve to make relatively accu-
rate signal level measurements. In practice, Alice and
Bob would probably notice the presence of a third per-
son during key agreement, and look for another place
where eavesdroppers cannot approach them. However, in
some situations such countermeasures may not be practi-
cal. This scenario attempts to capture the cases where the
presence of a third person cannot be avoided. Note also
that an eavesdropper may have installed hidden signal
level cryptanalyzers at strategical points. Thus, the ab-
sence of a third person, does not necessarily imply a se-
cure environment. For example, the eavesdropper might
be behind a thin wall or partition (e.g. a cubicle wall),
and not visible to Alice and Bob. In this scenario Alice
and Bob respect the key agreement requirements, hence
the key will be secure as we will show below.

In scenario2 (Figure 4-b), we demonstrate an inappro-
priate usage of our protocol that we would like to dis-
advise. In this scenario Alice and Bob are not close to
each other. They both move their laptop randomly in
every possible direction, but they are always far from
each other and their location does not change during key
agreement. Eve profits from the distance between Alice
and Bob, and directs her card to Alice. Consequently,
Alice’s packets are received at a higher signal level than
that of Bob, rendering the secret key weak.

The scenario3 (Figure 4-c) is even less secure and
firmly disadvised. Alice is 4 times closer to Eve than
Bob. Eve is located between the two terminals and profits
from the situation by directing her wireless Ethernet card
to Alice. Although Alice and Bob’s cards are perfectly
turned in random directions, Eve can easily differentiate
between their packets. As a result, the key is extremely
weak.

5.2 Signal power analysis

The signal level cryptanalysis results for the above three
scenarii are shown in Figure 5.

In scenario1, we observe that Alice and Bob’s pack-
ets are mixed and not easily distinguishable by Eve
(the reader may imagine that Eve’s vision has only one
color regardless of the sender’s ID). The only informa-
tion available to Eve will be the absolute value of sig-
nal level difference between two packets captured during

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 59

1.5m

1.5m

Eve

Alice and Bob

0.5 m

(a) scenario1

1.5m

1.5m

EveAlice

Bob

(b) scenario2

0.5mAlice Bob2m
Eve

(c) scenario3

Figure 4: Experimentation scenarii.

-70

-60

-50

-40

-30

-20

 0 10 20 30 40 50 60 70 80

S
ig

na
l l

ev
el

 (d
B

m
)

Round

terminal A
terminal B

(a) scenario1

-70

-60

-50

-40

-30

-20

 0 10 20 30 40 50 60 70 80

S
ig

na
l l

ev
el

 (d
B

m
)

Round

terminal A
terminal B

(b) scenario2

-70

-60

-50

-40

-30

-20

 0 10 20 30 40 50 60 70 80

S
ig

na
l l

ev
el

 (d
B

m
)

Round

terminal A
terminal B

(c) scenario3

Figure 5: Received signal level of terminal A (Alice)
and terminal B (Bob) during key agreement. The reader
may imagine that Eve’s vision has only one color (i.e. all
packets are black).

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association60

each round (1 packet from Alice, 1 packet from Bob). In
Figure 6 we provide a frequency diagram of these sig-
nal level differences. It should be noted that, when plot-
ting these histograms we have profited from additional
information that is not available to Eve: the sign of the
observed differences (i.e. (+) when Alice’s packet is re-
ceived with greater signal level than that of Bob, and (-)
otherwise). These histograms were plotted using 1000
samples (i.e. rounds) in order to provide accurate re-
sults that correspond to the average case (for a given sce-
nario). For our data collection purposes, Alice and Bob
performed the required laptop movements for a much
longer time than needed in practice: ∼ 3.5 minutes for
each experiment (in our experiments Alice and Bob gen-
erated 0.2 packets per second, as we will explain later).
The histogram that corresponds to scenario1 is centered
on ∼0 and roughly symmetric. Consequently, we conjec-
ture that Alice and Bob’s packets cannot be distinguished
using signal strength analysis.

In practice, the results look satisfactory in scenario2.
There is no well defined technique (at least to our knowl-
edge at time of writing) that will allow to clearly distin-
guish Alice’s and Bob’s packets. Note for example that,
above the line -50dBm all packets are Alice’s packets.
Similarly, below the line -35dBm, we have only Bob’s
packets. However, unlike the reader, this information is
not provided to Eve.

On the other hand, the resulting key is clearly insecure
in theory. As shown in Figure 5-b the signal level dif-
ferences are important: the histogram is centered at 7.34
dBm. Although it is unknown to the attacker, this differ-
ence is considerable (making us uncomfortable) and re-
flects very well the fact that Eve’s wireless Ethernet card
is directed to Alice. Thus, we base our conclusion on
the theoretical security of the protocol and disadvise the
type of scenario where Alice and Bob are ‘not’ close to
each other. The security of the secret key in this scenario
could be improved by adding more rounds, however this
would lead to a very inefficient key agreement. We rec-
ommend that Alice and Bob be as close to each other as
possible (in addition to turning their devices in random
directions).

In the final scenario, scenario3, the situation is clearly
worse. The resulting key is not only ‘theoretically’
breakable as shown by the frequency diagram (centered
at 14.92 dBm), but also breakable in practice. Figure
5-c reveals what we call a “break point” which is situ-
ated around -41dBm. There is a visible gap at that point
where Alice and Bob’s packets are clearly separated.

5.3 Energy consumption considerations

In this section, we compare the power consumption of
our scheme with the power consumption of a Diffie-

 0

 10

 20

 30

 40

 50

 60

 70

 80

-40 -30 -20 -10 0 10 20 30 40

Fr
eq

ue
nc

y

Signal strength difference (dBm)

scenario1
scenario2
scenario3

Figure 6: Frequency diagrams for signal level difference.
In scenario1, the spatial indistinguishability requirement
is satisfied. The histogram is centered on zero and sym-
metric. Thus, in this paper it is conjectured that an eaves-
dropper cannot distinguish the source of the packets re-
garding signal level difference (in scenario1).

Hellman based pairing. For the purpose of this compar-
ison, we assume that the two devices being paired are
sensors using TinyOS and that the size of the generated
shared key is 72 bits.

With our scheme, each device must receive and send
36 packets. Considering that a TinyOS packet that has a
header size of 7 bytes [13], each device must send and
receive 2016 bits (36 × 8 × 7) (as explained in Section
4, in our basic protocol, packets do not have to con-
tain any payload). However transmitting one bit con-
sumes about as much power as executing 800-1000 in-
structions [9, 13]. Receiving one bit consumes about half
as much power as sending one bit. As a result, our proto-
col consumes as much energy as the execution of about
2.72 × 106 instructions (2016 × 900 + 2016 × 450).

In comparison, with a Diffie-Hellman based pairing
protocol, each device needs to exchange their Diffie-
Hellman public component (i.e. gx, where x is the de-
vice’s private key). A security equivalent to 72 bits re-
quires to select a modulus of 1024 bits and an exponent
of 130 bits [14]. As a result, the device’s Diffie-Hellman
public component is 1024-bit long. Since the maximum
number of payload bits in a TinyOS packet is 232, each
device must send (and receive) 5 packets. Therefore, the
total number of bits sent and received is 1304 bits: 4
packets containing 232 bits and 1 packet containing 96
bits. This consumes as much energy as the execution of
1.76×106 instructions (1304×900+1304×450). Upon
reception of the other party’s public component, each de-
vice has to exponentiate it with its Diffie-Hellman private
key. Exponentiating using the Montgomery algorithm re-

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 61

quires 3×l×(l+1)×(t+1) single-precision multiplica-
tions, where l is the size of the modulus and t the size of
the exponent [16]. With l = 1024 and t = 130, each de-
vice must perform 4.12 × 108 single-precision multipli-
cations. In conclusion, the total power consumed by each
device is therefore equivalent to the power consumed by
the execution of 1.76 × 106 + 4.12 × 108 instructions.
This cost is about 100 times larger than the cost of our
scheme.

The bandwidth cost of the Diffie-Hellman based solu-
tion could be significantly decreased with Elliptic Curve
Cryptography. In fact, the security of a 1024-bit Diffie-
Hellman key exchange is equivalent to the security of a
135-bit Elliptic Curve Diffie-Hellman (EC-DH) key ex-
change [14]. Therefore only one packet would be nec-
essary to be exchanged by the two devices. This would
reduce the energy cost due to communication by 5. How-
ever, as shown in [5], EC-DH key derivation cost is even
more expensive than regular DH key derivation. There-
fore the total energy cost would still be much higher than
the cost of our scheme.

6 Discussion

In this section, we present a discussion of more sophis-
ticated attacks that the “Shake Them Up!” strategy may
face.

6.1 RF analysis attacks on reference clocks
How secure is our protocol against a well equipped at-
tacker? An attacker may use more sophisticated equip-
ment, and conduct much more rigorous cryptanalysis.
Using an RF test equipment, for example, it is possible
to snoop the packets and record their signal shape. By
studying the signal shape of each packet, additional in-
formation may be discovered and help distinguish one of
the device’s packets from the other. Although the sig-
nal amplitude should not reveal anything more than an
RSSI measurement, signal-frequency may reveal a drift
between the participants’ reference clock implementa-
tion.

By current practice, a quartz crystal or crystal clock
oscillator stabilizes the carrier and baseband frequencies
in an RF transceiver. In order to ensure frequency lock
between two devices, and avoid serious phase noise, a
tight-stability reference clock is necessary. Nevertheless,
a reference clock implementation is never perfect. A ran-
dom clock drift is generally unavoidable, due to practi-
cal difficulties found at the hardware level. Typically,
an error of up to ±25ppm (parts per million) is toler-
ated. This tolerance includes the initial calibration toler-
ance at 25◦C, frequency changes over operating temper-
ature, power and load fluctuations, and aging[17]. For

example, at 2.4GHz carrier frequency, a frequency off-
set of up to 2.4×109

×2×25
106 =120kHz would be tolerated.

[4] reports 250kHz of central frequency accuracy toler-
ance. The main reason for clock drift is aging. I.e. the
clock drift is mostly stable in short-term (except in case
of shock, or abrupt temperature changes), but logarith-
mically increases in time[20, 1]. A clock drift from ±1
to ±5 ppm/year can be incurred depending on the crystal
used [2].

Consequently, during “Shake Them Up!”, device A
may always transmit at a central frequency fA while the
device B transmits at fB , where fA = fB + ε. A third
party equipped with an RF analyzer can then retrieve the
secret key by correlating the packets with the same cen-
tral frequency. A frequency shift of several kHz is unfor-
tunately too large to be compensated with the Doppler
effect made by separately shaking the devices. A shaking
speed of ±10m/s would only make a Doppler effect be-
tween ±50Hz (at 2.4GHz) which probably cannot coun-
terbalance the error ε.

A possible defense against this attack consists of
adding a deliberate and random frequency offset so that
fA and fB span over similar frequency ranges. This so-
lution however requires firmware changes, making it a
longer-term solution. Let the frequency offset tolerance
be ±δ and fA < fB (i.e. fA and fB are within the range
[f − δ; f + δ]) and both devices add a deliberate ran-
dom frequency shift t to each packet. The devices will
have a frequency range between [fA − t; fA + t] and
[fB − t; fB + t] respectively. Assuming that an eaves-
dropper, Eve, knows fA and fB, then she can deduce
that the packets transmitted with a frequency larger than
fA+t originate from B, and the packets transmitted with
a frequency smaller than fB − t originate from A.

However, the packets received within range [fB −
t; fA + t] are emitted by A or B with the same proba-
bility. This is illustrated in Figure 7. Let k be the number
of packets emitted by each device. It can be shown that,
k
2t × (fA − fB + 2t) packets of A (and B) will have a
central frequency between [fB − t; fA + t]. If we wish
to use an 80-bit secret key, at least 40 packets of A and
40 packets of B must be in this frequency range. This
condition is satisfied if: k

2t × (fA − fB + 2t) > 40, i.e.

k >
40 × 2t

fA − fB + 2t

where t > δ (recall that 2δ is the maximum frequency
shift between two devices). In the worse scenario, fA =
f − δ and fB = f + δ, i.e. fA − fB = −2 × δ and
k > 40 × t/(t − δ). If t is set to 2 × δ, then k can be set
to 80. To summarize, by setting t to 2 × δ and k to 80
(instead of 40 in the basic scheme), the generated secret
is secure for any value of fA and fB in [f − δ; f + δ].

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association62

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

fA fB

fA2t+ −fB

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

t t

t t

Figure 7: A technique for hiding the clock drift between
two devices. In the region where the central radio fre-
quencies of each device overlap, the packets of A and B
are indistinguishable.

6.2 Camera-assisted packet captures

Another type of attack that “Shake Them Up!” may be
exposed to is a video camera assisted attack. Using a sig-
nal level analyzer that is synchronized with a video cam-
era, an attacker may correlate different device locations
and their respective signal power during the shaking pro-
cess. Users may employ different strategies against this
threat such as hiding the sensor devices with their hand
(provided that the devices are small).

Hiding the devices has also the additional benefits that
it protects our scheme against eavesdroppers with unidi-
rectional antennas. Since the location of the sensors are
hidden, an eavesdropper cannot aim an antenna at one of
the sensors for identifying its packets.

7 Conclusion

In this paper we presented a novel secure pairing scheme
for CPU-constrained devices without a need for special
hardware or interfaces. Using an existing communica-
tion channel such as 802.11 or 802.15.4, two devices that
are close to each other can agree on a secret key using
an algorithm that does not depend on CPU-intensive op-
erations. On the other hand, user assistance is required
for shaking the devices during key agreement in order to
preserve key secrecy.

One alternative could consist of randomly varying the
signal level (in software) during key agreement. How-
ever, this solution is not secure because an eavesdropper
may aim an unidirectional antenna at one device, iden-
tify its packets and therefore retrieve the secret key. Fur-
thermore we have discovered by experimentations that if

the two devices are not shaken, one of them can mask
the signal of the other one and attenuate its transmis-
sion power significantly. Consequently, the packets from
each device are received at a different signal level, and
the secret key can easily be retrieved. Shaking solves
all these problems. It seems to be the only solution that
can address all kinds of RSSI-based signal level anal-
ysis threats that our key agreement protocol may face.
The proposed protocol works with off-the-shelf 802.11
wireless cards and is secure against eavesdropping at-
tacks that use power analysis. It requires, however, some
firmware changes to protect against attacks that attempt
to identify the source of packets from their transmission
frequency.

One limitation of our scheme is that it is specific to
random media access technologies. For example, it is
not suitable for TDMA-based protocols and, therefore,
cannot be used with Bluetooth devices. Our scheme re-
quires CSMA-based systems, such as 802.11 or 802.15.4
(an emerging Wireless PAN technology, designed for low
power sensors). Another noticeable limitation is that it
requires that the transmission power of both devices be
similar. This was the case with the 802.11 devices that
we used for our experimentations. However, for some
wireless technologies, a power control protocol might be
required to adjust the transmission power accordingly.

Objects with microprocessors and wireless
transceivers surround us. Today’s users are more
and more technology and security-aware. Almost all
users today learned that a system access password
should contain non-alphanumeric characters. We have
learned (or are forced to learn) how to handle computer
viruses. Technology and information security have
become part of our everyday lives. Thus, we believe that
future users can also learn that two small devices must
be shaken well before secure use. This is actually a very
common protocol that we already execute everyday.
For example, orange juice or shaving cream bottles are
universally shaken/moved before usage. This is now a
well-known and quite a natural “protocol”. Furthermore
it is commonly accepted that it is the responsibility and
in the interest of the consumers to perform this shaking
operation properly. Similarly, in our case by shaking the
devices well, the user can make sure that the two devices
are paired securely.

Acknowledgement

We would like thank Roy Want, Gene Tsudik and the
anonymous reviewers for their excellent remarks that
helped us improve this paper.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and ServicesUSENIX Association 63

References

[1] Fundamentals of Quartz Oscillators. HP Applica-
tion Note 200-2.

[2] http://www.telluriantech.com. Specialty Crystals,
Quartz Crystals.

[3] ALPERN, B., AND SCHNEIDER, F. Key exchange
using ”Keyless Cryptography”. Information pro-
cessing letters 16, 2 (February 1983), 79–82.

[4] CHAYAT, N. 802.11a PHY
Overview. Slides available at:
http://www.nwest.nist.gov/mtg3/papers/chayat.pdf.

[5] DAI, W. Speed benchmarks for
various ciphers and hash functions.
URL:http://www.eskimo.com/∼weidai/.

[6] DIFFIE, W., AND HELLMAN, M. New directions
in cryptography. IEEE Transactions on Information
Theory IT-22, 6 (1976), 644–654.

[7] GEHRMANN, C., AND NYBERG, K. Enhance-
ments to bluetooth baseband security. In Nord-
sec’01 (Kopenhagen, Denmark, November 2001).

[8] GOLDWASSER, S., AND BELLARE,
M. Lectures notes in cryptography.
URL:http://www.cs.ucsd.edu/users
/mihir/papers/gb.html.

[9] HILL, J., SZEWCZYK, R., WOO, A., HOLLAR,
S., CULLER, D. E., AND PISTER, K. S. J. System
architecture directions for networked sensors. In
Architectural Support for Programming Languages
and Operating Systems (2000), pp. 93–104.

[10] HOEPMAN, J.-H. Ephemeral pairing
in anonymous networks. Available at:
http://www.cs.kun.nl/∼jhh/publications/anon-
pairing.pdf.

[11] HOEPMAN, J.-H. The ephemeral pairing prob-
lem. In 8th Int. Conf. Financial Cryptography (Key
West, Florida, February 9-12 2004), pp. 212–226.

[12] HOLMQUIST ET AL, L. A. Smart-Its Friends: A
Technique for Users to Easily Establish Connec-
tions between Smart Artefacts. In Ubicomp 2001
(Atlanta, Georgia, September 30, October 2 2001).

[13] KARLOF, C., SASTRY, N., AND WAGNER, D.
Tinysec: A link layer security architecture for wire-
less sensor networks. In Second ACM Conference
on Embedded Networked Sensor Systems (SenSys
2004) (November 2004).

[14] LENSTRA, A. K., AND VERHEUL, E. R. Selecting
cryptographic key sizes. Journal of Cryptology: the
journal of the International Association for Crypto-
logic Research 14, 4 (2001), 255–293.

[15] LESTER, J., HANNAFORD, B., AND G., B. ”Are
You with Me? - Using Accelerometers to Deter-
mine If Two Devices Are Carried by the Same Per-
son”. In Pervasive 2004 (Vienna, Austria, April 21-
23 2004).

[16] MENEZES, A. J., VAN OORSCHOT, P. C., AND
VANSTONE, S. A. Handbook of applied cryptog-
raphy. CRC Press series on discrete mathematics
and its applications. 1997. ISBN 0-8493-8523-7.

[17] OGILVIE, B. Clock Solutions for WiFi (IEEE
802.11). Saronix(tm) application note, 2003.

[18] RIVEST, R., SHAMIR, A., AND ADLEMAN, L. A
method for obtaining digital signatures and public-
key cryptosystems. Coomunications of the ACM 21
(1978), 120–126.

[19] STAJANO, F., AND ANDERSON, R. The resurrect-
ing duckling: Security issues for ad-hoc wireless
networks. In Proceedings of the 7th International
Workshop on Security Protocols (1999), pp. 172–
194.

[20] VIG, J., AND BALLATO, A. Frequency Control
Devices. Reprinted from Ultrasonic Instruments
and Devices, Academic Press, 1999.

[21] WANT, R., AND PERING, T. New Horizons for
Mobile Computing. In First IEEE International
Conference on Pervasive Computing and Commu-
nication (PerCom’03) (Dallas, Texas), pp. 3–8.

Notes
1Since infrared channels require line-of-sight links, they cannot be

efficiently used for the actual communication between the sensors.
2We assume that packets do not carry information that can help

identify the source address. Thus we concentrate our efforts on tem-
poral and spatial indistinguishability problems.

3Available at: http://www.hpl.hp.com/personal/Jean Tourrilhes
4Note that the spatial indistinguishability property requires that the

two devices set the same transmission power. We observed that almost
all vendors set it to 15 dBm. Otherwise, the devices should modify their
transmission power to a specified value and keep it constant during key
agreement.

MobiSys ’05: The Third International Conference on Mobile Systems, Applications, and Services USENIX Association64

